当前位置:文档之家› 圆的参数方程及应用

圆的参数方程及应用

圆的参数方程及应用
圆的参数方程及应用

圆的参数方程及应用

对于圆的普通方程(x a )2 3 (y b )2 R 2来说,圆的方程还有另外一种表达

形式 (为参数),在解决有些问题时,合理的选择圆方程的表达 y b Rsi n 形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。

、求最值

2

【解】由 /BAC=—,得/BOC= ,设 Z ABO= 9( 0

3 3 2 2

9),C (2cos (9+一),2sin (9+ )),由重心坐标公式并化简,得: 3 3 ■?

例1已知点(x , y )在圆x 2 y 2

1 上, 求 x

2 2xy 3y 2的最大值和最小值。 【解】圆x 1的参数方程为: cos

sin 则 x 2 2xy 3y 2 = cos' i 2 2sin cos 3sin 2

=1 cos2 =2 3 k — (k ?)时, 8

1 cos

2 sin2

3 2 sin2 cos2 2 x 2 2xy 3y 2的最大值为: =2 2sin(2 2,则

时,x2 2xy 3y2的最小值为2近。

—),则B(2cosB,2sin

3

2

x -

3

y 2si n()

3 3

2

消去0得:(x m2 y2

【点评】用圆的几何性质,/ BOC=2ZBAC=120 °,再以A BO= B为参数,求

出轨迹的参数方程,在消参后,要注意x的范围的限定。

三、求范围

例3已知点P (x,y)是圆X2 (y 1)2 1上任意一点,欲使不等式x+y+c> 0恒成立,求c的取值范围。

0=1+、、2sin( —),— ( x+y) =—1 —、、2sin( —),— ( x+y)的最大值为:一1+、、2,由于x+y+c为,所以,c>—(x+y)恒成立,即c>-1^, 2。

【点评】将恒成立的问题,转化为求最值问题,利用圆的参数方程求最值简洁易算

四、求斜率

1)所连线的斜率,最值在切线处取得,容易求

得最大值为:4

4,最小值为:0。

2 cos( )

3 3,由3

5

亍§,知X V 1,

【解】圆x2 (y 1)21的参数方程为: x cos 口「亠

,贝9有:x+y=1+sin

0+cos

例4求函数f() 值。【解】函数f() 为圆心的

单位圆上的点

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

§2.2.3直线的参数方程及应用(第2课时)1

§2.2.3直线的参数方程及应用(第2课时) 【学习目标】 1. 掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 【学习重点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习难点】 1. 直线参数方程的标准形式和一般形式,理解参数的几何意义; 2. 利用直线的参数方程解决有关数学问题; 【学习过程】 一、学前准备: 1、若由a b →→ 与共线,则存在实数λ,使得 , 2、设e → 为a → 方向上的 ,则a → =︱a → ︱e → ; 3、经过点00(,)M x y ,倾斜角为()2 π αα≠ 的直线的普通方程为 。 二、新课导学 ◆探究新知(预习教材P 35~P 39,找出疑惑之处) 1、选择怎样的参数,才能使直线上任一点M 的坐标,x y 与点0M 的坐标00,x y 和倾斜角α 联系起来呢?由于倾斜角可以与方向联系,M 与0M 可以用距离或线段0M M 数量的大小联系,这种“方向”“有向线段数量大小”启发我们想到利用向量工具建立直线的参数方程。 如图,在直线上任取一点(,)M x y ,则0MM = , 而直线l 的单位方向向量e → =( , ),因为0MM e → ,所以存在实数t R ∈, 使得0MM = ,即有()()00,cos ,sin x x y y t αα--=,因此,经过点 00(,)M x y ,倾斜角为()2 π αα≠ 的直线的参数方程的标准式为: ???= = y x 2.方程中参数t 的几何意义是什么? 直线上任意动点到定点P 0的距离________||0=P P 3. 直线参数方程的一般式: (1)过点P 0(00,y x ),斜率为a b k = 的直线,记直线倾斜角α,则=αtan ,直线参数方程的一般式是 ? ? ?+=+ =t y y t x x ()()00 (t 为参数),直线上任意动点到定点P 0的距离||________||0t P P =, (2)直线参数方程的一般式是 ???+=+=bt y y at x x 00 (t 为参数), 直线上任意两点A,B 对应参数分别为21,t t ,则它们到P 0的 距离分别为: |t -t |________|B P -A P ||AB ||,|________|||,|________||21002010====弦长t B P t A P ||________||________||________||||212100t t t t B P A P =?=? (3)中点公式:)M(),,(),,(20201010则中点bt y at x B bt y at x A ++++ |2 |________||2 10t t M P += 二、直线参数方程的应用 题组一。.求直线的参数方程的标准式及t 的几何意义的应用 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的几何意义.

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 0 / 13

3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA 为数轴的单位方向向量,OA 方向与数轴的正方向一致,且OM tOA =;②当OM 与OA 方向一致时(即OM 的方向与数轴正方向一致时),0t >; 当OM 与OA 方向相反时(即OM 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =.教师用几何画板软件演示上述过程.

圆的参数方程及应用

对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆2 2 1x y +=的参数方程为:cos sin x y θθ=??=? 。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++? 2sin 2cos 2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC=3π ,求△ABC 的重心G (x ,y )的轨迹 方程。 【解】由∠BAC= 3 π,得∠BOC=23π,设∠ABO=θ(403π θ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23 π )),由重心坐标公式并化简,得: 22cos()333 2sin()33x y πθπθ? =++??? ?=+?? ,由5333πππθ<+<,知0≤x <1, C x y O A B 图1

直线的参数方程圆锥曲线的参数方程及其应用等高中数学

直线的参数方程,圆锥曲线的参数方程及其应用 一. 教学内容: 直线的参数方程,圆锥曲线的参数方程及其应用,极坐标系,曲线的极坐标方程及其应用。 [基本知识点] (1)直线的参数方程 <1>标准形式: :),y ,x (M 000准形式为的直线的参数方程的标且倾角为过点α )t (sin t y y cos t x x 00为参数???+=+=αα <2>一般形式 )1b a 't ('bt y y 'at x x 2200≠+???+=+=为参数且 (2)参数t 的几何意义及其应用 标准形式: )y ,x (M t ,)t (sin t y y cos t x x 00000的几何意义是表示定点中为参数???+=+=αα 的数量的有向线段到直线上动点M M y)(x,M 0 :t,M M 0故即= <1>直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长|AB|=|t 1-t 2| <2>定点M 0是弦M 1、M 2的中点?t 1+t 2=0

<3>设弦M 1,M 2中点为M ;则点M 相应的参数 2t t t 2 1M += (3)圆锥曲线的参数方程 <1>)(sin r y cos r x r y x 222为参数的参数方程为圆ααα???===+ 轴正方向的旋转角 的几何意义动半径对于其中x α <2> 其几何意义为离心为参数的参数方程为椭圆,(sin b y cos a x 1b y a x 2222 ααα???===+ 角)。 <3>)(btg y asec x 为参数双曲线的参数方程为ααα???== <4>抛物线y 2=2px 的参数方程为 )(t pt 2y pt 2x 2 为参数?????== (4)极坐标系的基本概念。 在平面内任取一个定点O ,叫做极点,引一条射线O x ,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角度,ρ叫做M 的极径,θ叫做点M 的极角,有序数对(ρ,θ)就叫做点M 的极坐标系,这样建立的坐标叫做极坐标系。 (5)极坐标与直角坐标的互化 <1>互化条件: 极点与直角坐标系原点重合; 极轴与直角坐标系O x 轴重合; 两坐标系中的长度单位统一。 <2>互化公式

参数方程考点

参数方程“考点”面面看 “参数方程”主要内容是直线、圆和椭圆的参数方程,参数方程和普通方程的互化,参数方程的简单应用三块,下面针对这三块内容进行透析: 一、直线、圆和椭圆的参数方程 例1.若直线的参数方程为1223x t y t =+??=-?(t 为参数),则直线的斜率为 . 分析:经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为x x t y y t t =+=+???00 cos sin αα(为参数) 解:将直线的参数方程为1223x t y t =+??=-? 化为12x y ?=????=?? (t 为参数),则直线的斜率为32 -. 评注:关键是要弄清楚直线的参数方程的形式. 经过定点P(x 0,y 0)的直线的参数方程也可以写成00x x at y y bt =+??=+?(t 为参数),斜率就是b a . 二、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标). 例2.方程2222 t t t t x t y --?=-??=+??(为参数)表示的曲线是__________________. 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略. 解:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,()()22 2222224t t t t x y ---=--+=-,即有224y x -=,又注意到 202222t t t y ->+≥=≥,,即,可见与以上参数方程等价的普通方程为2242y x y -=≥().显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 评注:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性. 例3.设P 是椭圆22 2312x y +=上的一个动点,则2x y +的最大值是 ,最小值为 . 分析: 由于研究二元函数x+2y 相对困难,因此有必要消元,但由x ,y 满足的方程2x 2+3y 2=12表出x 或y ,会出现无理式,这对进一步求函数最值依然不够简洁,能否有其他途径把二元函数x+2y 转化为一元函数呢?

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=αα sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , x x

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? x x

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

参数方程及其应用

极坐标与参数方程 一、极坐标与直角坐标之间的转换 (,)(cos ,sin )A A r q r q r q ? cos ,sin x y r q r q == 222x y r += a r =:表示半径为a 圆心为原点的圆 r q =:表示顶点在原点,与x 轴的正半轴夹角为q 的射线 2cos ()22 a p p r q q =- #表示圆心为(,0)a ,半径为a 的圆(注意角的取值范围,范围不同表示曲线不同) 2sin (0)a r q q p =#表示圆心为(0,)a ,半径为a 的圆(注意角的取值范围,范围不同表示曲线不同) 二、常见的参数方程 1、直线的参数方程 形式一:(倾斜角) 00cos sin x x t y y t q q ì=+?í=+??(t 为参数) 形式二:(向量式) 00x x mt y y lt ì=+?í=+?? (t 为参数) 过定点00(,)P x y ,直线斜率sin cos l k m q q = = 两种形式的转化方法:0 0x x mt y y lt ì=+?í=+??(t 为参数)00x x y y ì=????í?=??? (t 为参数) 2、圆的参数方程 cos sin x r y r q q ì=?í=??(q 为参数) cos sin x a r y b r q q ì=+?í =+??(q 为参数) 3、椭圆的参数方程 cos sin x a y b q q ì=?í=?? (q 为参数) 00cos sin x x a y y b q q ì=+?í =+?? (q 为参数) 4、双曲线的参数方程 sec tan x a y b q q ì=?í=?? (q 为参数) 00sec tan x x a y y b q q ì=+?í =+?? (q 为参数) 5、抛物线的参数方程 2 2y px =? 2 2t x p y t ì?=?í?=??(t 为参数) 222x pt y pt ì=?í =??(t 为参数)

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (22022 0=-+-的参数方程是? ??α+=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α+=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是A (ααsin b cos a ,)(2 0π<α<),矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π=时,22m a x b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,22max b a 4L +=,此时α存在。 二、求轨迹

例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++=cos 82 11021cos 12211x 21x x B A 3sin 42 11921sin 6211y 21y y B A +α=+?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α=3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值 例3 设点P (x ,y )在椭圆19 y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则5553arcsin sin 53 4|5sin 4cos 3|d 22-??? ??+α=+-α+α=。 当5 3arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 四、求解有关离心率等入手比较困难的问题

直线的参数方程及其应用(不错哦,放心用)

直线的参数方程及应用 目标点击: 1.掌握直线参数方程的标准形式和一般形式,理解参数的几何意义; 2.熟悉直线的参数方程与普通方程之间的互化; 3.利用直线的参数方程求线段的长,求距离、求轨迹、与中点有关等问题; 基础知识点击: 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α x

参数方程的应用(一)

知识目标:使学生较熟练的掌握参数方程在求最值问题方面的应用。 能力目标:培养学生的创新思维,使学生的解题能力得到进一步的提高,为以后的学习奠定基础。 德育目标:培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验 三、教学重点、难点: 重点是掌握直线、圆、椭圆的参数方程; 难点是如何恰当的选择参数解决各种最值 四.授课类型:新授课 五、教学方法与教学手段: 以学生为主体,教师为主导的问题探究式教学。 六、教学过程: 引入:前一阶段我们学习了哪些曲线的参数方程?今天我们就利用已有的知识来更好的理解参数方程,并学会利用曲线 的参数方程解决相关的应用问题。 热身:1.方程?? ?+=+=θ θ sin cos t b y t a x 分别以t 为参数)0(≠t 或θ 为参数,得到两条曲线,则这两条曲线公共点的个数 是 , 2.当θ在闭区间]2 ,0[π 上变化时,抛物线θ θ2cos sin 42 --=x x y 的顶点 P 的轨迹方程 是 . 新授: 题型一 利用参数方程求多元函数的最值 【例 1】已知y x ,满足4)2() 1(22 =++-y x ,求y x S -=3的最大值和最小值 变形:已知y x ,满足4)2() 12(22 =++-y x ,求y x S -=3的最大值和最小值 题型二 利用参数方程求距离、长度的最值 【例 2】在椭圆 22 110025 x y +=上求一点P ,使它到已知直线:38720l x y ++=的距离d 为最大 题型三 利用参数方程求多边形周长和面积的最值 【例 3】求圆122 =+y x 内接矩形面积的最大值 面积 的最大值,并求此时M 点的坐标。 思考:将上述第一象限删掉,会有什么结果? 变形3:已知椭圆)0(122 22>>=+b a b y a x 上两个相邻顶点为C A ,,又D B ,为椭圆上的两个动点,且D B ,分别在直线AC 的两 旁,求四边形 ABCD 面积的最大值。 题型四 利用参数方程求角度的最值 【例 4】(备用)已知椭圆 2 2116 x y +=和圆2216x y +=,A 为圆在第一象限上 的点,过A 作AM 垂直于x 轴于点M ,交椭圆于点B ,求AOB 的最大值 七.练习: (1)已知点P 为椭圆13 22 =+y x 在第一象限部分上的点,则y x +的最大值等于 . (2)已知点P 在曲线? ??=+=θθ sin cos 2y x (θ 为参数)上,点Q 在曲线???=-=t y t x 21 (t 为参数)上,试求PQ 的最小值,并 求出此时Q 点坐标 (3)AB 为过椭圆 116 252 2=+y x 中心的弦,1F ,2F 为焦点,求△ABF 1面积的最大值。 (4)椭圆 122 22=+b y a x (0>>b a )与x 轴正向交于点A ,若这个椭圆上存在点P ,使OP ⊥AP ,(O 为原点),求离心率e 的范围。 八.小结:本节课我们处理的以上几个问题均是利用参数方程来求最值问题。我们发现,利用参数方程求最值把三角函数跟 解析几何很好的结合起来,降低了运算量,是一条很好的解题途径。 九.作业

直线的参数方程教案(同名23777)

直线的参数方程 教学目标: 1. 在直角坐标系中,给定一点00(,)M x y 及倾斜角α联系向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研 的科学精神、严谨的科学态度. 教学重点:分析直线的几何条件,选择适当的参数写出直线的参数方程. 教学难点:通过直线的几何条件联系到向量法,并选择“有向线段的数量”为参数. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 1.我们学过的直线的普通方程都有哪些? 2.根据直线的几何条件,你认为用哪个几何条件来建立直线的参数方程比较好. 二、直线参数方程探究 1. 已知一条直线的倾斜角和所过的一个定点,请写出直线的方程. 2.根据直线的几何条件,你认为应当怎样选择参数,如何建立直线的参数方程? (1)把0M M 看成有向线段,那么点M 的位置可以由它的数量唯一确定;(2)0M M 的方向可以利用倾斜角α确定的方向向量来表示。从而可以利用向量来

建立直线l 的参数方程. 如何确定直线l 的单位方向向量e ? 教师启发学生:如果所有单位向量起点相同,那么终点的集合就是一个圆.为了研究问题方便,可以把起点放在原点,这样所有单位向量的终点的集合就是一个单位圆.因此在单位圆中来确定直线的单 位方向向量. 在此基础上,得出(cos ,sin )e αα=,从而明确 直线l 的方向向量可以由倾斜角α来确定. 问题:如果点0M ,M 的坐标分别为 00(,)(,)x y x y 、,怎样用参数t 表示,x y ? 因为(cos ,sin )e αα=,([0,)απ∈),00000(,)(,)(,)M M x y x y x x y y =-=--, 0//M M e 又,所以存在实数t R ∈,使得0M M te =,即 00(,)(cos ,sin )x x y y t αα--=. 于是0cos x x t α-=,0sin y y t α-=, 即0cos x x t α=+,0sin y y t α=+. 因此,经过定点00(,)M x y ,倾斜角为α的直线的参数方程为 ? ??+=+=ααsin cos 00t y y t x x (t 为参数). 提出如下问题让学生加强认识: ①直线的参数方程中哪些是变量?哪些是常量? ②参数t 的取值范围是什么? ③参数t 的几何意义是什么? 总结如下:①00,x y ,α是常量,,,x y t 是变量; ②t R ∈;

相关主题
文本预览
相关文档 最新文档