当前位置:文档之家› 陶瓷球阀以及陶瓷球的制备

陶瓷球阀以及陶瓷球的制备

陶瓷球阀以及陶瓷球的制备
陶瓷球阀以及陶瓷球的制备

陶瓷球阀以及陶瓷球的制备

一.陶瓷球阀

增韧氧化铝陶瓷作为结构陶瓷中的典型材料,具抗磨损性、抗腐蚀、有高硬度及高电热绝缘性能。其加工产品陶瓷球阀广泛应用与造纸、医药、煤化工、电力、石油、航天等多个领域。增韧氧化铝在阀门行业已实现产业化。记者从福建省科技厅获悉,由厦门大学材料学院、福建省智胜矿业有限公司承担的省科技重大专项“先进陶瓷材料与器件”中的“氧化铝的陶瓷粉体和六英寸陶瓷球阀的研发与产业化”专题,日前已通过省级验收。这项技术以打破了发达国家对大尺寸陶瓷球阀技术的垄断。

阀门特点:

1)本阀门可在任意位置上安装。

2)结构简单、紧凑、拆装维修方便,0~90o启闭开关迅速。

3)采用高性能结构陶瓷球体及陶瓷阀座,彻底改变了金属硬密封球阀易泄漏、扭矩大、密封面易腐蚀、易磨损的缺点,与普通阀门相比使用寿命更长,是带颗粒

及纤维介质最理想的阀门,而且能轻松实现球阀的调节功能。

4)与介质接触的地方为陶瓷部件,它可以抗磨损、抗腐蚀。

5)所有陶瓷配件均有先进的制造工艺,可以保证质量优,精度高。

6)良好的克服压差能力,流路最简单,无阻调节。Cv值最大,“自洁”性能良好,具有防堵功能。

7)阀座装“V”形调节窗口,流量特性近似等百分比,调节性能好。并且可根据CV值的不同,配置不同的“V”形窗口。

8)启闭试验次数多,高达万次,寿命长。

9)阀门可选配多种执行机构,可直接接受远方控制中心计算机或仪表输出4-20mA.DC信号或1-5V.DC信号。对执行机构的转角进行智能步距调整和自动标定,从而实现对介质的远程控制或连续调节。

10)采用高性能结构陶瓷球体,更加防腐蚀、防磨损。

下图为陶瓷球阀爆炸图

二.陶瓷球

陶瓷球毛坯成型的方法最常见的是粉压成型,包括干压法成型和等静压成型。它们的共同特点是都采用干粉料,在粉料中只含有很少

的水分或有机粘合剂

1)干压法是一种最简单、最直观的成型方法。只要将经过造粒、流动性好的粉料,倒入球形钢模内,通过模塞施加压力,便可将粉料压制成球形坯体。一般情况下,干压法可以得到比较理想的坯体密度。由于干压成型的坯体比较密实、尺寸比较精确,烧成后收缩较小,所以其机械强度较高。但是该法的致命缺点是:它的加压方向只限于一个方向(上、下,或上下同时加压),缺乏侧向压力,压成的氮化硅陶瓷球坯体结构具有明显的各向异性,烧结时,侧向收缩大,机械电气性能也远非各向均匀。

2)等静压成型是针对干压法制造的毛坯球结构和强度各向异性这一问题而发展起来的。该法通过液体内压力使毛坯球得到均匀的各向加压:将预压好的粉料坯体,包封于弹性的塑料或橡皮胶套内,置入一个能承受高压作用的钢筒中,用高压泵将液压流体打入筒体。胶套内的物料在各个方向受到同等大小的压力。等静压成型对模具并无特殊的要求,压力易于调节,坯体均匀致密,烧结收缩小,各向均匀一致,烧成后的产品具有高超的机械强度。

加工的技术难点

由于陶瓷球材料硬度高达1600HV以上,是钢球硬度的2倍,因此,钢球的加工工艺和磨料不适合陶瓷球加工,陶瓷球加工存在如下主要问题:陶瓷球表面能低研磨介质和磨料附着性差,影响陶瓷球加工效率、球表面粗糙度和加工球批直径变动量;陶瓷球在研磨盘沟道中自转性差,影响陶瓷球的加工精度(特别是球形误差)

陶瓷坯的加工工艺流程图

陶瓷球的制作工艺

1.等静压地方法加工成陶瓷筒然后再修形得到陶瓷球,在1450~1600℃烧结15小时后,然后在进行加工就可得到的陶瓷球。

2.陶瓷球阀的密封要求比较高,最高可达800公斤,所以球体必须要非常圆,而且表面要非常光滑,他的误差不能超过5‰,因而它的加工工艺必须要精密,首先球体粗加工,接着球体精加工。

内孔研磨超硬材质加工技术

JG-450CP 内孔研磨超硬材质加工技术 1. 内孔研磨超硬材质加工技术: 加工机型:M oore坐标磨床 加工精度:0.002mm 加工刀具:moore钻石砂轮 加工用途:磨头转速分别有40kprm 120 kprm 175 kprm只要针对模具行业中高精度的各种圆孔方孔异性孔盲孔以及线性曲面的加工; 2.加工工件图例: 加工精度:¢10mm ¢3mm的孔加工精度均为0.001-0.002mm 位置精度:0.001-0.002mm 尺寸精度:0.001-0.002mm 3加工流程: ①加工前确认: 确认联络单编号与工件是否一致,工件有无划伤并认真审图 ②选择加工方式选择加工方式 ⑴平行垫块 用平行垫块装夹工件(如图一所示)这样装夹简单快捷容易把工件的平面度扫平,同时用螺丝加紧力大工件不宜松动。但是这样由于加紧力的作用和加工过

程中产生内应力。 ⑵利用V型夹装夹 加工如图二所示工件我们一般采用治具装夹的方法这样做很容易加紧工件容易找坐标但是工件装夹精度和垂直度容易受治具精度的影响同时由于工件壁厚的不同装夹时工件会产生变形。 ⑶利用磁力平台吸磁的方法 该方法可以直接将工件放在磁力平台上利用磁力平台的吸力给工件一个力不使工件移动然后根据加工情况可以采用万能胶水粘在工件四周。如图所示三: 同时当加工一个通孔时必须有让刀部分这就要求磁力平台要沉下去一些,如 图: 4建立加工坐标 ⑴量表的选择: 精度要求在0.002mm以内的选择的刻度为0.001mm的杠杆量表 精度要求在0.002mm以上的选择的刻度为0.002mm的杠杆量表 ⑵建坐标的基本原则 加工工件时外形尺寸要求精度高时,采用用工件外形建立坐标。 当外应精度一般时我们采用工件中精度高的各种孔建立坐标,选择尽可能远的两个孔来建坐标,同时方孔优先于圆孔。 如果工件外形和孔的精度都不高时,使用JG所加工孔建立坐标。

深沟球轴承公差标准

深沟球轴承公差标准 深沟球轴承公差内径带的位置和大小与一般基准孔不同,(G与E)或(0与6)滚动轴承的内径是有特殊公差带位置的基准孔,各精度等级轴承内径的公差带从零线起向下布置,上偏差为零,下偏差为负值。深沟球轴承公差外径带位置与基轴制类似,从零线起向下布置。 1、当轴承内径公差带与轴公差带构成配合时,在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。 2、轴承外径公差带由于公差值不同于一般基准轴,也是一种特殊公差带,大多情况下,外圈安装在外壳孔中是固定的,有些轴承部件结构要求又需要调整,其配合不宜太紧,常与H6、H7、J6、J7、Js6、Js7等配合。 3、选用与滚动轴承的精度有关: ①与G(0)级轴承配合的轴,其公差等级一般为IT6,外壳孔为 ②与E(6)、D(5)级轴承配合,轴一般为IT5,外壳孔为IT6。 要看具体使用条件,如果对轴是旋转负荷,转速较高,负荷较大,则要求紧一些;如是静止负荷,则可松些;也要看安装方式,如果内外圈同时安装,为装配方便计,也应松些; 一般情况下,轴一般标0~+0。005 如果是不常拆的话,就是+0。005~+0。01的过盈配合就可以了,如果要常常的拆装就是过渡配合就可以了。我们还要考虑到轴材料本身在转动时候的热胀,所以轴承越大的话,最好是-0。005~0的间隙配合,最大也不要超过0。01的间隙配合 轴承一般是轴承与孔过渡或间隙,特殊用途用过盈,如果选择过盈的话轴承孔选N7,P7,轴分别选N6,P6,孔的公差提高一等级。楼上的K7是过渡配合,也可以选的,在一般如果要求精度不高的情况下,可以使用轴承与孔过渡配合。

Q641TC气动全内衬陶瓷球阀

Q641TC气动全内衬陶瓷球阀 Q641TC气动全内衬陶瓷球阀 产品概述: Q641TC系列气动全内衬陶瓷球阀的阀体内部与介质接触部分(包括球体及阀体内衬)均采购高性能结构陶瓷材料,在火电厂脱硫脱硝、气力除灰、化工冶金、多晶硅硅粉气力输送等各种高腐蚀、高磨损、高冲刷工况中具有出色的表现。主要性能特点: 1.阀门壳体采用碳钢或不锈钢材料,采用三段式结构设计,结构简单可靠,并能有效保护内部陶瓷部件免受损坏。 2.阀门球体及与介质接触的所有部位均内衬结构陶瓷材料,高纯氧化铝陶瓷和氧化锆陶瓷具有出色的耐腐蚀性能,在除氢氟酸外的绝大部分强腐蚀酸碱介质中都不会腐蚀,作为耐腐蚀阀门,在众多耐腐蚀领域,全内衬陶瓷球阀具有广泛且出色的表现。 3.高纯氧化铝陶瓷和增韧氧化锆陶瓷除了具有极好的耐腐蚀性能外,同样具有极高的硬度(洛氏硬度HRA>88,仅次于金刚石等少数几种材质),因此在各种含有固体颗粒的高冲刷高磨损工况中,可以长期使用而不会被磨损。 应用领域: 1.火电厂烟气脱硫脱硝石灰水、石灰石浆液、石膏浆液 2.火电厂气力除灰 3.多晶硅硅粉气力输送 4.冶金粉末气力输送 5.湿法冶金硫酸/盐酸与矿砂混合物 6.其他高腐蚀、高磨损、高冲刷工况 产品规范: 设计规范:GB/T12237 结构长度:GB/T12221 连接标准:GB/T9113,JB/T79.1,HG/T20592 压力试验:JB/T9092 产品标识:GB/T12220 供货规范:JB/T12252 主要零部件材料: 主体:碳钢(A105)、不锈钢(F304,F316,F304L,F316L)等 阀球:结构陶瓷 阀座:结构陶瓷

陶瓷轴承的优缺点

陶瓷轴承的优缺点 陶瓷轴承是一个总称呼,大分两种,全陶瓷轴承和半陶瓷轴承(混合陶瓷轴承),若是在不考虑其它(如转速、寿命、使用环境等)前提条件下,单独就陶瓷轴承的负荷(载荷、承重)来说:同一型号的轴承,轴承钢6204ZZ,基本额定动载荷13.5kN,混合陶瓷轴承 6204ZZC:基本额定动载荷大概在27kN左右,若是全氧化锆陶瓷轴承6204CE,基本额定动载荷大概在2kN左右,单独的陶瓷轴承负荷(载荷、承重)来说是比不上同型号规格的轴承钢轴承或是混合陶瓷轴承。 但若是综合使用环境来说,陶瓷轴承有以下几点明显优势: 陶瓷轴承的优缺点: 陶瓷轴承原子结构,非金属固有的共价键。这意味着它们共享电子,此原子有强烈的吸附力,由于这个原因,陶瓷轴承提供一些好的性能比金属轴承。它们通常有很高的硬度,有弹性,轻巧。这意味着在形状改变时,负荷与提高耐磨特性一起应用。 陶瓷轴承运行免润滑。这是因为陶瓷材料不微焊接。微焊接发生时,通常与金属,当滚动元件和滚道表面上的瑕疵与另一种引起电弧相互作用。这降低了表面并大大降低了轴承的寿命。陶瓷材料不具有这样的问题,这使得它们适合于需要一个自由润滑油环境的各种应用。他们通常在高温下这意味着有较少的热膨胀以稳定的方式行事。

它需要大量的更多的能量,以增加一个共价键的键长相比,金属离子键。 陶瓷是非金属的,非铁材料。当暴露于水和其它有害化学品它们不以同样的方式作为金属腐蚀。它们的高的耐蚀性的允许它们在潮湿和化学腐蚀环境中优异的性能。许多工程陶瓷也具有低的密度,导致在轴承'工作速度,这是改善由于低向心力和减少摩擦。由于缺乏在大多数陶瓷自由电子,它们是非磁性和优良的绝缘体。研究陶瓷轴承,当人们可能会注意到的第一件事情是,他们基本上比金属更加昂贵。有许多原因。 有与以达到高档原料烧结过程所需要的温度所需要的大量的能量有关极高能量和加工成本。由于陶瓷是这么辛苦,加工和磨削成本制造精密轴承时迅速增加。所有这一切都必须在一个干净的环境中具有熟练的劳动力来完成。陶瓷是在他们的毛孔杂质难以置信的敏感,所以任何污染物可能会导致过早失效。随着尺寸的增加,价格也增加了指数,因为成本高,加工方法的要求。这些包括,以克服在生坯的温度梯度,均匀施加压力的量在较大体积和所得机器成本需要较慢的烧结过程。 陶瓷轴承具有较低的承载能力相比,金属和对热冲击敏感。热冲击是当材料内的温度梯度会导致不同的膨胀,这会导致内部应力。这种压力可以超过这样的材料形成裂纹的实力。

电动V型陶瓷球阀 使用说明书(1)

产品使用说明书 阀类:电动陶瓷调节球阀 型号:VQ941TC XX 阀门有限公司XX V ALVE CO., LTD.

1.主要用途和使用范围 1.1用途 该阀主要使用在电站排灰、矿山、化工等诸多工业管线上,特别固体颗粒管 线上使用更广泛。该类阀门可做开关阀或调节使用。V形通道具有线性调节 功能,流量与开度呈等比关系。 1.2使用范围 温度(℃)-29~200 ; 压力等级(MPa) ≤1.6 ; 介质:干灰、渣浆等 2.产品采用标准 □ GB/T12237 □ API 6D □ ASTM □ NACE 0175 4.主要结构特点: 1.1 球体:球体沿垂直轴线廻转运动,浮动球结构。 4.2 阀座:□浮动式□压配式□其它 4.3 阀杆:□暗杆旋转式□明杆升降式□阀杆旋转式□其它 4.4阀门连接:□法兰式□焊接式□螺纹式□其它 4.5中法兰连接:□法兰式□焊接式□内压自紧式□其它 4.6阀杆密封:□填料+隔环□填料+“0”橡胶圈□“O”橡胶圈□其它 4.7是否具有排放装置:有□无 4.8阀门操作:□手动□电动□气动□液动□光杆□其它 4.9手动时顺时针旋转为关,逆时针旋转为开。其它型式驱动开关要与控制箱 开关按钮和指示相一致,避免误操作。如果有注入塞定期加注润滑油(脂)、密 封脂、软质填料,确保阀门完好无渗漏。通过排泄阀排放体腔多余介质和沉积物

确保安全和设备完好运行。 4.10阀门结构紧凑,密闭,备有开关指示和机械限位,浮动阀座进口密封,阀门扭矩小。阀座及通道内部衬陶瓷,密封可靠,耐磨损腐蚀。 5..2.3检查球面和阀座有无擦伤。如有擦伤,需修复研合。按方位重新装配好。 结构和外型(参考)

陶瓷滚动轴承

第一,由于陶瓷几乎不怕腐蚀,所以,陶瓷滚动轴承适宜于在布满腐蚀性介质的恶劣条件下作业。 第二,由于陶瓷滚动小球的密度比钢低,重量更要轻得多,因此转动时对外圈的离心作用可降低40%,进而使用寿命大大延长。 第三,陶瓷受热胀冷缩的影响比钢小,因而在轴承的间隙一定时,可允许轴承在温差变化较为剧烈的环境中工作。 第四,由于陶瓷的弹性模量比钢高,受力时不易变形,因此有利于提高工作速度,并达到较高的精度。 能够在高温、高速、深冷、易燃、易爆、强腐蚀、真空、电绝缘、无磁、干摩擦等特殊工况下工作 (1)、高速轴承:具有耐寒性、受力弹性小、抗压力大、导热性能差、自重轻、摩擦系数小等优点,可应用在12000转/分-75000转/分的高速主轴及其它高精度设备中; (2)、耐高温轴承:材料本身具有耐高温度1200℃,且自润滑好,使用温度在100℃-800℃间不产生因温差造成的膨胀。可应用在炉窑,制塑、制钢等高温设备中; (3)、耐腐蚀轴承:材料本身具有耐腐蚀的特性,可应用在强酸、强碱、无机、有机盐、海水等领域,如:电镀设备,电子设备,化工机械、船舶制造、医疗器械等。 (4)、防磁轴承:因无磁不吸粉尘,可减少轴承提前剥落、噪声大等。可用在退磁设备。精密仪器等领域。 (5)、电绝缘轴承:因电阻力高,可免电弧损伤轴承,可用在各种要求绝缘的电力设备中。 (6)、真空轴承:因陶瓷材料独具的无油自润滑特性,在超高真空环境中,可克服普通轴承无法实现润滑之难题。注:以上五种类别轴承,同一套轴承可应用到高温、高速、酸碱、磁场、非绝缘中,但因材料性能有所不同(请参阅稀土陶瓷材料性能表)故请客户选择产品时,根据自己所应用的场合,来挑选材料最适合的陶瓷轴承。 氧化锆全陶瓷轴承具抗磁电绝缘、耐磨耐腐蚀、无油自润滑、耐高温耐高寒等特点,可用于极度恶劣环境及特殊工况。套圈及滚动体采用氧化锆(ZrO2)陶瓷材料,保持器使用聚四氟乙烯(PTFE)作为标准配置,一般也可使用玻璃纤维增强的尼龙66(RPA66-25),特种工程塑料(PEEK,PI),不锈钢(AISISUS316),黄铜(Cu)等。 氮化硅全陶瓷轴承套圈及滚动体采用氮化硅(Si3N4)陶瓷材料,一般也可使用RPA66-25,PEEK,PI,以及酚醛夹布胶木管等。SiN4制全陶瓷轴承相比较ZrO2材料可适用于更高转速及负荷能力,以及适用于更高的环境温度。同时可提供用于高速高精度高刚性主轴的精密陶瓷轴承,最高制造精度达P4至UP级 满装球型全陶瓷轴承一面带添球缺口,因采用无保持架结构设计,可以比标准结构的轴承装入多的陶瓷球,从而提高其负荷能力,另外还可避免因保持架材料的限制,可达到陶瓷保持架型全陶瓷轴承耐腐蚀及耐温效果。该系列轴承不适宜较高转速,安装时应注意将缺口面装于不承受轴向负荷的一端。

68第八节研磨技术

第八节研磨技术 研磨是精密和超精密零件精加工的主要方法之一,是在精加工,如精车、精磨或精洗加工后的超精加工。研磨加工可使零件获得极高的尺寸精度、几何形状和位置精度,最高的表面粗糙度等级以及提高配合精度。零件的内、外圆表面、平面、圆锥面、斜面、螺纹面、齿轮的齿面及其他特殊形状的表面均可以采用此种方法进行加工。船舶主、副柴油机燃油系统中的三对精密偶件:柱塞—套筒偶件、针阀—针阀体偶件、出油阀—出油阀座偶件的内、外圆表面、圆锥面、平面在制造时都需要采用研磨进行精加工。在针阀—针阀体配合锥面磨损和柴油机的进排气阀配合锥面磨损后均需采用研磨技术进行修复,使配合面恢复密封性能。 进行研磨的零件材料可以是经淬火或未经淬火的碳钢、合金钢、硬质合金,也可以是铸铁、铜及其合金等有色金属材料,或玻璃、水晶和塑料等非金属材料。 灵活的研磨技术是进行精密零件修理的有效方法,尤其是在备件缺乏、时间紧迫的情况下此法尤为重要。例如,主、副柴油机的喷油器故障大多是针阀—针阀体偶件的锥面配合不良引起的,轮机人员须经常进行针阀偶件的研配工作。所以,研磨技术在船上轮机工作中是克服精密设备短缺、延长零件寿命、节省修理费用和保证船舶正常航行的有效工艺,轮机人员应该掌握研磨技术。 一、概述 1.研磨原理 研磨是使零件与研磨工具在无强制的相对滑动或滚动的情况下,通过加入其间的研磨剂的微切削和研磨液的化学作用,在零件表面生成易被磨削的氧化膜,从而加速研磨过程。所以研磨加工是机械、化学联合作用完成的精密加工。 1)零件与研磨工具的相对运动 零件与研磨工具不受外力的强制引导,以免引起偏差和缺陷;运动方向周期变换,以使研磨剂均匀分布在零件表面上并加工出纵横交叉的切削痕,均匀研磨零件表面;研磨表面上各点相对于研磨工具表面的滑动路程相等,以达到均匀切削。 2)研磨压力 在实际应用的压力范围内,研磨效率随压力增加而提高。研磨压力取决于零件材料、研磨工具材料和外界压力等因索,一般通过实验确定。常用的压力范围为0.05~0.3MPa,粗研宜用0.l~0.2MPa,精研宜用0.0l~0.1MPa。研磨压力过大,研磨剂磨粒被压碎,切削作用减小,表面划痕加深,研磨质量降低;压力过小则研磨效率大大降低。 3)研磨速度 研磨速度影响研磨效率,一定条件下,研磨速度增加将使研磨效率提高。研磨速度取决于零件加工精度、材质、重量、硬度、研磨面积等。一般研磨速度在10~150m/min。速度过高,产生的热量较多,引起零件变形、表面加工痕迹明显等质量问题,所以精密零件研磨速度不应超过30~60次/min。一般手工粗研往复次数为30~60次/min,精研为20~40次/min。 4)研磨时间 研磨初期,因研磨剂磨粒锋利,微切削作用强,零件研磨表面的几何形状误差和粗糙度得以较快地纠正。随着研磨时间的延长,磨粒钝化,微切削作用下降,不仅零件精度不能提高,反而由于热量增加使之下降。粗研时间取决于研磨剂的切削性能,为提高研磨效率,当研磨剂磨粒钝化,研磨效果差时应立即更换研磨剂。精研时间一般约为1~3min,超过3min 研磨效果不显著。 所以,粗研时选用较粗的研磨剂,较高的压力和较低的速度进行研磨,以期较快地消除

轴承内径和外径尺寸公差的两种公差中

轴承内径和外径尺寸公差的两种公差中,单一内外径偏差是什么意思? 只是基孔制和基轴制决定的,轴承内径是基孔制,外径为基轴制;一个是下偏差为0,一个是上偏差为0 ,因此说是单一内外径偏差。 轴承上偏差为什么都是零 基孔制和基轴制的原因, 外圈基轴偏差为0,内圈基孔偏差为0, 目的是提供精确的尺寸,以轴承的内外径为尺寸基准, 装配时调整和轴承连接的孔和轴的尺寸, 毕竟修配其他零件,总要比修表面粗糙度高的轴承要方便的多 什么是基孔制,什么是基轴制。 基孔制:基本偏差为一定的孔的公差带,与不同基本偏差的轴的公差带形成各种配合的一种制度。 基孔制的孔为基准孔,其下偏差为零,基本偏差代号为H. 基轴制:基本偏差为一定的轴的公差带,与不同基本偏差的孔的公差带形成各种配合的一种制度。 基轴制的轴为基准轴,其上偏差为零,基本偏差代号为h。 滚动轴承内圈采用基孔制,其下偏差为零.这对不对? 请看看定义: 基孔制基本偏差为一定的孔的公差带,与不同基本偏差的轴的公差带形成各种配合的一种制度。 基孔制的孔为基准孔,其下偏差为零,基本偏差代号为H. H表示基孔制,定义是不是下偏差为零,公差范围比较小??这个意思 基孔制和基轴制的概念初学者一下不好弄明白 我说简单点 基孔制就是,孔是基准,不能变,以这个孔的尺寸为基准加工出不同尺寸的轴来达到这个轴和孔是间隙配 合还是过盈配合 基轴制与其相反。 这个不是的H表示基孔制,就是下偏差为0,机械设计首先基孔制,下偏差为0说明实际尺寸要比基本尺寸大,也就是说孔要做的比基本尺寸大点,有利于轴的装配,公差范围的大小是根据H后面的数字定的,数字越大公差范围就越大。 滚动轴承内圈为基孔制,外圈为基轴制这句话对吗? 不对。应该是:滚动轴承内圈为基准孔;外圈为基准轴。 深沟球轴承,内径和外径的尺寸公差是怎样的?

陶瓷球阀市场现状

陶瓷球阀的市场现状 阀门是通过改变介质流经阀门通道时的流域面积来实现控制要求的。在管道内正常流通的介质在通过阀门时,由于其流域面积的突然改变,从而也改变了介质的流速、流向、压差乃至温度,能量在此得到了释放或是被进一步的压缩。 介质在阀门内腔形成了很复杂的运动(如涡流、气蚀、闪蒸等),这些运动是造成阀门磨损和腐蚀的主要因素。为了适应特殊工况的需要,特别是阀门内走的是高硬度固体颗粒性的气固混合介质或含有高腐蚀性成分的固液混合介质,在一定的温度和压力下,管道中快速流动的介质会加重对阀门的磨损和腐蚀,所以对阀门的耐磨损、耐冲刷性和耐腐蚀性等方面都提出了更高的要求。 为了解决这一问题,国内外的阀门制造企业都是通过在球体和阀座表面采用了高速喷涂、喷焊高硬度硬质合金层,或是堆焊司太立STELLITE等高硬合金等等方式,使阀门的寿命得到了一定的提高,但是由于耐磨球阀的球芯和阀座的表面硬度都与介质相接近,或是高出不多,而且涂层金属材料对介质的腐蚀性发挥不了抵御的功能,起不到真正的耐冲刷磨损、耐腐蚀的使用功效,并且阀门一旦发现泄漏以后,会在很短的时间内出现较大的缺陷。 陶瓷球阀在材料选择上完全颠覆了传统意义上的阀门,在阀门的整个流通通道的设计上,所有与介质接触的部分均为陶瓷材料,利用陶瓷材料的先天性优势,达到耐磨损抗冲刷的目的。另外陶瓷作为无机非金属盐材料,其耐腐蚀性能非常的好,除了氢氟酸HF以外,对其它的酸碱没有任何反应。同时陶瓷本身具有的自洁功能保障了阀门自身的清洁,避免了二次污染情况的发生。由于其优越的耐磨损性、耐腐蚀性和耐冲蚀性能,成为唯一适合此类介质的阀门。 经过多年对众多陶瓷球阀生产厂商的考察,目前在全世界范围内,能够真正生产陶瓷球阀的厂家很少,而且大多数也只是把陶瓷球阀作为球阀系列的一个小小的分支系列而已,生产的历史也相对较短,最长的也没有超过20年。在国外生产陶瓷球阀的公司主要有德国的ARTEC和CERA SYSTEM公司,美国的NIL-COR 和德科DURCO公司,日本的FUJIKIN公司等。 烟台金泰美林科技有限公司是专业的陶瓷球阀生产制造商,公司在陶瓷材料研发方面、自动化控制系统方面、调节阀设计制造方面、机械加工等多方面拥有非常资深的专家和工程技术人员。经过14年的不断努力,以取得陶瓷球阀实用

球阀详细参数说明

球阀,标准GB/T21465-2008《阀门术语》中定义为:启闭件(球体)由阀杆带动,并绕阀杆的轴线作旋转运动的阀门。主要用于截断或接通管路中的介质,亦可用于流体的调节与控制,其中硬密封V型球阀其V型球芯与堆焊硬质合金的金属阀座之间具有很强的剪切力,特别适用于含纤维、微小固体颗料等介质。而多通球阀在管道上不仅可灵活控制介质的合流、分流、及流向的切换,同时也可关闭任一通道而使另外两个通道相连。本类阀门在管道中一般应当水平安装。球阀分类:气动球阀,电动球阀,手动球阀。 诞生和应用 球阀问世于20世纪50年代,随着科学技术的飞速发展,生产工艺及产品结构的不断改进,在短短的40年时间里,已迅速发展成为一种主要的阀类。在西方工业发达的国家,球阀的使用正在逐年不断的上升,在我国,球阀被广泛的应用在石油炼制、长输管线、化工、造纸、制药、水利、电力、市政、钢铁等行业,在国民经济中占有举足轻重的地位。 工作原理球阀它具有旋转90度的动作,旋塞体为球体,有圆形通孔或通道通过其轴线。球阀在管路中主要用来做切断、分配和改变介质的流动方向,它只需要用旋转90度的操作和很小的转动力矩就能关闭严密。球阀最适宜做开关、切断阀使用,但近来的发展已将球阀设计成使它具有节流和控制流量之用,如V型球阀。 主要特点球阀的主要特点是本身结构紧凑,密封可靠,结构简单,维修方便,密封面与球面常在闭合状态,不易被介质冲蚀,易于操作和维修,适用于水、溶剂、酸和天然气等一般工作介质,而且还适用于工作条件恶劣的介质,如氧气、过氧化氢、甲烷和乙烯等,在各行业得到广泛的应用。球阀阀体可以是整体的,也可以是组合式的。 球阀不仅结构简单、密封性能好,而且在一定的公称通径范围内体积较小、重量轻、材料耗用少、安装尺寸小,并且驱动力矩小,操作简便、易实现快速启闭,是近十几年来发展最快的阀门品种之一。球阀是由旋塞阀演变而来的,它的启闭件作为一个球体,利用球体绕阀杆的轴线旋转90°实现开启和关闭的目的。球阀在管道上主要用于切断、分配和改变介质流动方向,设计成V形开口的球阀还具有良好的流量调节功能。 特别是在美、日、德、法、意、西、英等工业发达国家,球阀的使用非常广泛,使用品种和数量仍在继续扩大,并向高温、高压、大口径、高密封性、长寿命、优良的调节性能以及一阀多功能方向发展,其可靠性及其他性能指标均达到较高水平,并已部分取代闸阀、截止阀、节流阀。随着球阀的技术进步,在可以预见的短时间内,特别是在石油天然气管线上、炼油裂解装置上以及核工业上将有更广泛的应用。此外,在其他工业中的大中型口径、中低压力领域,球阀也将会成为主导的阀门类型之一。 优点1.流体阻力小,全通径的球阀基本没有流阻。 2.结构简单、体积小、重量轻。 3.紧密可靠。它有两个密封面,而且目前球阀的密封面材料广泛使用各种塑料,密封性好,能实现完全密封。在真空系统中也已广泛使用。 4.操作方便,开闭迅速,从全开到全关只要旋转90°,便于远距离的控制。 5.维修方便,球阀结构简单,密封圈一般都是活动的,拆卸更换都比较方便。6.在全开或全闭时,球体和阀座的密封面与介质隔离,介质通过时,不会引起阀门密封面的侵蚀。 7.适用范围广,通径从小到几毫米,大到几米,从高真空至高压力都可应用。

陶瓷阀门的使用方法

陶瓷阀门的使用方法 将陶瓷材料应用于工业阀门是一项大胆和有益的创新。近年来,新型陶瓷材料在石油、化工、机械等领域的应用非常活跃,利用陶瓷的耐磨性、耐腐性制作耐磨耐腐零件部代替金属材料,是近几年来高技术材料市场的重要发展方向之一。陶瓷阀门最初采用两片式结构,为了阀门的结构更加合理,改成了现在常用的三片式结构,这种结构由于具有双阀座,因此还具有双重密封的特性。同时,在选用陶瓷球阀的时候注意选择有斜面过渡设计的阀门,这样的调节阀能够减小流体的冲击。 一、清洗管道延长寿命 管路中的焊渣、铁锈、凝固的渣子,铁丝,布条等在节流口、圆弧抛光机导向部位造成堵塞或卡死使阀芯碎裂,经常发生于新投运系统和大修后投运初期。这是最常见的故障。遇此情况,必须卸开进行清洗,除掉渣物,如密封面受到损伤还应研磨;同时将底塞打开,以冲掉渣物,并对管路进行 冲洗。投运前,让调节阀全开,让介质流动一段时间后再纳入正常运行。 二、增大开度工作延长寿命 在开始使用陶瓷调节阀时尽量在最大开度上工作,如80%。这样,管道内最初的杂质的冲蚀,磨损等破坏发生在阀芯受损部分以外的地方,清除了管路中的杂质后,再把调节阀的

开度调节到正常开度稍大的地方,随着流体对阀芯的破坏,流量增加,圆弧抛光机相应减小开度,这样不断破坏,逐步关闭,使整个阀芯全部充分利用,直到阀芯根部及密封面破坏,不能使用为止。 三、增大口径提高寿命 我们通过CV值计算公式,计算出正确的CV从而选择适 合适的阀门口径(标准)。在相同流量的情况下,阀门口径越小,流体的流速越快,介质对阀芯和密封件的冲蚀也就越厉害。建议用户在能够开度自由调节的范围内,适当增大阀门的口径,从而起到减小磨损的作用。 四、改变圆弧抛光机结构提高寿命 陶瓷调节阀最初采用两片式结构,为了阀门的结构更加 合理,改成了现在常用的三片式结构,这种结构由于具有双阀座,因此还具有双重密封的特性。同时,在选用陶瓷球阀的时候注意选择有斜面过渡设计的阀门,这样的调节阀能够减小流体的冲击。 五、转移破坏位置提高寿命把破坏严重的地方转移到次 要位置,以保护阀芯阀座的密封面和节流面。通常陶瓷球阀冲蚀最严重的,流体速度最快的地方是流体进口的下方部位,针对现在陶瓷球阀三片式结构,可以将球芯换向使用,这样的话一个球芯可以在进口处使用四次,使阀门的寿命延长4倍。

磨床加工方法

磨床加工方法 工件研磨前应粗洗砂轮,进行工件粗磨 平面加工 平面加工分为粗加工和精加工,粗加工时尺寸预留0.15-0.03mm,精加工尺寸到位. 1.加工前,应把工件毛刺打掉,并测其余量. 一般工件进行对称研磨. 2.研磨第一面时,对刀后应提起0.02mm,走一刀后再下刀研,磨般选择高点对刀. 3.根据工件薄决定研磨量及吸磁大小. 4.如果工件面小且厚,则吸磁力大,进入量可多,钽不能超过0.1mm 5.工件面与厚度比例比较大,则吸满磁,进刀量最多可在0.05mm,否则工件会烧伤出现泡痕. 研磨中要加酒精冷却. 6.工件面与厚度比例非常大,即薄形工,件则视情况而减小磁力,或吸磁后完全退磁.此时进入 量在0.01mm以内,且加酒精冷却.如果有变形,则用虎钳夹住研磨.另砂轮要洗粗一些,且多洗几次砂轮. 7.第二面用同样方法研磨,完成工件粗加工.然后进行精加工.方法同上,但进刀量为 0.002-0.005mm. 8.平面的平面度一般应在0.002mm以内. 9.平面上不能有浪痕,烧伤,不能磨痕错乱. 对刀 一.以工件为准 对刀前首先要洗好砂轮侧壁,底部,确定侧壁,底部洗平. 1.平面对刀,即用砂轮底部对刀. 将砂轮摇至工件表面约1mm处,再用眼睛目视砂轮底部离工件表面有一条缝即可,此时砂轮未运转.摇动工件确定未撞上砂轮.将工件表面涂上色笔,打开砂轮,然后慢慢下刀并摇动手轮,直到漆笔被擦掉,x轴归0. 工件表面研磨过,则直接研磨,未研磨过,则应提起0.02mm后再研磨. 2.侧壁对刀.用砂轮侧壁对刀. 与底部对刀差不多,当有一条缝,后打开砂轮,摇动工件,y 轴慢慢进刀,听声音或看漆笔确定是否对上刀.此种对刀法易损伤工件,且不怎么准,非特殊情况不用. 二.以基准块为准 A 基准块 将基准块放于平台上,并靠挡板上,并敲几下,使之紧贴.用细砂轮侧壁(已洗好)碰A面(基准边),如果A面不平,则可用砂轮磨平,研磨量最多可是0.05mm以内,确定A面以后,归0.基准边设置完成,工件可靠在上面进刀研磨.此方法比在工件上对刀要准,且危险程度小.

陶瓷轴承的优缺点

陶瓷轴承: 普通轴承钢AISI52100(GCr15)、不锈钢AISI440(9Cr18)、氮化硅(Si3N4)和氧化锆(ZrO2)四种轴承材料性能对照情况,陶瓷轴承作为一种重要的机械基础件,由于其具有金属轴承所无法比拟的优良性能,抗高温、超强度等在新材料世界一马当先。近十多年来,在国计民生的各个领域中得到了日益广泛的应用。 主要用途: 陶瓷轴承具有耐高温、耐寒、耐磨、耐腐蚀、抗磁电绝缘、无油自润滑、高转速等特性。可用于极度恶劣的环境及特殊工况,可广泛应用于航空、航天、航海、石油、化工、汽车、电子设备,冶金、电力、纺织、泵类、医疗器械、科研和国防军事等领域,是新材料应用的高科技产品。 陶瓷轴承的套圈及滚动体采用全陶瓷材料,有氧化锆(ZrO2)、氮化硅(Si3N4)、碳化硅(Sic)三种。保持器采用聚四氟乙烯、尼龙66,聚醚酰亚氨,氧化锆、氮化硅,不锈钢或特种航空铝制造,从而扩大陶瓷轴承的应用面。 应用领域: 医疗器械、低温工程、光学仪器、高速机床、高速电机、印刷机械、食品加工机械。 在航空航天、航海、核工业、石油、化工、轻纺工业、机械、冶金、电力、食品、机车、地铁、高速机床及科研国防军事技术等领域需要在高温、高速、深冷、易燃、易爆、强腐蚀、真空、电绝缘、无

磁、干摩擦等特殊工况下工作,陶瓷轴承不可或缺的替代作用正在被人们逐渐地认识。 随着加工技术的不断进步,工艺水平的日益提高,陶瓷轴承的成本不断下降,已经从过去只在一些高、精、尖领域小范围内应用,逐步推广到国民经济各个工业领域,产品市场价格也逐渐接近实用化,达到用户可接受的程度,陶瓷轴承大面积应用的浪潮已经涌来!

陶瓷球轴承介绍

陶瓷球轴承介绍 在工程陶瓷产品的开发应用中,陶瓷球轴承是工程陶瓷在工业领域广泛应用的典型范例,受到很多国家的高度重视.在高速精密轴承中,应用最多的是混合陶瓷球轴承,即滚动体使用热压Si3N4陶瓷球,轴承圈仍为钢圈。这种轴承标准化程度高,对机床结构改动小,便于维护保养,特别适合于高速运行场合.其组装的高速电主轴,具有高速、高刚度、大功率、长寿命等优点。1.轴承配置:内外圈轴承钢/不锈钢+陶瓷球+PA66/不锈钢保持器 +2RS/ZZ2.高温油脂,3.采用陶瓷球轴承和普通轴承相比的优势: 陶瓷球轴承的优点 (1)耐温高 陶瓷球热膨胀系数小,在高温环境下不会因为温度的原因导致轴承球膨胀,这样大大提高了整个轴承的使用温度,普通轴承的温度在160度左右,陶瓷球的可以达到220度以上. (2)转速高 陶瓷球具有无油自润滑属性,陶瓷球摩擦系数小,所以陶瓷球轴承具有很高的转速.据统计采用陶瓷球的轴承是一般轴承的转速1.5倍以上的转速. (3)寿命长 陶瓷球可以不加任何油脂,也就是说即使油脂干掉,轴承还是可以运作的,这样就避免了普通轴承中因为油脂干掉导致的轴承过早损坏现象的发生.据我们测试以及一些客户的反馈使用陶瓷球后的轴承的使用寿命是普通轴承的2-3倍. (4)绝缘 最后一点也是最重要的一点,绝缘,采用陶瓷球的轴承,可以使轴承的内外圈之间绝缘,因为陶瓷球是绝缘体,在轴承的内外圈之间用陶瓷球,就可以达到绝缘的效果.这样就使轴承能够在导电的环境下使用了.滚动轴承由套圈、滚动体、保持器、润滑脂、密封件组成,当滚动体采用陶瓷材料后,此滚动轴承就定义为陶瓷球轴承。

因为陶瓷球本身具有自润滑性能,所以润滑可以按使用要求,可以有润滑脂也可以不加润滑脂。密封件也是可以按使用要求,决定陶瓷球轴承是否带密封件。保持器也是可以按使用要求是否采用。那么套圈、滚动体是轴承两个不可缺少的要素,当这两个要素不是同一种材料时,就有了混合轴承(Hybrid construction bearing)的说法。当滚动体采用陶瓷材料时就定义为混合陶瓷球轴承(Hybrid construction ceramic ball bearing)。常用的陶瓷球材料有氧化锆(ZRO2)和氮化硅(SI3N4);常用的套圈材料有轴承钢(GCR15)和不锈铁(440、440C)及不锈钢(304、316、316L)。 按照使用环境、转速、负荷、温度,及使用时的要求,陶瓷球轴承的套圈和滚动体可以由以上材料互相组合,并起到不同的使用效果。 陶瓷球轴承的代号: HY +套圈材料+轴承型号+密封型式——球的材料——保持器材料——润滑脂 套圈材料:S表示不锈铁 SS表示不锈钢具体用什么材料可以用挂号标注说明 实践证明,作为轴承材料还必须具有在不同温度下的尺寸稳定性,以保证轴承在温度变化的工作环境下,保持精密的尺寸和精确的配合,在特殊环境下还必须具备抗腐蚀、抗分解能力.总之,用以制造滚动轴承零件的陶瓷材料应具备以下性能特点: 1)低密度.由于滚动体密度减小,高速工作时其离心载荷也减小,从而可在更高转速下工作. 2)中等弹性模量.弹性模量太大会因应力集中而降低轴衬的承载能力.3)热膨胀系数小.减小对温度变化的敏感性,使轴承工作温度范围更宽. 4)高抗压强度.抗压强度高是滚动轴承承受高应力的需要. 5)高硬度和高韧性.这两个特性相结合可获得较好的表面粗糙度;而且能防止外界粒子和冲击的损伤. 6)良好的抗滚动接触疲劳性和具有剥落失效模式. 7)特殊场合应具有耐高温、耐腐蚀和稳定性. 套圈和滚动体接触点受到外加负荷和旋转的作用,因而反复产生接触压力和变形。由于钢制轴承自身材料性能特点,轴承失效的主要形式是疲劳剥落,疲劳寿命短,应用范围受到很大限制。而陶瓷材料具有低密度,中等弹性模量,热膨胀系数小,硬度高,耐高温,耐腐蚀,无磁等优点,以氮化硅陶瓷球为滚动体的陶瓷球轴承可显著提高轴承接触疲劳寿命,极大拓展了滚动轴承的应用领域,已广泛应用于各种高精度、高转速机床,汽车、赛车、地铁、电机、航空发动机、石油化工机械、冶金机械等领域。 氮化硅陶瓷材料在轴承中的应用 陶瓷轴承的应用领域日益广泛,但在工业领域中成功应用的还是陶瓷球轴承.目前,应用较多的为氮化硅陶瓷球轴承.它的优点是:极限转速高、精度保持性好、启动力矩小、刚度高、干运转性好、寿命长,非常适

轴承的公差等级及公差等级知识讲解学习

轴承的公差等级及公差等级知识

轴承的公差等级及公差等级知识 2009-1-7 16:56:05 一,确定公差的两个基本要素 轴承公差带是由标准公差和基本偏差两个基本要素确定的,标准公差确定公差带的大小;基本偏差确定公差带相对于零钱的位置。 1)标准公差:标准公差是由国家标准规定的,用于确定公差带大小的任一公差。公差等级确定尺寸的精确程度,国家标准把公差等组分为20个等级,分别用IT01、IT0、IT1~IT18表示,称为标准公差,IT (International Tolerance)表示标准公差。当基本尺寸一定时,公差等级愈高,标准公差值愈小,尺寸的精确度就愈高。基本尺寸和公差等级相同的孔与轴,它们的标准公差相等。为了使用方便,国家标准把≤500的基本尺寸范围分为 13尺寸段,按不同的公差等级对应各个尺寸分段规定出公差值,并用表的形式列出。 2)基本偏差;国家标排规定用来确定公差带相对于零线位置的上偏差或下偏差;一般为最靠近零线的那个偏差为基水偏差。当公差带位于零线的上方时,基本偏差为下偏差;当公差带位于零钱的下方时,基本偏差为上偏差,如图2 所示。 二,公差等级表 (GB/T1804-2000)线形尺寸的极限偏差数值 公差等级基本尺寸分段 0.5~3 >3~6 >6~30 >30~120 >120~400 >400~1000 >1000~2000 >2000~4000 精密f ±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.5 中等m ±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 粗糙c ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 ±3 ±4 最粗v ±0.5 ±1 ±1.5 ±2.5 ±4 ±6 ±8 (GB/T1804-2000)倒圆半径和倒角高度尺寸的极限偏差数值 公差等级基本尺寸分段 0.5~3 >3~6 >6~30 >30 精密f ±0.2 ±0.5 ±1 ±2

高性能陶瓷轴承球的研制

高性能陶瓷轴承球的研制 李典基 1 概述 陶瓷轴承作为“面向21世纪”的最具发展前景的新材料轴承,主要包括全陶瓷轴承和部分零件为陶瓷的混合轴承。目前,在工业界中应用最多的为混合轴承,其滚动体采用陶瓷,套圈采用高碳铬等材质的钢制造。西方发达国家60~70年代 就开始了陶瓷轴承的研究,现阶段开始工业化应用的主要是以氮化硅(Si 3N 4 )、碳 化硅(SiC)、氧化铝(Al 2O 3 )、氧化锆(Z r O 2 )等陶瓷球代替钢球为主要形式的混 合球轴承,其中以氮化硅球为主。该产品与同样型号的钢球相比主要有以下优点:(1)氮化硅球的密度是钢球的40%,高速运转时离心力小,轴承抗疲劳破坏能力强,寿命长。 (2)滚动体的弹性模量比钢高,弹性变形小,轴承的动刚度高。 (3)热膨胀系数为钢材的1/3~1/4,随温度变化的尺寸变化量小,适用于温度变化大的场合。 (4)在润滑条件恶劣的环境中适应性强。 (5)具有耐腐蚀、无磁性、绝缘性好等特点。 (6)设计灵活性更大,因为陶瓷材料能使轴承设计者不必考虑许多参数的影响。 目前,世界各国研究陶瓷球处于领先水平的公司主要有瑞典SKF,法国圣戈班戒,日本NSK、KOYO、NTN等公司。在国内,陶瓷混合轴承的研究较西方发达国家晚近20年。为使这一尖端基础部件更好地为经济建设服务,促进我国机械制造业的发展,我公司已开始了高性能氮化硅陶瓷轴承球的研究,现将有关研究成果做一下简述。 2 氮化硅陶瓷球的制造 2.1 原材料的制备 原材料的状态对生产过程及产品的性质有明显的影响,精确控制原料的化学和物理性能是非常必要的。要求原材料具有以下特性:(1)纯度高;(2)高均匀而细的颗粒;(3)有用相含量高。针对上述要求,我们采用气相法制备氮化硅原 料。其反应式为:3SiO 2+6C+2N 2 =Si 3 N 4 +6CO。用该技术生产的氮化硅原料,工艺操作 较易,Si 3N 4 含量高,晶粒均匀、细小,有利于陶瓷球的制造。 2.2 配料 将配制好的微细氮化硅粉末和氧化镁(MgO)、氧化钇(Y 2O 3 )等烧结助剂粉末 混合均匀。混合在专用配料机中进行。配料机采用氮化硅内衬或氧化锆内衬。工作时将加工原料和一定数量的陶瓷球放入配料机,注入无水乙醇,开动机床,混合1~2天。 2.3 干燥造粒 将混好的原料放入离心喷雾机中,加入粘合剂,反絮凝剂等配成料浆。使料浆流到高速旋转的圆盘上进行雾化。雾化后的小液滴在热风中迅速干燥,成为流动性

超精密研磨与抛光技术

少年易学老难成,一寸光阴不可轻- 百度文库 1 超精密研磨与抛光技术 超精密研磨与抛光技术是超精密加工技术的一种。 超精密加工技术指的是超过或达到本时代精度界限的高精度加工。超精密加工其实是一 个相对概念,而且随着工艺技术水平的普遍提高,不同年代有着不同的划分界限,但并无严格统一的标准。从现在机械加工的工艺水平来看,通常把加工误差小于0.01μm、表面粗糙度Ra 小于0.025μm 的加工称为超精密加工。 超精密加工技术起源于20 世纪60 年代初期——美国于1962 年首先研制成功了超精密加工车床。这一技术是为了适应现代高科技发展需要而兴起的,它综合运用了新发展的机械研究成果及现代电子、计算机和测量等新技术,是一种现代化的机械加工工艺。 超精密加工拥有广阔的市场需求。例如,在国防工业中,陀螺仪的加工涉及多项超精密加工技术,因为导弹系统的陀螺仪质量直接影响其命中率——据有关数据,1kg 的陀螺转子,其质量中心偏离其对称轴0.0005μm 就会引起100m 的射程误差和50m 的轨道误差;在信息产业中,计算机上的芯片、磁盘和磁头,录像机的磁鼓、复印机的感光鼓、光盘和激光头,激光打印机的多面体,喷墨打印机的喷墨头等都要靠超精密加工才能达到产品性能要求;在民用产品中,现代小型、超小型的成像设备,如微型摄像机、针孔照相机等同样依赖于超精密加工技术。 我们所说的超精密加工技术,除了超精密研磨和抛光技术外,还包括超精密切削、超精密磨削、超微细加工、光整加工和精整加工等。这几种超精密加工方法能加工出普通精密加工所无法达到的尺寸精度、形状精度及表面粗糙度。 但是,超精密切削、超精密磨削等的实现在很大程度上依赖于加工设备、加工工具,同时还受加工原理及环境因素的影响和限制,所以,现在如果想从这些方面提高加工精度,那是十分困难的。而超精密研磨和抛光技术由于具有独特加工原理,可以实现纳米级甚至原子级的加工,已成为超精密加工技术中的一个重要部分。所以,超精密研磨与抛光技术如今备受关注。 研磨、抛光是历史最悠久的传统工艺。古代石器、玉器及古铜镜等就是通过研磨、抛光制造出来的。自古至今,研磨抛光一直是精密的加工手段,但很多年来其发展是很缓慢的。直到上世纪五十年代,飞速发展的电子工业才为古老的研磨抛光技术带来新的曙光。 超精密研磨和抛光技术,一般特指选用粒径只有几纳米的研磨微粉作为研磨磨料,将其

针对陶瓷轴承做进一步分析它的优势所在

针对陶瓷轴承做进一步分析它的优势所在 近些年来,我国轴承行业迅猛前进,陶瓷轴承虽然是一种基础的轴承备件,但是它在机械运转过程中也是一种尤为重要的机械备件,当我们把陶瓷轴承与轴承钢相比较时,我们不难发现,陶瓷轴承自身的特性为陶瓷轴承的发展提供了相当大的作用,同时也推动了陶瓷轴承走向成熟化道路。 近两年来轴承不论是在材料上,还是结构上,甚至各制造商和设计者在轴承的外观上性能上都力争做到高质量、低消费,环保的效果。其中,陶瓷轴承之所以被广大消费者追捧,主要是因为i它具有耐高温、耐寒、耐磨、耐腐蚀、抗磁电绝缘、无油自润滑、高转速等这些功能。因此,才被广泛的使用到航空、航天、航海、石油开采、化工、汽车、电子设备等等其他一些机械物中。是最新材料使用的高科技产品。由于陶瓷轴承运用了新的材料以及技术开发,在使用过程中还涉及到了医疗器械、低温工程、光学仪器、高速机床、高速电机、印刷机械、食品加工机械。在这些运用机构中,充分体现了陶瓷轴承在现在社会机械类工作中起到了相当大的作用。陶瓷轴承的主要特性有以下几点 第一.达到了“三高”的性能,即极限转速高、耐久性高,承载能力高。陶瓷球轴承在工作的过程中,它的工作转速可达同型号轴承钢轴承极限转速的1.3倍以上。而陶瓷在材料的加工制造上,它自身材质硬度高、耐磨性极好,陶瓷球轴承的工作寿命一般是普通轴承钢轴承的2倍以上。由于陶瓷材料的硬度最高可达轴承钢的2倍,弹性模量时轴承钢的1.5倍。因此陶瓷轴承的承载能力也大大高于轴承钢制轴承。 第二.达到“两小”的境界,即摩擦温升小和摩擦损失小。陶瓷球轴承在18000r/min 的转速下运转时的温升约为相同条件下轴承钢轴承温升60%。这在其他轴承当中,是前所未有的记录。与此同时,同型号的轴承,陶瓷材料的质量比钢小,运转时滚动体所受离心力和陀螺力矩小,自旋滑动小,因此摩擦损失明显低于轴承钢轴承。因此,陶瓷轴承市场开始迅速扩大,进行大批量的制造,销售。 第三.陶瓷轴承达到了:两好“ 5.:。 6.: 7.耐腐蚀性好:陶瓷材料能抵抗盐酸、硫酸、硝酸、烧碱等各类无机酸、有机酸、盐、碱以及熔融金属的腐蚀,但在氟化氢和熔融铁中,其耐腐蚀性能较差,使用中务必注意。 8.绝缘性好,导磁率低:几乎为绝缘体,磁导远小于0.1H,适合做任何非磁性零件。 9.自润滑性:陶瓷轴承可实现自润滑。目前作为轴承材料使用最多的是氮化硅。

陶瓷轴承

新型陶瓷轴承的研究 陈勇 (山东轻工业学院材料科学与工程学院山东济南250300) 摘要:近几年来,随着社会进步和科学技术的高速发展,轴承的使用环境和条件越来越多样化,对轴承的结构、材质和性能的要求也越来越高,一些高科技领域和某些特殊环境下工作的机械,如航空航天、核能、冶金、化工、石油、仪器、机械、电子、纺织、制药等工业,需要在高温、高速、高精度、真空、无磁性、无油润滑、强酸、强碱等特殊环境下工作。这些新的要求仅仅依靠对传统的金属轴承改进结构或改善润滑条件已经远远不能满足,必须开发新型材料,从根本上进行突破和创新。国内外研究发现某些陶瓷材料具有优异的性能,可以承受金属材料和高分子材料难以胜任的严酷的工作环境,并且又具有轴承材料所要求的全部重要特性,因此将陶瓷材料应用于轴承制造,已成为世界高新技术开发与应用的热点,成为机械工作材料技术革命的标志。 关键词:陶瓷;轴承;氧化锆;耐磨; 引言:研究陶瓷轴承,使越来越多的人认识和了解陶瓷轴承的优越性,并使用它。随着加工技术的不断进步,工艺水平的日益提高,陶瓷轴承的成本不断下降,已经从过去只在一些高、精、尖领域小范围内应用,逐步推广到国民经济各个工业领域,产品市场价格也逐渐接近实用化,达到用户可接受的程度,陶瓷轴承大面积应用的浪潮已经涌来! 1、简介 陶瓷轴承作为一种重要的机械基础件,由于其具有金属轴承所无法比拟的优良性能,抗高温、超强度等在新材料世界独领风骚。近十多年来,在国计民生的各个领域中得到了日益广泛的应用。航空航天、航海、核工业、石油、化工、轻纺工业、机械、冶金、电力、食品、机车、地铁、高速机床及科研国防军事技术等领域需要在高温、高速、深冷、易燃、易爆、强腐蚀、真空、电绝缘、无磁、干摩擦等特殊工况下工作,陶瓷轴承不可或缺的替代作用正在被人们逐渐地认识。 2、主要特性 2.1、高速 陶瓷材料的重量仅为同等钢材重量的40%,密度小这一特点,可实现轴承的轻量化和高速化,使得陶瓷轴承在高速旋转时能够抑制因离心力作用引起的滚动体载荷的增加和打滑,陶瓷轴承的转速是钢制轴承的1.3~1.5倍,其D

相关主题
文本预览
相关文档 最新文档