当前位置:文档之家› 共点力平衡专题训练(2020年8月整理).pdf

共点力平衡专题训练(2020年8月整理).pdf

共点力平衡专题训练(2020年8月整理).pdf
共点力平衡专题训练(2020年8月整理).pdf

θ

一、例题讲解

[例1].如图,在水平力F 作用下,A 、B 保持静止。若A 与B 的接触面是水平的,且F 不等于0,则关于B 的受力个数可能为() A.3个B.4个C.5个D.6个

[变式训练1]如图所示,物体A 靠在竖直墙面上,在力F 作用下,A 、B 保持静止.物体A 的受力个数为( )

A .2

B .3

C .4

D .5

[例2]如图2-5-3所示,用细线AO 、BO 悬挂重力,BO 是水平的,AO 与竖直方向成α角.如果改变BO 长度使β角减小,而保持O 点不动,角α(α<450)不变,在β角减小到等于α角的过程中,两细线拉力有何变化? A.F A 一直减小,F B 先减小后增大B.F A 一直增大,F B 先减小后增大 C.F A 一直减小,F B 先增大后减小D.F A 一直增大,F B 先增大后减小

[变式训练1]如图所示,小球用细线拴住放在光滑斜面上,用力推斜面向左运动,小球缓慢升高的过程中,细线的拉力将:() A.先增大后减小B.先减小后增大 C.一直增大D.一直减小

[变式训练2]如图是给墙壁粉刷涂料用的“涂料滚”的示意图.使用时,用撑竿推着粘有涂料的涂料滚沿墙壁上下缓缓滚动,把涂料均匀地粉刷到墙上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长,粉刷工人站在离墙壁一定距离处缓缓上推涂料滚,该过程中撑竿对涂料滚的推力为F 1,涂料滚对墙壁的压力为F 2,以下说法正确的是() (A )F 1增大,F 2减小 (B )F 1减小,F 2增大 (C )F 1、、F 2均增大 (D )F 1、、F 2均减小

[例3]水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则()

A.F 先减小后增大

B.F 一直增大

C.F 的功率减小

D.F 的功率不变 [例4]如图所示,固定在水平面上的光滑半球,球心O 的正

图2-5-3

A B F

图2-5-1

上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A 点,另一端绕过定滑轮.

今缓慢拉绳使小球从A 点滑到半球顶点,则此过程中,小球对半 球的压力N 及细绳的拉力F 大小变化情况是() A.N 变大,F 变大B.N 变小,F 变大 C.N 不变,F 变小D.N 变大,F 变小

[变式训练1].如图,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的物体,且B 端系有一根轻绳,并绕过定滑轮A ,用力F 拉绳,开始时角BCA 大于900

,现使角BCA 缓慢减小,直到杆BC 接近竖直杆AC 。此过程中,轻杆B 端所受的力将() A.大小不变B.逐渐增大C.逐渐减小D.先减小后增大

[例5]有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,

表面光滑.OA 上套有小环P ,OB 套有小环Q ,两环质量均为m ,两环间由一根质量可以忽略、不可伸长的细绳相连,并在某一位置平衡,如图2-5-1所示.现将P 环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO 杆对P 的支持力F N 和细绳上的拉力F 的变化情况是:() A .F N 不变,F 变大B .F N 不变,F 变小 C .F N 变大,F 变大D .F N 变大,F 变小

[变式训练1].如图,两个质量都为m 的小球A 、B 用轻杆连接后斜靠在墙上处于平衡状态,已知墙面光滑,水平面粗糙,现将A 球向上移动一小段距离,两球再次达到平衡,那么将移动后的平衡状态与原来平衡状态相比较,地面对B 的支持力N 和摩擦力f 的大小变化情况是() A.N 不变,f 增大B.N 不变,f 减小 C.N 增大,f 增大D.N 增大,f 减小

[变式训练2]如图2所示,光滑水平地面上放有截面为

4

1

圆周的柱状物体A ,A 与墙面之间放一光滑的圆柱形物体B ,对A 施加一水平向左的力F ,整个装置保持静止。若将A 的位置向左移动稍许,整个装置仍保持平衡,则() A .水平外力F 增大 B .墙对B 的作用力减小

A

B F

C .地面对A 的支持力减小

D .B 对A 的作用力减小

2.如图所示,A 、B 两物块始终静止在水平地面上,有一轻质弹簧一端连接在竖直墙上P 点,另一端与A 相连接,下列说法正确的是()

A .如果

B 对A 无摩擦力,则地面对B 也无摩擦力

B .如果B 对A 有向右的摩擦力,则地面对B 有向左的摩擦力

C .在P 点缓慢下移的过程中,B 对A 的支持力一定减小

D.在P 点缓慢下移的过程中,地面对B 的摩擦力一定减小

[例6]如图1-7所示,物体A 、B 和C 叠放在水平桌面上,水平力为F b =5N 、F c =10N ,分别作用于物体B 、C 上,A 、B 和C 仍保持静止.以1f F 、2f F 和3f F 分别表示A 与B 、B 与C 、C 与桌面间的静摩擦力的大小,则() A .1f F =5N ,2f F =0N ,3f F =5NB .1f F =5N ,2f F =5N ,3f F =0N C .1f F =0N ,2f F =5N ,3f F =5ND .1f F =0N ,2f F =10N ,3f F =5N

[变式训练1].如图所示,人重600N ,木板重400N ,人与木板、木板与地面间的动摩擦因数皆为0.2,现在人用水平力拉绳,使他与木块一起向右匀速运动,则() A.人拉绳的力是200N B .人拉绳的力是100N

C .人的脚给木块摩擦力向右D.人的脚给木块摩擦力向左

[例7]如图4所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1,将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统平衡时两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则 A 、1θ=2θ=3θB 、1θ=2θ<3θ

C 、F 1>F 2>F 3

D 、F 1=F 2

[变式训练1]如图所示,晾晒衣服的绳子轻且光滑,悬挂衣服的衣架的挂钩也是光滑的,轻绳两端分别固定在两根竖直杆上的A 、B 两点,衣服处于静止状态.如果保持绳子A 端位置不变,将B 端分别移动到不同的位置。下列判断正确的是()

A .

B 端移到B 1位置时,绳子张力不变 B .B 端移到B 2位置时,绳子张力变小

C .B 端在杆上位置不动,将杆移动到虚线位置时,绳子张力变大

D .B 端在杆上位置不动,将杆移动到虚线位置时,绳子张力变小 [例8]如图所示,物体静止在光滑的水平面上,受一水平恒力F

A B C Fc

F b

图1-7

A B P

的作用,要使物体在水平面上沿OA 方向做加速运动,就必须同时再对物体施加一个力F ’,则F’的最小值应是……() AFBFsin θ

CFcos θDFtan θ

[变式训练1]如图7-2所示,用一根长为L 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳

与竖直方向夹030角且绷紧,小球A 处于静止,对小球施加的最小的力等于() A .mg 3B .mg 23C .mg 21D .mg 3

3

二、针对练习

1.如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P 相连,P 与斜放在其上的固定档板MN 接触且处于静止状态,则斜面体P 此刻受到的外力的个数有可能是()

A 、2个

B .3个

C .4个

D 、5个

2.如图所示,A 、B 两均匀直杆上端分别用细线悬挂于天花板上,下端搁在水平地面上,处于静止状态,悬挂A 杆的绳倾斜,悬挂B 杆的绳恰好竖直,则关于两杆的受力情况,下列说法中正确的有(

).

(A )A 、B 都受三个力作用 (B )A 、B 都受四个力作用 (C )A 受三个力,B 受四个力 (D )A 受四个力,B 受三个力

1.如图1所示我国国家大剧院外部呈椭球型,一警卫人员为执行特殊

任务,必须冒险在椭球型屋顶向上缓慢爬行,他在向上爬的过程中

()

A .屋顶对他的支持力变大

B .屋顶对他的支持力变

C .屋顶对他的摩擦力变大

D .屋顶对他的摩擦力变小

2、如图所示,置于水平地面的三脚架上固定着一质量为m 的照相机,三脚架的三根轻质支架等长,与竖直方向均成30?角,则每根支架中承受的压力大小为

图 7-2

(A

)13mg (B )

23mg (C )36mg (D )239

mg 3.春天有许多游客放风筝,会放风筝的人,可使风筝静止在空中,以下四幅图中AB 代表风筝截面,OL 代表风筝线,风向水平,风筝质量不可忽略,风筝可能静止的是:()

1.两个小球A 、B ,质量分别为2m 、m ,用长度相同的两根细线把A 、B 两球悬挂在水平天花板上的同一个点O ,并用长度相同的细线连接A 、B 两小球用一水平方向的力F 作用在小球B 上,此时三根细线均处于直线状态,且OA 细线恰好处于竖直方向,如图,如果不考虑小球的大小,两小球均处于静止状态,则力F 的大小为()

A.0B.mgC.mg 3 D.33mg

2.如图所示,A 、B 为竖直墙面上等高的两点,AO 、BO 为长度相等的两

根轻绳,CO 为一根轻杆,转轴C 在AB 中点D 的正下方,AOB 在同一水平面内,∠AOB =120?,∠COD =60?,若在O 点处悬挂一个质量为m

的物体,则平衡后绳AO 所受的拉力和杆OC 所受的压力分别为……………………………………………( ) A .mg ,1

2

mg

B .

3 3 mg ,2 3 3

mg C .12 mg ,mg D .2 3 3 mg , 3

3

mg

3.如图,两物体质量分别为m 1、m 2,悬点a 、b 间的距离远大于滑轮的直径,不计一切摩擦,整个装置处于静止状态。由图可得() A .α一定等于β B.m 1一定大于m 2 C .m 1一定小于2m 2

D B

A O

C m

D.m1可能大于2m2

1.现用两根绳子AO和BO

的环上,O点为圆环的圆心,AO

上滑动,

N的过程中()

A.两根绳均不断

B.

C.AO绳先断

D.BO

2.如图所示,三段不可伸长的细绳

重物,其中OB是水平的,A端、

最先断的绳( ).

(A)必定是OA(B)必定是

(C)必定是OC(D)可能是OB,也可能是OC

1.A、B、C三个物体通过细线和光滑的滑轮相连,处于静止状态,如图所示,C是一箱砂子,

砂子和箱的重力都等于G,动滑轮的质量不计,打开箱子下端开口,使砂子均匀流出,经过

时间t0流完,则下图中哪个图线表示在这过程中桌面对物体B的摩擦力f随时间的变化关

系()

1.轻绳一端系在质量为m的物体A上,另一端系在一个套在粗糙竖直杆MN的圆环上.现

用水平力F拉住绳子上一点O,使物体A从图1-4-12中实线位置缓慢下降到

虚线位置,但圆环仍保持在原来位置不动.则在这一过程中,环对杆的摩擦力F1

和环对杆的压力F2的变化情况是()

A.F1保持不变,F2逐渐增大B.F1逐渐增大,F2保持不变

C.F1逐渐减小,F2保持不变D.F1保持不变,F2逐渐减小

O

F

A

图1-4-12

3、如图11所示,一个重量为G 的小球套在竖直放置的、半径为R 的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L (L <2R ),一端固定在大圆环的顶点A ,另一端与小球相连。环静止平衡时位于大环上的B 点。试求弹簧与竖直方向的夹角θ。

解说:平行四边形的三个矢量总是可以平移到一个三角形中去讨论,解三角形的典型思路有三种:①分割成直角三角形(或本来就是直角三角形);②利用正、余弦定理;③利用力学矢量三角形和某空间位置三角形相似。本题旨在贯彻第三种思路。

分析小球受力→矢量平移,如图12所示,其中F 表示弹簧弹力,N 表示大环的支持力。

(学生活动)思考:支持力N 可不可以沿图12中的反方向?(正交分解看水平方向平衡——不可以。)

容易判断,图中的灰色矢量三角形和空间位置三角形ΔAOB 是相似的,所以:

R

AB

G F =⑴ 由胡克定律:F=k (AB -R )⑵ 几何关系:AB =2Rcos θ⑶ 解以上三式即可。

答案:arcos

)

G kR (2kL

?。

(学生活动)思考:若将弹簧换成劲度系数k ′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?

答:变小;不变。

(学生活动)反馈练习:光滑半

球固定在水平面上,球心O 的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A 位置开始缓慢拉至B 位置。试判断:在此过程中,绳子的拉力T 和球面支持力N 怎样变化?

解:和上题完全相同。 答:T 变小,N 不变。

4、如图14所示,一个半径为R 的非均质圆球,其重心不在球心O 点,先将它置于水平地面上,平衡时球面上的A 点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B 点与斜面接触,已知A 到B 的圆心角也为30°。试求球体的重心C 到球心O 的距离。

解说:练习三力共点的应用。

根据在平面上的平衡,可知重心C 在OA 连线上。根据在斜面上

的平衡,支持力、重力和静摩擦力共点,可以画出重心的具体位置。几何计算比较简单。

3R。

答案:

3

(学生活动)反馈练习:静摩擦足够,将长为a、厚为b的砖块码在倾角为θ的斜面上,最多能码多少块?

解:三力共点知识应用。

a。

答:

ctg

b

4、两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2,已知两球间存在大小相等、方向相反的斥力而使两线张开一定角度,分别为45和30°,如图15所示。则m1:m2-为多少?

解说:本题考查正弦定理、或力矩

平衡解静力学问题。

对两球进行受力分析,并进行矢量

平移,如图16所示。

首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为α。

而且,两球相互作用的斥力方向相反,大小相等,可用同一字母

表示,设为F 。

对左边的矢量三角形用正弦定理,有:

αsin g m 1=?

45sin F

① 同理,对右边的矢量三角形,有:

αsin g m 2=?

30sin F

② 解①②两式即可。 答案:1:2。

(学生活动)思考:解本题是否还有其它的方法?

答:有——将模型看成用轻杆连成的两小球,而将O 点看成转轴,两球的重力对O 的力矩必然是平衡的。这种方法更直接、简便。

应用:若原题中绳长不等,而是l 1:l 2=3:2,其它条件不变,m 1

与m 2的比值又将是多少?

解:此时用共点力平衡更加复杂(多一个正弦定理方程),而用力矩平衡则几乎和“思考”完全相同。

答:2:32。

例1.如图所示,A、B、C、D四个人做杂技表演,B站在A的肩上,双手拉着C和D,A撑开双手水平支持着C和D。若四个人的质量均为m,他们的臂长相等,重力加速度为g,不计A手掌与C、

D身体间的摩擦。下列结论错误

..的是

A.A受到地面支持力为4mg

B.B受到A的支持力为3mg

C.B受到C的拉力约为23

mg

3

D.C受到A的推力约为23

mg

3

【答案】D

【解析】:把四人作为整体,分析受力,由平衡条件可知,A受到地面支持力为4mg.把BCD作为整体,分析受力,由平衡条件可知B受到的支持力为3mg。由题图可知,B手臂与竖直方向的夹角大约为,设B对C的拉力为,A对C的推力为,对C受力分析,由平衡条件可得,,解的,由牛顿第三定律,B受到C 的拉力约为。,解的,由牛顿第三定律,B受到C的拉力约为,结论错误的是D。

例2:如图所示,一根铁链一端用细绳悬挂于A点。为了测量这个铁链的质量,在铁链的下端用一根细绳系一质量为m的小球,待整个装置稳定后,测得两细绳与竖直方向的夹角为α和β,若tanα∶tanβ=1∶3,则铁链的质量为

A.m

B.2m

C.3m

D.4m

【答案】:B

【解析】:对小球进行受力分析,由平衡条件得:。对铁链和小球整体进行受力分析,由平衡条件得:,联立解得:,选项B正确。

例3.:两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连,放置在一个光滑的半球面内,如图所示。已知小球a和b的质量之比为3,细杆长度是球面半径的2倍。两球处于平衡状态时,细杆与水平面的夹角θ是

A.45°

B.30°

C.22.5°

D.15°.

【答案】:D

【解析】:设刚性细杆中弹力为F,光滑的半球面对小球a的弹力为,对小球b的弹力为,分别隔离小球a和b,对其分析受力并应用平行四边形定则画出受力分析图,如图所示。

由细杆长度是面半径的倍可得出三角形Oab是直角三角形,。

对应用正弦定理得

对应用正弦定理得

两式联立消去F得

显然细杆与水平面得夹角。

例8:两根等长的细线,一端拴在同一悬点O上,另一端各系一个小球,两球的质量分别为m1和m2,已知两球间存在大小相等、方向

相反的斥力而使两线张开一定角度,分别为45和30°,如图所示。则m1:m2为多少?

【答案】:6、1:

【解析】:本题考查正弦定理、或力矩平衡解静力学问题。对两球进行受力分析,并进行矢量平移,如图16所示。

首先注意,图16中的灰色三角形是等腰三角形,两底角相等,设为。而且两球相互作用的斥力方向相反,大小相等,可同用一字母表示,设为F。对左边的矢量三角形用正玄定理,有:

同理,最右边的矢量三角形,有:

解①②两式即可。(学生活动)思考:本题是否还有其它解法?

答:有,将模型看成轻杆连成的两小球。而将O看成转轴,两球的重力对O的力矩必然是平衡的。这种方法更直接、

简便。

应用:若原题中绳长不等,而是

,其他条件

不变,

解:此时共点力平衡更加复杂(多一个正弦定理方程),而

用力矩平衡则几乎和“思考”完全相同。答:

2:如图所示,一根重为G 的均匀硬杆AB ,杆的A 端被细绳吊起,在杆的另一端B 作用一水平力F ,把杆拉向右边,整个系统平衡后,细线、杆与竖直方向的夹角分别为α、β求证:tan β=2tan α。

【答案】见解析

【解析】:对杆AB 受力分析得,它受绳子拉力T 、重力G 、水平力F ,并在三个力作用下处于平衡状态,故三个力一定是共点力,如图所示,

其中C 点为三个力作用线的交点。

由于重心O 点为杆AB 中点,故C 点为BD 中点,得CD BD 2=,而AB BD =

βtan ,AD

CD

=αtan , 故tan β=2tan α,证明完毕

3:重为G的均匀绳两端悬于水平天花板上的A、B两点.静止时绳两端的切线方向与天花板成α角.求绳的A端所受拉力F1和绳中点C处的张力F2.

【答案】见解析

【解析】:以AC段绳为研究对象,根据判定定理,虽然AC所受的三个力分别作用在不同的点(如图中的A、C、P点),

但它们必为共点力.设它们延长线的交点为O,用平行四边形定则作图可得:F1=,F2=

5:如图所示,A、B为竖直墙面上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆,转轴C在AB中点D的正下方,AOB 在同一水平面内,∠AOB=120°,∠COD=60°,若在O点处悬挂一个质量为m的物体,则平衡后绳AO所受的拉力和杆OC所受的压力分别为

A .1,2

mg mg B .3

3mg ,233

mg , C .1,2

mg mg D .

2323

,33

mg mg 【答案】B

7:如:图所示,两个完全相同的物块,重力大小为G ,两球与水平面的动摩擦因数都为μ,一根轻绳两端固定在两小球上,在绳的中点施加一个竖直向上的拉力,当绳子被拉直后,两段绳的夹角为α,问当F 至少为多大,两物块将会发生滑动?(设物块受到的最大静摩擦力等于滑动摩擦力)

专题受力分析_共点力的平衡

专题受力分析、共点力的平衡 一.受力分析 力学中三种常见性质力 1.重力:(1)方向:竖直向下(2)作用点:重心 2. (1)有多少个接触面(点)就有可能有多少个弹力 (2)常见的弹力的方向: 弹簧对物体的弹力方向:与弹簧恢复原长的方向相同 绳子对物体的弹力:沿着绳子收缩的方向. 面弹力(压力,支持力):垂直于接触面指向受力的物体. 3.摩擦力 (1)有多少个接触面就有可能有多少个摩擦力 (2)静摩擦力方向:与相对运动的趋势方向相反 (3)滑动摩擦力的方向:与相对运动方向相反 二.受力分析 1.步骤(1).确定研究对象(受力物体):可以是一个整体,也可以个体(隔离分析) 注意:只分析外界给研究对象的力,研究对象给别人的力不分析 (2). 受力分析要看物体的运动状态:静止还是运动 2.顺序:(1)外力:外力可以方向不变地平移 (2)重力 (3)接触面的力(弹力,摩擦力) 先弹力:看有几个接触面(点)。判断面上若有挤压,则垂直于接触面有弹力。 其次摩擦力:若有相对运动或者相对运动趋势,则平行于接触面有摩擦力 分析完一个面(点),再分析其他面(点) 3.检验:是否多画力或者漏画力 检查每一个力的施力物体是否都是别的物体 静止水平面 竖直面 运动斜面 二、共点力的平衡 1.共点力 作用于物体的或力的相交于一点的力. 2.平衡状态 (1)物体保持或的状态. (2)通过控制某些物理量,使物体的状态发生缓慢变化的过程(动态平衡). 物体的速度为零和物体处于静止状态是一回事吗? 提示:物体处于静止状态,不但速度为零,而且加速度(或合外力)为零.有时,物体速度为零,但加速度不一定为零,如竖直上抛的物体到达最高点时;摆球摆到最高点时,加速度都不为零,都不属于平衡状态.因此,物体的速度为零与静止状态不是一回事.

复习专题:共点力平衡问题

【课题】共点力作用下的静态平衡问题 【课型】复习课 【三维目标】 一、知识与能力 掌握共点力作用下的静态平衡问题的解决方法。 二、过程与方法 系统的归纳在共点力平衡问题中可能会用到的整体法和隔离法;正交分解法和矢量三角形法。 三、情感态度与价值观 通过系统的归纳与学习,使学生能够把电磁学中力学知识跟平衡问题有机的结合,积极应对高考。 【教学重点】 共点力平衡问题的一般方法;整体法与隔离法;研究对象的转移;正交分解法及矢量三角形法 【教学难点】 整体法与隔离法的选择;正交分解法 【教学过程】 一、新课导入 上节课我们通过考点网络结构的方式给大家复习了高中阶段必须掌握的几种力:重力、弹力、摩擦力、电场力、安培力、洛伦兹力。那么物体在这些力的作用下可能会达到平衡状态,今天我们就一起来复习物体在共点力作用下

的静态平衡问题的解决方法及其他物理方法。 二、课程设计 问:何为物体的静态平衡? 答:物体在力的作用下保持静止状态或匀速直线运动状态。 接下来我们就通过一道例题来总结一下解决共点力平衡问题的一般方法和步骤。(过渡) 例1:如图所示,两根相距L的光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ,质量为m 的金属杆ab 垂直导轨放置,整个装置处于垂直金属导轨平面向上的匀强磁场中。当金属杆ab中通有从a到b的电流I时,金属杆ab保持静止。求: (1)金属杆对导轨的压力。 (2)磁感应强度的大小。 解:以通电金属杆为研究对象, 受力分析如图,正交分解重力, 得:mg x=mgsinθ mg y=mgcosθ

则,mgsinθ=IBL mgcosθ=F 解方程的B= mgsinθ/IL 根据牛顿第三定律,金属杆对导轨的压力为mgcosθ。 现在我们来总结下解决这个问题的一般步骤: 【课件展示】 (一)选择合适的研究对象(选对象) (二)对研究对象进行受力分析(分析力) (三)选择合适的方法处理受力(处理力) (四)根据平衡条件列出方程(列方程) (五)解方程,得出结论(得结论) 有的同学可能在想,老师现在都第二轮复习了,你怎么还讲这么简单的题目呢?我要告诉大家的是,我们现在并不是学会解这道题,而是学会解决这类问题的一般方法。那么,请问大家知道在解决这类问题的每一个步骤中又会遇到什么特殊情况吗?让我们回过头来在看一下每个解题步骤。(过渡) (一)选择合适的研究对象(选对象) 【课件展示】 1、整体法:在分析两个或者两个以上物体间的相互作用时,如果两个物体的运动状态相同,且分析的受力是两个物体的外力。

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

专题04 共点力平衡的七大题型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练 专题04 共点力平衡的七大题型 【专题导航】 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二三个力互相不垂直,但夹角(方向)已知。 (3) 热点题型三三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四矢量三角形法类 (6) 热点题型五相似三角形法类 (9) 热点题型六单位圆或正弦定理发类型 (10) 热点题型七衣钩、滑环模型 (12) 【题型演练】 (14) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法 ②力的正交分解法 ③正弦定理(拉米定理)法 ④相似三角形法 ⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止P点。设滑块所受支持力为N F。OF与水平方向的夹角为 。下列关系正确的是()

A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 【解析】 解法一 力的合成法 滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ , F N =mg sin θ 。 解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ, 联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】

动态平衡受力分析专题

专题 动态平衡中的三力问题 图解法分析动态平衡 在有关物体平衡的问题中,有一类涉及动态平衡。这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是 其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的 矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形, 各力的大小及变化就一目了然了。 例1.1 如图1所示,一个重力G 的匀质球放在光 滑斜面上,斜面倾角为α,在斜面上有一光滑的 不计厚度的木板挡住球,使之处于静止状态。今 使板与斜面的夹角β缓慢增大,问:在此过程中, 挡板和斜面对球的压力大小如何变化? 解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F 1的方向不变,但方向不变,始终与斜面垂直。F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。由此可知,F 2先减小后增大,F 1随β增大而始终减小。 同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量 为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中, 绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球 的支持力增大) 方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化, 且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与 力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端 挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉 住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角 θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情 况是( ) A .F N 先减小,后增大 B .F N 始终不变 C .F 先减小,后增大 D.F 始终不变 解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封 闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对 应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,)l F L F H G N ==,式 中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。正确答案为选项B 同种类型:如图2-3 所示,光滑的半球形物体固定在水平地面上,球心正上方有一光

共点力平衡的七大题型Word版含解析(2020年10月整理).pdf

专题 共点力平衡的七大题型 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二 三个力互相不垂直,但夹角(方向)已知 。 (3) 热点题型三 三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四 矢量三角形法类 (6) 热点题型五 相似三角形法类 (9) 热点题型六 单位圆或正弦定理发类型 (10) 热点题型七 衣钩、滑环模型 (12) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法②力的正交分解法③正弦定理法④相似三角形法⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。设滑块所受支持力为N F 。OF 与水平方向的夹角为θ。下列关系正确的是( ) A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 解法一 力的合成法滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ,F N =mg sin θ 。

解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ,联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】 T =f +mg sin θ,f =μN ,N =mg cosθ,带入数据解得:m =150kg ,故A 选项符合题意。 【变式2】(2019·新课标全国Ⅲ卷)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平 直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2则( ) A .12F F , B .12F F , C .121==22F mg F , D .121==22 F F mg , 【答案】D 【解析】对圆筒进行受力分析知圆筒处于三力平衡状态,受力分析如图,由几何关系可知,1cos30F mg '=?, 2sin 30F mg '=?。解得12F mg '=,212F mg '= 由牛顿第三定律知121,22 F mg F mg ==,故D 正确

共点力动态平衡分类及解题方法总结

共点力动态平衡问题分类及解题方法 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 联立,解得:θsin 2N mg F =,θtan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住 不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规 律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右,而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平地面的夹角为θ,如图所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则 A .F 先减小后增大 B .F 一直增大 C .F 一直减小 D .F 先增大后减小 解法一:解析法——画受力分析图,正交分解列方程,解出F 随夹角θ变化的函数,然后由函数讨论; 【解析】木箱受力如图,由平衡条件,有 F N F mg F f θ F N2 mg F F N1 F mg θ

共点力平衡专题

共点力平衡专题 【典型例题】 题型一:三力平衡 例1、如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是( ) A .mgcos α B .mgtan α C.mg/cos α D .mg 解法一:(正交分解法):对小球受力分析如图甲所示,小球静止, 处于平衡状态,沿水平和竖直方向建立坐标系,将FN2正交分解,列平衡方程为F N1=F N2sin α mg =F N2cos α 可得:球对挡板的压力F N1′=F N1=mgtan α,所以B 正确. 解法二:(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg 平衡,即等大反向.解三角形可得:F N1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α. 解法三:(效果分解法):小球所受的重力产生垂直板方向挤压竖直板的效果和垂直斜面方向挤压斜面的效果,将重力G 按效果分解为如上图 丙中所示的两分力G 1和G 2,解三角形可得:F N1=G 1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α.所以B 正确. 解法四:(三角形法则):如右图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mgtan α,故挡板受压力F N1′=F N1=mgtan α.所以B 正确. 题型二:动态平衡问题 例2、如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,

A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球 B ,整个装置处于静止状态。设墙壁对B 的压力为F1,A 对B 的压力为F2,则若把A 向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是( ) A .F1减小 B .F1增大 C .F2增大 D .F2减小 方法一 解析法:以球B 为研究对象,受力分析如图甲所示,根据 合成法,可得出F1=Gtan θ,F2=Gcos θ,当A 向右移动少许后,θ减小,则F1减小,F2减小。故选项A 、D 正确。 方法二 图解法:先根据平衡条件和平行四边形定则画出如图乙所示的矢量三角形,在θ角减小的过程中,从图中可直观地看出,F1、F2都会减小。故选项A 、D 正确。 【拓展延伸】在【典例2】中若把A 向右移动少许后,它们仍处于静止状态,则地面对A 的摩擦力变化情况是( ) A .减小 B .增大C .不变 D .先变小后变大 方法一 隔离法:隔离A 为研究对象,地面对A 的摩擦力F f =F 2sin θ,当F 2和θ减小时,摩擦力减小,故选项A 正确。 方法二 整体法:选A 、B 整体为研究对象,A 、B 整体受到总重力、地面的支持力、墙壁的压力和地面的摩擦力,所以摩擦力F f =F 1,当把A 向右移动少许后,随着F 1的减小,摩擦力也减小。故选项A 正确。 [相似三角形法] 例3、如图所示,小圆环A 吊着一个质量为m2的物块并套在另一个竖 2 sin 22 sin 22112αα== m m R g m R g m 解得:

高中物理 共点力动态平衡问题常见题型总结

高中物理共点力动态平衡问题常见题型总结 一、共点力平衡的概念 所谓共点力平衡,讲的就是在共点力的作用下,物体处于静止或者匀速直线运动的状态,当物体处于静止状态的时候,叫做静态平衡,而当物体处于匀速直线运动状态的时候,叫做动态平衡。这两种状态都是平衡状态,所以物体受到的合外力都是零。 共点力平衡的题型也可以分为静态平衡和动态平衡两类。其中静态平衡主要是通过力的合成和分解进行求解,这里不多赘述;而动态平衡问题是学生普遍错的比较多,也比较难以理解的,接下来将主要分析这类问题的题型和解法。 二、共点力动态平衡问题的解法一:解析法 解析法是对研究对象进行受力分析,画出受力分析图,并根据物体的平衡条件列出方程,得到力与力之间的函数关系,一般会涉及到一个变化角度的三角函数。 解析法比较适合题目中有明显角度变化的题型,比如: 【例1】如图所示,小船用绳牵引靠岸,设水的阻力不变,在小船匀速靠岸的过程中,有() A.绳子的拉力不断减小 B.绳子的拉力不断增大 C.船受的浮力减小 D.船受的浮力不变 这个题是比较常见的拉小船的问题,解题的时候可以先对小船进行受力分析, 小船受到重力mg,水的浮力Fn,拉力F以及水的阻力f,在这四个力中,重力mg和水的阻力f是不变的,Fn方向不变,大小改变,F大小和方向都在变。由于小船处于匀速直

线运动中,所以受力平衡,设拉力与水平方向的夹角为θ,有: Fcosθ=f ①; Fn+Fsinθ=mg ②; 再根据小船在靠岸过程中θ增大,则cosθ减小,sinθ增大,由①得F=f/cosθ,F增大;由②得Fn=mg-Fsinθ,F和sinθ都在增大,所以Fn减小。最后答案选BC。 三、共点力动态平衡问题的解法二:图解法 图解法是对研究对象进行受力分析,再根据平行四边形法则或是三角形定则画出不同情况下的矢量图,然后根据有向线段的长度与方向变化,判断各个力的大小和方向的变化。 图解法比较常用,尤其适合受到三个力作用处于平衡状态的题型。图解法根据不同的适用情境,可以分为矢量三角形法、相似三角形法以及辅助圆法。 01 矢量三角形法 受三个力平衡的物体,将三个力首尾相连刚好可以得到一个三角形,三角形三条边的长度和方向分别表示对应力的大小和方向。 矢量三角形法适用于受到的三个力中,一个力大小方向都不变,一个力大小改变方向不变,第三个力大小方向都改变的情况, 解题思路为: 1. 画三角 2. 定方向 3. 找变化 【例2】质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用 T表示绳OA段拉力的大小,在O点向左移动的过程中() A.F逐渐变大,T逐渐变大

共点力动态平衡专题及详解

共点力动态平衡专题及详解 1.用绳将重球挂在光滑的墙上,设绳子的拉力为T ,墙对球的弹力为N ,如图所示,如果将绳的长度加长,则 A .T 、N 均减小 B .T 、N 均增加 C .T 增加,N 减小 D .T 减小,N 增加 【答案】A 【解析】 试题分析:设绳子和墙面夹角为θ,对小球进行受析: 把绳子的拉力T 和墙对球的弹力为N 合成F ,由于物体是处于静止的,所以物体受力平衡, 所以物体的重力等于合成F ,即F=G ,根据几何关系得出: cos mg T θ =,N=mgtan θ.先找到其中的定值,就是小球的重力mg ,mg 角θ减小,则cos θ增大, cos mg θ 减小;tan θ减小,mgtang θ减小;所以T 减小,N 减小. 故选A 考点:共点力动态平衡 点评:动态平衡是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:用不变化的力表示变化的力. 2.2008年1月以来,中国南方大部分地区和西北地区东部出现了建国以来罕见的持续大范围低温、雨雪和冰冻的极端天气。南方是雨雪交加,不仅雪霜结冰,而且下雨时边刮风边结冰,结果造成输电线路和杆塔上面的冰层越裹越厚,高压电线覆冰后有成人大

腿般粗,电力线路很难覆冰,而致使输配电线路被拉断或频频跳闸。现转化为如下物理模型:长为125m的输电线的两端分别系于竖立在地面上相距为100m的两杆塔的顶端A、B。导线上悬挂一个光滑的轻质挂钩,其下连着一个重为300N的物体,不计摩擦,平衡时,导线中的张力T1,现使A点缓慢下移一小段,导线中的张力为T2,则下列说法正确的是() A.T1>T2 B.T1

共点力平衡专题

共点力平衡专题

共点力平衡专题 一.共点力 物体同时受几个力的作用,如果这几个力都作用于物体 的同一点或者它们的作用线交于同一点,这几个力叫共点力.能简化成质点的物体受到的力可视为共点力。 二、平衡状态 物体保持静止 ....状态(或有固定转轴的物体匀....或匀速运动 速转动). 注意:这里的静止需要二个条件,一是物体受到的合外 力为零,二是物体的速度为零,仅速度为零时物体不一定处 于静止状态,如物体做竖直上抛运动达到最高点时刻,物体 速度为零,但物体不是处于静止状态,因为物体受到的合外 力不为零. 共点力的平衡:如果物体受到共点力的作用,且处于平 衡状态,就叫做共点力的平衡。 两种平衡状态:静态平衡v=0;a=0 动态平衡v≠0;a=0 ①瞬时速度为0时,不一定处于平衡状态. 如:竖直上 抛最高点.只有加速度也为零才能认为平衡状态. ②.物理学中的“缓慢移动”一般可理解为动态平衡

三、共点力作用下物体的平衡条件 1.物体受到的合外力为零.即F 合=0 其正交分解式为F 合 x =0 ;F 合y =0 2.某力与余下其它力的合力平衡(即等值、反向)。 二力平衡:这两个力大小相等,方向相反,作用在同一直线上,并作用于同一物体 (要注意与一对作用力与反作用力的区别)。 三力平衡:三个力平移后构成一个首尾相接、封闭的矢量 形; 任意两个力的合力与第三个力等大、反向(即是相互平衡) 结论:①非平行的三个力作用于物体而平衡,则这三个力一定共点。 ②几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 3.多个力平衡 ①物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。 ②若采用正交分解法求平衡问题,则其平衡条件为:F X合 =0,

共点力平衡——动态平衡问题

共点力平衡——动态平衡问题 1、(单选)如图是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓上推涂料滚,使撑杆与墙壁间的夹角越来越小.该过程中撑竿对涂料滚的推力为F1,涂料滚对墙壁的压力为F2,下列说法正确的是() A.F1增大,F2减小 B.F1减小,F2增大 C.F1、F2均增大 D.F1、F2均减小 2、(单选)如图所示,一根轻绳两端分别固定两个完全相同的小球a、b,每个球的重力为G.在绳的中点施加一个竖直向上的拉力F,两球静止在空中,以下判断正确的是( ) A.轻绳越长,F越大 B.轻绳越长,轻绳对球的拉力越大 C.轻绳对球的拉力可能小于G D.轻绳越短,a、b之间的弹力越大 3、(多选)如图所示,用绳跨过定滑轮牵引小船,设水的阻力不变,则在小船匀速靠岸的过程中() A.绳子的拉力不断增大 B.绳子的拉力不变 C.船所受浮力增大 D.船所受浮力变小 4、(多选)如图所示,不计质量的光滑小滑轮用细绳悬挂于墙上的O点,跨过滑轮的细绳连接物块A、B,A、B都处于静止状态,现将物块B移至C点后,A、B仍保持静止,下列说法中正确的是( ) A.B与水平面间的摩擦力增大 B.绳子对B的拉力增大 C.悬于墙上的绳所受拉力不变 D.A、B静止时,图中α、β、θ三角始终相等

5、(单选)甲、乙两人用aO和bO通过装在P楼和Q楼楼顶的定滑轮,将质量为m的物块由O点沿Oa直线缓慢向上提升,如图所示。则在物块由O点沿直线Oa缓慢上升过程中,以下判断正确的是() A.aO绳和bO绳中的弹力都逐渐减小 B.aO绳和bO绳中的弹力都逐渐增大 C.aO绳中的弹力一直在增大,bO绳中的弹力先减小后增大 D.aO绳中的弹力先减小后增大,bO绳中的弹力一直在增大 6、(单选)如图,三根轻细绳悬挂两个质量相同的小球保持静止,A、D间细绳是水平的,现对B球施加一个水平向右的力F,将B缓缓拉到图中虚线位置,这时三根细绳张力T AC、T AD、T AB的变化情况是() A.都变大 B.T AD和T AB变大,T AC不变 C.T AC和T AB变大,T AD不变 D.T AC和T AD变大,T AB不变 7、(多选)如图所示,物体的重力为G,保持细绳AO的位置不变,让细绳BO的B端沿四分之一圆周从D点缓慢向E 点移动。在此过程中() A.细绳BO上的张力先增大后减小 B.细绳BO上的张力先减小后增大 C.细绳AO上的张力一直增大 D.细绳AO上的张力一直减小 8、(单选)如图所示,用一根细线系住重力为G的小球,开始细线在作用于O点的拉力下保持竖直位置,小球与倾角为α的光滑斜面体接触,处于静止状态,小球与斜面的接触面非常小。现保持小球位置不动,沿顺时针方向改变拉力方向,直到拉力方向与斜面平行。在这一过程中,斜面保持静止。下列说法正确的是()A.细线对小球的拉力先减小后增大 B.斜面对小球的支持力先增大后减小 C.斜面对地面的摩擦力一直减小,方向向右 D.细线对小球的拉力的最小值等于G sin α

专题受力分析_共点力的平衡.docx

专题受力分析、共点力的平衡 一.受力分析 力学中三种常见性质力 1. 重力:(1)方向:竖直向下(2)作用点:重心 2. (1)有多少个接触面(点)就有可能有多少个弹力 (2)常见的弹力的方向: 弹簧对物体的弹力方向:与弹簧恢复原长的方向相同 绳子对物体的弹力:沿着绳子收缩的方向. 面弹力(压力,支持力):垂直于接触面指向受力的物体? 3. 摩擦力 (1)有多少个接触面就有可能有多少个摩擦力 ⑵静摩擦力方向:与相对运动的趋势方向相反 (3)滑动摩擦力的方向:与相对运动方向相反二?受力分析 1. 步骤(1).确定研究对象(受力物体):可以是一个整体,也可以个体(隔离分析)注意:只分析外 界给研究对象的力,研究对象给别人的力不分析 (2).受力分析要看物体的运动状态:静止还是运动 2. 顺序:(1)外力:外力可以方向不变地平移 (2)重力 (3)接触面的力(弹力,摩擦力) 先弹力:看有几个接触面(点)。判断面上若有挤压,则垂直于接触面有弹力。 其次摩擦力:若有相对运动或者相对运动趋势,则平行于接触面有摩擦力分析完一个面(点),再分析其他面(点) 3. 检验:是否多画力或者漏画力 检查每一个力的施力物体是否都是别的物体 三?题型:分类 静止水平面 、—竖直面 运动「斜面二、共点力的平衡 1. 共点力 作用于物体的________ 或力的_____ 相交于一点的力. 2. 平衡状态 (1) __________ 物体保持_________ 或的状态. (2)通过控制某些物理量,使物体的状态发生缓慢变化的过程(动态平衡). 物体的速度为零和物体处于静止状态是一回事吗? 提示:物体处于静止状态,不但速度为零,而且加速度(或合外力)为零.有时,物体速度为零, 但加速度不一定为零,如竖直上抛的物体到达最高点时;摆球摆到最高点时,加速度都不为零,都不属于平衡状态.因此,物体的速度为零与静止状态不是一回事.

共点力动态平衡专题

共点力动态平衡专题 1.用绳将重球挂在光滑的墙上,设绳子的拉力为T,墙对球的弹力为N,如图所示,如果将绳的长度加长,则 A.T、N均减小B.T、N均增加 C.T增加,N减小D.T减小,N增加 2.2008年1月以来,中国南方大部分地区和西北地区东部出现了建国以来罕见的持续大范围低温、雨雪和冰冻的极端天气。南方是雨雪交加,不仅雪霜结冰,而且下雨时边刮风边结冰,结果造成输电线路和杆塔上面的冰层越裹越厚,高压电线覆冰后有成人大腿般粗,电力线路很难覆冰,而致使输配电线路被拉断或频频跳闸。现转化为如下物理模型:长为125m 的输电线的两端分别系于竖立在地面上相距为100m的两杆塔的顶端A、B。导线上悬挂一个光滑的轻质挂钩,其下连着一个重为300N的物体,不计摩擦,平衡时,导线中的张力T1,现使A点缓慢下移一小段,导线中的张力为T2,则下列说法正确的是() A.T1>T2 B.T1

高一物理力学专题-共点力的平衡专题

图3 图1 图2 专题2 共点力的平衡及应用 导学目标 1.掌握共点力的平衡条件及推论.2.掌握整体法及隔离法的应用.3.会分析动态平衡问题及极值问题. 一、共点力的平衡[基础导引]1.如图1所示,一个人站在自动扶梯的水平台阶上随扶梯匀速上升,它受到的力有 ( ) A .重力、支持力 B .重力、支持力、摩擦力 C .重力、支持力、摩擦力、斜向上的拉力 D .重力、支持力、压力、摩擦力 2.在图2中,灯重G =20 N ,AO 与天花板间夹角α=30 °,试求AO 、 BO 两绳受到的拉力多大? [知识梳理]共点力的平衡 共点力 力的作用点在物体上的____________或力的____________交于一 点的几个力叫做共点力.能简化成质点的物体受到的力可以视为 共点力 平衡状态 物体处于________状态或____________状态,叫做平衡状态.(该 状态下物体的加速度为零) 平衡条件 物体受到的________为零,即F 合=____或{ ΣF x = ΣF y =0 思考:物体的速度为零和物体处于静止状态是一回事吗? 二、平衡条件的推论 [基础导引] 1.如图3所示,斜面上放一物体m 处于静止状态,试求斜面对物体的 作用力的合力的大小和方向. 2.光滑水平面上有一质量为5 kg 的物体,在互成一定角度的五个水平力作用下做匀速运动,这五个力矢量首尾连接后组成一个什么样图形?若其中一个向南方向的 5 N 的力转动90°角向西,物体将做什么运动? [知识梳理]1.二力平衡 如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小________、方向________,为一对____________. 2.三力平衡如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的________一定与第三个力大小________、方向________.

共点力平衡专题

专题1共点力的平衡及应用 一、共点力的平衡 1.如图1所示,一个人站在自动扶梯的水平台阶上随扶梯 匀速上升,它受到的力有() A.重力、支持力 B.重力、支持力、摩擦力图1 C.重力、支持力、摩擦力、斜向上的拉力 D.重力、支持力、压力、摩擦力 2.在图中,灯重G=20 N,AO与天花板间夹角α=30 °,试求 AO、BO两绳受到的拉力多大? 共点力的平衡 物体受到的________为零,即F合=____或{ΣF x=F y=0 思考:物体的速度为零和物体处于静止状态是一回事吗? 二、平衡条件的推论 1.二力平衡 如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小________、方向________,为一对____________. 2.三力平衡 如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的________一定与第三个力大小________、方向________. 3.多力平衡 如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的________大小________、方向________. 考点一处理平衡问题常用的方法 1.力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等、方向相反;“力的合成法”是解决三力平衡问题的基本方法. 2.三角形法 对受三力作用而平衡的物体,将力的矢量平移使三力组成一个首尾依次相接的封闭三角形,进而处理物体平衡问题的方法叫三角形法; 例1如图所示,在倾角为α的斜面上,放一质量为m的小 球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力

是( ) A .mg cos α B .mg tan α C.mg cos α D .mg 共点力作用下物体平衡的一般解题思路: 实际问题―-----―→选用整体法或隔离法 确定研究对象 ―→ 对研究对象受力分析 ―→ 画受力图 ―-------―→将某些力进行 合成或分解 作出平行四边形 ――--→根据平衡 条件F 合=0 列平衡方程求解 训练1 如图5所示,不计滑轮摩擦,A 、B 两物体均处 于静止状态.现加一水平力F 作用在B 上使B 缓慢右移, 试分析B 所受力F 的变化情况. 考点二 动态平衡问题 图5 例2 如图所示,两根等长的绳子AB 和BC 吊一重物静止, 两根绳子与水平方向夹角均为60°.现保持绳子AB 与水平方 向的夹角不变,将 绳子BC 逐渐缓慢地变化到沿水平方向, 在这一过程中,绳子BC 的拉力变化情况是 ( ) A .增大 B .先减小,后增大 C .减小 D .先增大,后减小 如图7所示,质量分别为m A 和m B 的物体A 、B 用细绳连接后跨过滑轮, A 静止在倾角为45°的斜面上, B 悬挂着.已知m A =2m B ,不计滑轮摩擦, 现将斜面倾角由45°增大到50°,系统仍保持静止.下列说法正确的是 ( ) A .绳子对A 的拉力将增大 B .物体A 对斜面的压力将增大 图7 C .物体A 受到的静摩擦力增大 D .物体A 受到的静摩擦力减小 考点三 平衡中的临界与极值问题 例题3 如图所示,将两个质量均为m 的小球a 、b 用 细线相连并悬挂于O 点,用力F 拉小球a 使整个装置处于 平衡状态,且悬线Oa 与竖直方向的夹角为θ=60°,则力 F 的大小可能为 ( ) A.3mg B .mg C.32mg D.33mg 常见题型: 1.三力平衡:合成法。(知识点:任意两个力的合力与第三个力等值反向,建立矢量三角形。) 例题:某校物理课外实验小组研究石拱桥所用石料间的作用力的大小关系,如图所示。若四

高一物理共点力平衡动态分析题

高一物理能力提高专项训练(一) 共点力平衡与动态分析 1.倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的 物块m一直保持相对木板静止状态,如图所示.在这一过程中,物块m 受到长木板支持力F N和F f的大小变化情况是( ) A.F N变大,F f变大B.F N变小,F f变小 C.F N变大,F f变小D.F N变小,F f变大 2.如图所示,一均匀球放在倾角为α的光滑斜面和一光滑的挡板之间,挡 板与斜面的夹角为θ设挡板对球的弹力为F l,斜面对球的弹力为F2,则当 θ逐渐减小到θ=α的过程中,下列说法正确的是( ) A.F1先减小后增大B.F1先增大后减小 C.F2减小D.F2增大 3.如图所示,电灯悬于两壁之间,保持O点及OB绳的位置不变,而将绳 端A点向上移动,则( ) A.绳OA所受的拉力逐渐增大 B.绳OA所受的拉力逐渐减小 C.绳OA所受的拉力先增大后减小 D.绳OA所受的拉力逐渐先减小后增大 4.把球夹在竖直墙和木板BC之间,不计摩擦.球对墙的压力为F N1,球对板的 压力为F N2.在将板BC逐渐放至水平的过程中,说法正确的是( ) A.F N1,F N2,都增大B.F N1,F N2,都减小 C.F Nl增大,F N2减小D.F N1减小,F N2增大 5.某一物体受到三个力作用,下列各组力中,能使的球挂在光滑的墙壁上,设绳的拉力为 F,球对墙的压力为F N,当绳长增加时,下列说法正确的是( ) A.F,F N均不变B.F减小,F N增大 C.F增大,F N减小D.F减小,F N减小 6.半径为R的表面光滑的半球固定在水平面上。在距其最高点的正上方为h的悬点O,固定长L的轻绳一端,绳的另一端拴一个重为G的小球。小球静止在球面上,如图所示。则绳对小球的拉力T如何变化( );支持力N如何变化( ) A.变大B.变小C.不变D.无法确定

相关主题
文本预览
相关文档 最新文档