当前位置:文档之家› 多项式最大公因式性质定理及求解方法

多项式最大公因式性质定理及求解方法

多项式最大公因式性质定理及求解方法
多项式最大公因式性质定理及求解方法

多项式最大公因式性质定理及求解方法

作者:xxx 指导教师:xxx

摘 要 对多项式最大公因式理论中的重要性质定理进行总结归纳及对其中一个性质定理的结构进行进一步的研究,以及研究最大公因式的几种求解方法:因式分解法;辗转相除法;矩阵的初等变换法.

关键词 公因式 最大公因式 辗转相除法 初等变换

最大公因式是多项式理论的核心概念,最大公因式的性质在多项式理论的研究中具有关键作用,本文将分三个方面阐述这些内容:首先总结归纳最大公因式的性质定理;其次对其中的一个重要性质定理作进一步的研究;最后将对最大公因式的求解方法:因式分解法、辗转相除法、矩阵的初等变换法进行研究.

本文所考虑的多项式均为数域F 上的一元多项式环]x [F 内的多项式.

§1.最大公因式的定义及性质

首先我们给出最大公因式的定义:

定义1:设)x (d 是多项式)x (f 与)x (g 的一个公因式,若是)x (d 能被)x (f 与)x (g 的每一个公因式整除,那么)x (d 叫做)x (f 与)x (g 的一个最大公因式.以))x (g ),x (f (表示)x (f 与)x (g 在]x [F 中最高项系数为1的最大公因式.

例1.如果)x (q )x (g )x (f ?=,那么)x (g 是)x (f 和)x (g 的最大公因式.

证明:按定义1.有)x (g 是)x (f 与)x (g 的一个公因式,

设)x (h 是)x (f 和)x (g 的任一公因式,则有:

)x (g |)x (h ,

所以按定义,有)x (g 是)x (f 与)x (g 的最大公因式.

为研究多项式最大公因式的性质定理下面将给出一个引理:

引理1:如果多项式)x (h 是多项式)x (f 和)x (g 的公因式,)x (a 和)x (b 是]x [F 上的两个任意多项式,那么)x (h 一定是多项式)x (g )x (b )x (f )x (a ?+?的因式.

证明:因为)x (h 是)x (f 的因式,

所以 可设 )x (m )x (h )x (f ?=, )x (n )x (h )x (g ?=,其中)x (m ,)x (n ∈]x [F . 又因为 )x (n )x (b )()x (m )x (a )x (h )x (g )x (b )x (f )x (a ??+??=?+?x h

)]()()()()[(x n x b x m x a x h +?=.

所以 )x (h 是)x (g )x (b )x (f )x (a ?+?的因式.

注:应用引理1有时可以方便的求两个多项式的最大公因式.

例2:求12x 3x )x (f 3--=和52x 3x )x (g 3-+=的最大公因式.

解:由上面的引理可知:所求的最大公因式一定是:

)1x (4)x (g )x (f -=+-的因式,

又因为 0)1(f =,0)1(g =,可知所求的最大公因式就是1x -.

定理1:设0)(≠x g ,)x (r )x (q )x (g )x (f +?=,其中))(())((x g x r ???

))x (r ),x (g ())x (g ),x (f (= .

注:定理1的结论可以形象的叙述为:

)()(除式,余式被除式,除式=.

证明:设)x (d 是)x (g 和)x (r 的最大公因式,那么根据引理1得:)x (d 也是)x (f 的因式,从而)x (d 是)x (f 和)x (g 的公因式;其次,设]x [F )x (h ∈是)x (f 和)x (g 的任一公因式,那么由引理1得:)x (h 是)x (q )x (g )x (f )x (r ?-=的因式,所以)x (h 是)x (r 的因式.因此, )x (h 是)x (g 和)x (r 的公因式,从而可知)x (h 能够整除)x (d ;所以)x (d 是)x (f 和)x (g 的最大公因式.

根据引理1和定理1不难得到:

定理2:如果)x (f 和)x (g 不全是零多项式,那么)x (f 和)x (g 一定有最大公因式,并且)x (f 和)x (g 的最大公因式,除了一个零次多项式的因式差别之外是唯一确定的.

具体证明过程可参阅[1] 、[2].

两个多项式的最大公因式存在的一条非常重要的性质:

定理3:若)x (d 是]x [F 的多项式)x (f 和)x (g 的公因式,则以下命题等价:

(i ))x (d 为)x (f 和)x (g 的一个最大公因式;

(ii )在]x [F 里存在多项式)x (u 与)x (v 使)x (d )x (g )x (v )x (f )x (u =?+?.

证明:由(i)推(ii):

若0)x (g )x (f ==,那么0)x (d =,这时]x [F 中任何两个多项式都可以取作)x (u 与)x (v . 若)x (f 与)x (g 不都等于零,不妨假定0)x (g ≠,用辗转相除法来求()x (f ,)x (g ).用)x (g 去除)x (f 应用带余除法,得商式)x (q 1及余式)x (r 1.如果)x (r 1≠0,那么再以)x (r 1除)x (g ,得

商式)x (q 2及余式)x (r 2.如果)x (r 2≠0,再以)x (r 2除)x (r 1,得商式)x (q 3及余式)x (r 3如此继续下去,因为余式的次数在带余除法中每次降低,所以作了有限次这种除法后,必然得出这样一个余式0x)(r k ≠,使得)()()(11x q x r x r k k k +-?=,于是我们得到一串等式:

)x (r )x (q )x (g )x (f 11+?=,

)x (r )x (q )x (r )x (g 221+?=,

)x (r )x (q )x (r )x (r 3321+?=,

(1)

)x (r )x (q ).x (r )x (r 1-k 1-k 2-k 3-k +=,

)x (r )x (q )x (r )x (r k k 1-k 2-k +?=,

)x (q )x (r )x (r 1k k 1-k +?=.

则 )x (r k 就是)x (f 与)x (g 的一个最大公因式,考察等式组(1)的倒数第二个等式,得

)x (r )x (q )x (r )x (r k k 1-k 2-k =?-,

令 1)x (u 1=,)x (q )x (v k 1-=,那么上面的等式可以写成 :

)x (r )x (v )x (r )x (u )x (r k 11-k 12-k =?+?. (

3) 由(1)的倒数第三个等式,得

)x (q )x (r )x (r )x (r 1-k 2-k 3-k 1-k ?-=.

把)x (r 1-k 的这个表达式带入(3)中,

并令 )x (v )x (u 12=,)x (q )x (v )x (u )x (v 1-k 112?-=,所以有

)x (r )x (v )x (r )x (u )x (r k 22-k 23-k =?+?.

如此继续利用(1)中的等式,最后可得到

)x (r )x (v )x (g )x (u )x (f k k k =?+?.

但)x (f 与)x (g 的最大公因式)x (d 等于F 中不为零的数c 与)x (r k 的积:

)x (r c )x (d k ?=,

因此 取)x (u c )x (u k ?=,)x (v c )x (v k ?=,即得所证.

由(ii)推(i):

设)x (h 是)x (f 与)x (g 的任一公因式,则)x (f |)x (h ,)x (g |)x (h ,由引理1得h(x)是)x (d )x (g )x (v )x (f )x (u =?+?的因式,即)x (d |)x (h .又因为)x (d 是)x (f 与)x (g 的公因式,所以)x (d 是)x (f 与)x (g 的一个最大公因式.

若1))x (g ),x (f (=,则称多项式)x (f 与)x (g 互素.

与定理3类似的还有下面一条重要的定理:

定理4 :在]x [F 中,设)x (f )x (d )x (f 1?=,)x (g )x (d )x (g 1?=,且)x (f 与)x (g 不全为零,则)x (d 是)x (f 与)x (g 的最大公因式?))x (g ),x (f (111=.

证明:

充分性:如果))x (g ),x (f (111=,则由多项式互素的判定定理有,存在)x (u ,)x (v 使

1)x (v )x (g )x (u )x (f 11=?+?,

则 等式两边同时乘以)x (d ,得

d(x))x (v )x (g )()x (u )x (f d(x)11=??+??x d ,

由命题条件)x (f )x (d )x (f 1?=,)x (g )x (d )x (g 1?=知)x (d 是)x (f 与)x (g 的公因式,结合上式同时有

)x (d )x (v )x (g )x (u )x (f =?+?,

所以,由定理3得)x (d 是)x (f 与)x (g 的一个最大公因式.

必要性:若)x (d 是)x (f 与)x (g 的一个最大公因式,则由定理3得,存在)x (u ,)x (v 使

)x (d )x (v )x (g )x (u )x (f =?+?.

因为 )x (f )x (d )x (f 1?=,)x (g )x (d )x (g 1?=,所以代进上式变为

)x (d )]x (v )x (g )x (u )x (f [)x (d 11=?+??,

又因为)x (f ,)x (g 不全为零,所以0)(≠x d ,可用)x (d 除等式两边,得

1)x (v )x (g )x (u )x (f 11=?+?,

所以 1是)x (f 与)x (g 的公因式,由3Th 得,))x (g ),x (f (111=.

已知))x (g ),x (f ()x (d =,则)x (d ))x (g ),x (af (=,)x (d ))x (g ),x (g )x (f (=+,一般地有:

定理5 :令)x (f 与)x (g 是]x [F 的多项式,而a 、b 、c 、d 是F 中的数,并且0bc ad ≠-,则)x (d 是)(x f 与)x (g 的最大公因式?)x (d 也是)x (bg )x (af +与)x (dg )x (cf +的最大公因式.

证明:设)x (d 是)x (f 与)x (g 的最大公因式,并令))x (g ),x (f ()x (d =.

命 )x (bg )x (af )x (F +=,)x (dg )x (cf )x (G +=,现只需证明))x (G ),x (F ()x (d =即可. 由 引理1知,d(x)是F(x)的因式,同时d(x)也是G(x)的因式,

所以 )x (d 是F(x)与G(x)的公因式.

设 )x (h 是F(x)与G(x)的任一公因式,现证明)x (d |)x (h 如下:

因为 )x (bg )x (af )x (F +=,)x (dg )x (cf )x (G +=,且0≠-bc ad ,

所以 从F(x)与G(x)的表达式中可得:

)x (G bc

ad b )x (F bc ad d )x (f ---=

, )x (G bc ad a )x (F bc ad c )x (g -+--=, 又由于h(x)是F(x)与G(x)的公因式,所以)x (f |)x (h ,)x (g |)x (h ,

从而)x (d |)x (h .

即证明了)x (d 是)x (bg )x (af +与)x (dg )x (cf +的最大公因式.

""?

因为 )x (d 是)x (bg )x (af +与)x (dg )x (cf +的最大公因式 ,由3Th 可知在F[x]里总可以求得多项式)x (u 与)x (v 使

)x (d )]x (dg )x (cf )[x (v )]x (bg )x (af )[x (u =+++ ,

即 )x (d )]x (dv )x (bu )[x (g )]x (bv )x (au )[x (f =+++.

令 )x (cv )x (au )x (u 1+=,)x (dv )x (bu )x (v 1+=,则

)x (d )x (g )x (v )x (f )x (u 11=+. ①

由引理1得)(x d 是)x (f )bc ad ()]x (dg )x (cf [b )]x (bg )x (af [d -=+-+的因式,

同时也是)x (g )ad bc ()]x (dg )x (cf [a )]x (bg )x (af [c -=+-+的因式.

又)x (g |)x (d ),x (f |)x (d ,0bc ad ∴≠- , ②

综合3Th ①、②由得)x (d 是)x (f 与)x (g 的最大公因式

§2.关于定理3中)x (u ,)x (v 的结构

前面研究了多项式最大公因式的性质定理,为了更好理解这一定理,现将对定理3中的)x (u ,)x (v 作进一步分析,从而得出有关)x (u ,)x (v 的一些新的结论,以此作为上述定理3的补充.

定理3中涉及一个事实,即

?]x [F )x (),x (f ∈g ,0)x (f ≠与0)x (g ≠,?]x [F )x (v ),x (u ∈,使得

))x (g ),x (f ()x (g )x (v )x (f )x (u =?+?, ①

设))x (g ),x (f ()x (d =,)x (f )x (d )x (f 1?=,)x (g )x (d )x (g 1?=,由§1中定理4得

1))x (g ),x (f (=.

作了上面的准备工作,现给出)x (u ,)x (v 的结构定理,并加以证明.

定理6:(1)设s(x),t(x)∈F(x),?]x [F )x (h ∈,取)x (g )x (h )x (u )x (s 1?+=,

)x (f )x (h )x (v )x (t 1?-=,则

))x (g ),x (f ()x (g )x (t )x (f )x (s =?+?;

(2)如果有]x [F )x (t ),x (s ∈使))x (g ),x (f ()x (g )x (t )x (f )x (s =?+?,则

?]x [F )x (h ∈,使)x (g )x (h )x (u )x (s 1?+=,)x (f )x (h )x (v )x (t 1?-=.

证明:(1)设d(x)=(f(x),g(x)),将)x (g )x (h )x (u )x (s 1?+=,)x (f )x (h )x (v )x (t 1?-=,代入下式得

)x (g ))x (f )x (h )x (v ()x (f ))x (g )x (h )x (u ()x (g )x (t )x (f )x (s 11??-+??+=?+? =)()()()()()()()()()(11x g x f x h x f x g x h x g x v x f x u -++

其中)x (d )x (g )x (v )x (f )x (u =?+?.

又因为 )x (g )x (f )x (d )x (f (x)g )x (f )x (g 1111?=??=?,

所以 0)x (g )x (f )x (h )x (f )x (g )x (h 11=??-??,

从而 ))x (g ),x (f ()x (g )x (t )x (f )x (s =?+?.

(2)因为 ))x (g ),x (f ()x (g )x (t )x (f )x (s =?+?

))x (g ),x (f ()x (g )x (v )x (f )x (u =?+?,

上边两式左右两边同时作差得:

0)x (g )]x (v )x (t [)x (f )]x (u )x (s [=?-+?-,

因为 0)x (d ≠,两边同除以)x (d ,则有:

0)x (d /)x (g )]x (v )x (t [)x (d /)x (f )]x (u )x (s [=?-+?-,

又因为 1))x (d /)x (g ),x (d /)x (f (=,

从 )x (d /)x (g )]x (t )x (v [)x (d /)x (f )]x (u )x (s [?-=?- (*)中,得

)]x (u )x (s [|)]x (d /)x (g [-,

即 ?]x [F )x (h ∈,使得)x (d /)x (g )x (h )x (u )x (s ?=-,

又因为)x (g )x (d /)x (g 1=,)x (f )x (d /)x (f 1=,

所以有 )x (g )x (h )x (u )x (s 1?=-,代入(*)式得

)x (f )x (h )x (t )x (v 1?=-

即 ????-=?+=)

x (f )x (h )x (v )x (t )x (g )x (h )x (u )x (s 11.

这个定理一方面指出了满足①的)x (u ,)x (v 是不唯一的,同时也给出了所有)x (u ,)x (v 的一般形式,这对研究多项式最大公因式的理论是有很大的作用.

§3.最大公因式的求解方法

在前面对多项式最大公因式的理论研究指导下,现来研究一下多项式最大公因式的几种求解方法.

1.因式分解法

利用因式分解法求多项式的最大公因式,一般先求两个(或多个)多项式的标准分解式,如设多项式)x (f 与)x (g 的标准分解式分别为:

s 1r r 1k s k 1r k r k 1)x (q )x (q )x (p )x (ap )x (f ++=,

t 1r r 1l t _

l 1r _l r l 1)x (q )

x (q )x (p )x (bp )x (g ++=, 其中每一)x (q i ,)s ,,1r i ( +=不等于任何)x (q j _)t ,,1r j ( +=,令i m 是i k 与i l 两个自然

数中较小的一个)r ,,2,1i ( =,那么r 21m r m 2m 1)x (p )x (p )

x (p )( =x d ,就是)x (f 与)x (g 的最大

公因式. 例3.求实数域R 上多项式1x x x x x )x (f 2345+++++=与1x x x )x (g 34+++=的最大公因式.

解:分别对两个多项式进行标准因式分解得

1x x x x x )x (f 2345+++++=22(x 1)(x 1x)(x 1x)=++++-,

1x x x )x (g 34+++=)x 1x ()1x (22-++=,

由)x (f 与)x (g 的标准分解式可看出:

1x )1x x )(1x ())x (g ),x (f (32+=+-+=.

应该指出的是多项式的标准分解式一般不易求得.因此,求两个多项式的最大公因式一般不用此法.

2.辗转相除法

利用辗转相除法不但证明任意两个多项式都存在最大公因式,而且也是求最大公因式的一种有效方法.但是在运算过程中经常会出现分数运算,为了简化过程可用]x [F 中一个非零常数去乘被除式或除式,这种做法可在求最大公因式的每个步骤中进行,而对求出多项式的最大公因式d(x)的结果不会受到影响,原因如下:

设f(x),g(x)∈F(x),其中q(x)是g(x)除f(x)的商式,r(x)是余式,即表示为:

)x (r )x (q )x (g )x (f +?=,对F c ∈?且0≠c 有

)x (cr )]x (cq [)x (g )x (cf +?= ⑴,

)x (r )]x (q c

1[)]x (cg [)x (f +?= ⑵, 故由§1定理1得:

))x (g ),x (f ())x (r ),x (g ())x (cr ),x (g ())x (g ),x (cf (===,

))x (g ),x (f ())x (r ),x (g ())x (r ),x (cg ())x (cg ),x (f (===.

根据此结论,在用辗转相除法求最大公因式的过程中,用F 中的非零常数去乘被除式或除式,会给运算带来很大的方便,以下用例题说明:

例4.令F 是有理数域,求]x [F 的多项式:

34x 4x 2x x )x (f 234-+--=与34x 5x 2x )x (g 23+--=的最大公因式.

解法一,对)x (f 与)x (g 作辗转相除法,但对过程中的系数不作处理,这种解法的过程略. 解法二,对)x (f 与)x (g 作辗转相除,对相除中的系数作一些处理:

观察)x (f 与)x (g 的系数,先对)x (f 的系数作处理

即 2)x (f =688422

34-+--x x x x ,

用)x (g 去除2)x (f ,商x ,余65423-+-x x x ,观察此步对系数作处理得

2(65423-+-x x x )=12108223-+-x x x ,

用)x (g 去除12108223-+-x x x ,商1,余151432-+-x x ,观察此步对系数作处理得 912x 15x 6x )x (3g 23+--=,

用151432-+-x x 去除912x 15x 6x 23+--,商-2x ,余942132

+-x x ,观察此步对系数作处理得 )94213(32+-x x =27126392+-x x ,

用151432-+-x x 去除27126392

+-x x ,商-13,余16856-x ,观察此步对系数作处理得 3)16856(56

1-=-x x , 用3-x 去除151432-+-x x ,商x 3-,余155-x ,观察此步对系数作处理得 3)155(5

1-=-x x ,

用3-x 去除3-x ,商1,余0.

所以 3x ))x (g ),x (f (-=.

由上式的求解过程可以看出,有时系数很大,给运算带来不便,根据§1中引理可知,将被除式减去除式的某个倍式,再做辗转相除法而不影响求))x (g )x (f (,的结果,由§1中引理1有: ))x (g ),x (f ())x (r ),x (g ())x (g ),x (g )x (b )x (f )x (a (==?+?.

解法三,对)x (f 与)x (g 作辗转相除:

65x 4x x )x (xg )x (2f 23-+-=-,

令 65x 4x x )x (r 2

31-+-=,则有 1514x 3x )x (2r )x (g 21+-=-,

令 1514x 3x )x (r 2

2+-=,则有 )3x ()3x (2182x )x (xr )x (3r 221-?+=-=-,

令 182x )x (r 23-=,则有

)3x (144214x )x (r 2

3)x (r 32--=+-=-

, 故 3x ))x (g ),x (f (-=. 很明显,解法三比解法一、二均简便,所以在解题的过程中应尽量利用最大公因式的性质定理使求解过程更简便.

3.矩阵的初等变换法

给出数域F 上)2n (n ≥个多项式,如何求其最大公因式?现给出n 个多项式的最大公因式的定义:

定义2:设)x (f ,),x (f ),x (f n 21 是数域F 上的n 个多项式,并且)x (d 是多项式),x (f 1)x (f 2, ...,)x (f n 的一个公因式,若是)x (d 能被)x (f ,),x (f ),x (f n 21 中的每一个公因式整除,那么)x (d 叫做)x (f ,),x (f ),x (f n 21 的一个最大公因式.规定用符号()x (f ,),x (f ),x (f n 21 )表示)x (f ,),x (f ),x (f n 21 在)(x F 中最高次项系数为1的最大公因式.

由上述定义及§1的结论得关于数域F 上n 个一元多项式最大公因式的性质:

(1):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有

))x (f ,),x (f ,),x (f ),x (f (n j i 1 =))x (f ,),x (f ,),x (f ,),x (f (n i j 1 ,n j i 1≤≤≤.

(2):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有

))x (f ,),x (f ,),x (f ())x (f ,),x (cf ,),x (f (n i 1n i 1 =,

且n j i 1≤≤≤,F c ∈≠0为常数. (3):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有

))x (f ,),x (f ,),x (f )x (f ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j j i 1n j i 1 ±=,

其中n j i 1≤≤≤.

性质(1)、(2)、(3)阐述了在求解多项式的最大公因式时的不变性,由这些不变性又可得到下面推论:

推论1:设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,则有

))x (f ,),x (f ,),x (cf )x (f ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j j i 1n j i 1 ±=,

其中n j i 1≤≤≤,F c 0∈≠为任意常数.

再给出一个引理:

引理2:设),,2,1)((n i x f i =是F 上的n 个一元多项式,d(x)= ()x (f ,),x (f ),x (f n 21 ),若

)x (f ,),x (f ),x (f n 21 中至少有一个常数项不为0,则它们的最大公因式)x (d 的常数项必不为0.

证明:

假设)x (d 的常数项等于0,则)x (d 能被x 整除,所以),,2,1)((n i x f i =的常数项均为0,与条件矛盾,证毕.

再由前3个性质及推论1得性质4:

(4):设)(,),(,),(,),(1x f x f x f x f n j i 是F(x)中的n 个一元多项式,并设)x (g x )x (f i k =,其中n i 1≤≤,k 为非负整数,)x (f j 为常数项不为0的一元多项式,其中n j 1≤≤,且j i ≠,则 ))x (f ,),x (f ,),x (g ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j i 1n j i 1 =.

证明:设))x (f ,),x (f ,),x (g ,),x (f (n j i 1 )x (d =,

显然 )x (d 是)x (f ,),x (f ,),x (f ,),x (f n j i 1 的一个公因式.

其次 设)x (h 是)x (f ,),x (f ,),x (f ,),x (f n j i 1 的任一公因式,则

)x (f |)x (h i ,)x (g x |)x (h i k ,

而 ()x (f 1…,)x (f i ,)x (f 1i +,…,)x (f j ,…,)(x f n )的常数项非零,则

)x (h 不含k x 这一因式,从而)x (g |)x (h i ,因而)x (h 是)x (f 1…,)x (g i ,…,)(x f n 的公因式,所以 )x (d |)x (h .

所以 ))x (f ,),x (f ,),x (g ,),x (f ())x (f ,),x (f ,),x (f ,),x (f (n j i 1n j i 1 =.

为了更方便的介绍n 个多项式最大公因式的求解,现将上述四条性质相应的称为:第一种,第二种,第三种,第四种初等变换,并用以下内容概括:

⑴交换两个多项式的位置,所求的最大公因式不会改变;

⑵用一非零常数乘以某一多项式,所求的最大公因式不会改变;

⑶把某一多项式的k 倍)0k (≠,加到另一个多项式上,所求的最大公因式不会改变;

⑷性质4我们暂称为替换变换,它也不改变其最大公因式(只有在某一多项式常数项不为0的条件下才成立).

现再给出n 行多项式矩阵的定义:

定义3:设),,2,1)((n i x f i =是F 上的n 个一元多项式,且这n 个多项式的最高次项的次数是m 次,现将每个多项式各项的系数(按逐次降幂次序排列,缺少次数的项的系数取0)排出来作为矩阵的一行,这样构造出来一个n 行m+1列矩阵,我们称这个矩阵为n 个多项式的n 行多项式矩阵,

n 个多项式)x (f ,),x (f ,x)(f n 21 所组成的n 行多项式矩阵记为????

? ??)x (f )x (f n 1 ,并规定该矩阵表示

()x (f ,),x (f ,x)(f n 21 )的最高次项系数为1的最大公因式.

下面将给出关于n 行多项式矩阵的一些结论:

定理7:设),,2,1)((n i x f i =是F 上的n 个一元多项式,对这n 个多项式(至少有一个常数项

不等于0)组成的多项式矩阵????

? ??)x (f )x (f n 1 ,作四种初等变换,所求的最大公因式不会改变;该定理可由

前面谈到的n 个多项式最大公因式的四条性质直接得到.

在前面的基础上,现给出定理8:

定理8:对于n 行多项式矩阵????

? ??)x (f )x (f n 1 ,一定可以通过四种初等变换,化成????? ??0 0)x (d 的形式,

其中)x (d 就是它的最大公因式.

定理8的证明过程参阅[3].

下面以实例阐述多项式最大公因式的矩阵求法.

例5.设84x 2x x )x (f 23+--=,44x x x )x (g 23+--=,求))x (g ),x (f (.

解:对矩阵???

? ??--=44-1-18421A 施行矩阵的初等变换得: ???? ??-→???? ??→???? ?

?---→40104-0104-01004-0140108421A ???? ??-→00004010. 故 4x )0,4x ())x (g ),x (f (22-=-=.

例6.设23x 5x 2x )x (f 23+++=,2x x 24x )x (g 23++=,343x 6x )x (h +=+x x 272

+ 2+,求它们的最大公因式.

解:对矩阵????

? ??=227360224023520A 施行初等变换得:

???????? ?

?→????? ??→????? ??→????? ??→????? ?

?→????? ??→00000000002121100000000000011200112001120011200033607714001112000216033

5200120001-2162352001120A

故 2

1x 21x )0,0,21x 21x ())x (h ),x (g ,f (x)(22++=++=. 参考文献:

[1]余元庆.方程论初步.上海:教育出版社,1979.

[2]张禾瑞,郝炳新.高等代数(第四版).北京:高等教育出版社,1997.

[3]郁金祥.多项式最大公因式求解方法的推广.嘉兴学院学报,2003,(3):27-29.

[4]汪军.关于多项式最大公因式的进一步探讨.工科数学,1999,(3):137-139.

[5]王向东.高等代数常用方法.科学出版社,1989.

[6]万哲先.代数导引.科学出版社,2004.

The proprties and methods about the greatest

common divisor of the polynomials

Wang Fei Directed by Prof .Dong Huiying

Abstract This paper summaries the important proprties about the greatest common divisor of the polynomials,among which is further researched for its serucfure ,and gives several methods of finding the greatest common divisors of the polynomials :factoring method;Euclidean algorithm;matrix method .

Key words common divisors greatest common divisors Euclidean algorithm elemetary transform

初中几何定理大全:初中数学几何121个定理总结

初中几何定理大全:初中数学几何121个定理总结1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行 8如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180° 18推论1直角三角形的两个锐角互余 19推论2三角形的一个外角等于和它不相邻的两个内角的和 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(SSS)有三边对应相等的两个三角形全等 26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离相同的点,在这个角的平分线上 29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论3等边三角形的各角都相等,并且每一个角都等于60°

单项式与多项式练习题

单项式与多项式练习题 一、填空题 1.“x 的平方与2的差”用代数式表示为 . 2.单项式8 53ab -的系数是 ___,次数是 ___;当5,2a b ==-时,这个代数式的是 . 3.多项式34232-+x x 是 次 项式,常数项是 . 4.单项式2 5x y 、2 2 3x y 、2 4xy -的和为 . 5.若 32115k x y +与387 3 x y -是同类项,则k = . 6.已知单项式32b a m 与-3 2 14-n b a 的和是单项式,那么m = ,n = . 8.已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是 千米/时. 9.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是 . 10.若53<

初三数学几何知识点归纳总结

初三数学几何知识点归纳总结 除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初三数学几何知识点归纳总结,希望对大家的学习有一定帮助。 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 初中几何公式:三角形

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

多项式最大公因式的求解

多项式最大公因式的求法 定理1 设)(x)(n ,f (x),(x),f f n 221≥ 是P[x]中n 个多项式.P[x]中多项式d(x)称为 )(x)(n ,f (x),(x),f f n 221≥ 的最大公因式,如果它满足下面的两个条件: (1)d(x)是(x),f (x),(x),f f n 21的公因式. (2)(x),f (x),(x),f f n 21的公因式全是d(x)的因式. 定理2 设)(),(),(x h x g x f 是][x P 中的多项式,P[x]中多项式d(x)是)(),(),(x h x g x f 的最大公因式,c 是任意的非零常数,则有))(),()()(())(),(()(x g x g x h x cf x g x f x d -==. 证明:当)(x f 、)(x g 有一个为零,例如0)(=x g ,那么结论显然成立. 当0)(≠x g 时,则有)()(x f x d ,)()(x g x d . 从而)()()()(x g x h x cf x d -,即)(x d 是)()()(x g x h x cf -与)(x g 的一个公因式,令 )()()()(x g x h x cf x c -,)()(x g x c .根据整除的性质,我们有)()(x f x c ,所以)()(x d x c . 所以))(),()()(())(),(()(x g x g x h x cf x g x f x d -== 方法1:用辗转相除法求最大公因式 引理 如果 )3(121≥n (x),f (x),(x),f f n- 的最大公因式存在,那么 ) 2(21≥n (x),f (x),(x),f f n 的 最 大 公 因 式 也 存 在 , 且 (x)) (x)),f ,f (x),(x),f ((f (x))(x),f ,f (x),(x),f (f n n-n n-121121 =. (1) 证明:由题意,假设(x),f (x),(x),f f n-121 的最大公因式为)(1x d ,那么(x)d 1与(x)f n 的最大公因式)(x d 也是存在的. (2) 又由(1)、(2)式,可知n)i (x), (d(x)|f i ≤≤1. 假设c(x)是)(x)(n ,f (x),(x),f f n 221≥ 的一个公因式,由(1)式可得(x)c(x)|d 1.这样c(x)就是(x)d 1与(x)f n 的一个公因式,再由(2)式可得c(x)|d(x). 所以(x)) (x),f ,f (x),(x),f (f d(x)n n-121 =. 定理3 设)2)((,),(),(21≥n x f x f x f n 是][x P 中的n 个多项式,则在P[x]中存在一个最大公因式d(x),且d(x)可以表示成(x),f (x),(x),f f n 21的一个组合,即有p[x]中多项式 (x),u (x),(x),u u n 21使(x)(x)f u (x)(x)f u (x)(x)f u d(x)n n +++= 2211. 由定理3对一般情况, 设1 1110110(),()n n n n n n n n f x a x a x a x a g x b x b x b x b ----=++ ++=++ ++,不妨设m n ≥

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

单项式多项式习题精选

精心整理 单项式 一.选择题(共12小题) 1.(2012?遵义)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示() A.2.02×102B.202×108C.2.02×109D.2.02×1010 2.(2010?德宏州)单项式7ab2c3的次数是() A.3B.5C.6D.7 3.(2004?杭州)下列算式是一次式的是() A.8B.4s+3t C.D. 4.下列各式:,,﹣25,中单项式的个数有()A.4个B.3个C.2个D.1个 5.下列关于单项式的说法中,正确的是() A.系数是3,次数是2 B. 系数是,次数是2 C. 系数是,次数是3 D. 系数是,次数是3 6.单项式﹣3πxy2z3的系数和次数分别是() A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7 7.下面的说法正确的是() A.﹣2是单项式B.﹣a表示负数C. 的系数是3 D. x++1是多项式 8.单项式﹣2πab2的系数和次数分别是() A.﹣2π、3 B.﹣2、2 C.﹣2、4 D.﹣2π9.下列代数式中属于单项式的是() A.8xy+5 B.C.D.π10.单项式﹣xy2z的() A.系数是0,次数是2 B.系数是﹣1,次数是2 C.系数是0,次数是4 D.系数是﹣1,次数是4 11.对单项式﹣ab3c,下列说法中正确的是()

A.系数是0,次数是3 B.系数是﹣1,次数是5 C.系数是﹣1,次数是4 D.系数是﹣1,次数是﹣5 12.在代数式:,m﹣3,﹣22,,2πb2中,单项式的个数为() A.1个B.2个C.3个D.4个 二.填空题(共8小题) 13.(2012?南通)单项式3x2y的系数为_________. 14.(2011?柳州)单项式3x2y3的系数是_________. 15.(2010?肇庆)观察下列单项式:a,﹣2a2,4a3,﹣8a4,16a5,…,按此规律第n 个单项式是 _________.(n是正整数). 16.(2010?毕节地区)写出含有字母x,y的四次单项式_________.(答案不唯一,只要写出一个) 17.(2009?青海)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为_________;第n个单项式为_________.18.(2005?漳州)单项式﹣x3y2的次数是_________. 19.(2004?内江)写出一个系数是2004,且只含x,y两个字母的三次单项式 _________. 20.(2002?青海)单项式的系数是_________;次数是_________.三.解答题(共6小题) m22 22.已知|a+1|+(b﹣2)2=0,那么单项式﹣x a+b y b﹣a的次数是多少? 23.附加题:观察下列单项式:x,﹣3x2,6x3,﹣10x4,15x5,﹣21x6…考虑他们的系数和次数.请写出第100个:_________. 24.有一串代数式:﹣x,2x2,﹣3x3,4x4,A,B,…,﹣19x19,20x20,…

初中数学几何定理汇总

几何是初中数学中重要的一部分内容,考试时一般会出现在大题里。学习几何,需要证明,这时定理就很重要! 点的定理: 1、过两点有且只有一条直线 2、两点之间线段最短 角的定理: 1、同角或等角的补角相等 2、同角或等角的余角相等 直线定理: 1、过一点有且只有一条直线和已知直线垂直 2、直线外一点与直线上各点连接的所有线段中,垂线段最短 平行定理:经过直线外一点,有且只有一条直线与这条直线平行 推论:如果两条直线都和第三条直线平行,这两条直线也互相平行 证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行 两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 定理:三角形两边的和大于第三边

推论:三角形两边的差小于第三边 三角形内角和定理:三角形三个内角的和等于180° 定理:全等三角形的对应边、对应角相等 边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等 角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 边边边定理(SSS):有三边对应相等的两个三角形全等 斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 定理1:在角的平分线上的点到这个角的两边的距离相等 定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角) 推论1: 等腰三角形顶角的平分线平分底边并且垂直于底边 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

多项式的最大公因式

多项式的最大公因式 问题: (一). 多项式的最大公因式的定义是什么? 设f(x)与g(x)是P[x]中两个多项式,P[x]中多项式d(x)称为f(x)与g(x)的最大公因式,如果满足下面两个条件: (1).d(x)是f(x)与g(x)的公因式; (2).f(x),g(x)的公因式全是d(x)的因式。 我们约定用( f(x),g(x))表示首项系数为1的那个最大公因式。 定理1:对于P[x]中任意两个多项式f(x),g(x),在P[x]中存在一个最大公因式d(x),且d(x)可以表示成f(x),g(x)的一个组合,即有P[x]中多项式u(x),v(x)使 d(x)=u(x)f(x)+v(x)g(x) 引理:设f(x),g(x),q(x),h(x)∈F(x),g(x)≠0,且 f(x)=g(x)q(x)+h(x) 则f(x)与g(x)与q(x)与h(x)有相同的公因式,因而有相同的最大公因式,且 ( f(x),g(x))=( g(x),h(x)) 定理2:F(x)的任意两个多项式f(x)与g(x)一定存在最大公因式。 (二).用来求最大公因式的方法 (1).辗转相除法: 如果f(x),g(x)∈P[x],g(x)≠0,且q q(q),q q(q)∈P[x],使 f(x)=q1(q)g(x)+q1(q) g(x)=q2(q)q1(q)+q2(q) q1(q)=q3(q)q2(q)+q3(q)

?? q q?2(q)=q q(q)q q?1(q)+q q(q) q q?1(q)=q q+1(q)q q(q)+0 其中?(q q(q))≥0,则q q(q)是f(x)与g(x)的一个最大公因式。 (2).串位加减法 (3).矩阵求法: A=(f(x) g(x) )一系列初等行变换 → ( d(x) ) d(x)=( f(x),g(x)) 例1.设f(x)=q4+3q3?q2?4x?3 g(x)=3q3+10q2+2x?3 求( f(x),g(x)) 解:法1辗转相除法。

单项式与多项式经典测试题

单项式与多项式测试题 一、选择题(每小题3分,共30分) 1、下列说法正确的是() A.x的指数是0 B.x的系数是0 C.-3是一次单项式 D.-2 3 ab的系数是- 2 3 2、代数式a2、-xyz、 2 4 ab 、-x、 b a 、0、a2+b2、-0.2中单项式的个数 是() A.4 B.5 C.6 D.7 3、下列语句正确的是() A.中一次项系数为-2B.是二次二项式C.是四次三项式D.是五次三项式4、下列结论正确的是()

A.整式是多项式 B.不是多项式就不是整式 C.多项式是整式 D.整式是等式 5、如果一个多项式的次数是4次,那么这个多项式的任何一项的次数() A.都小于4 B.都等于4 C.都不大于4 D.都不小于4 6、下列说法正确的是() A .3x 2―2x+5的项是3x 2,2x ,5 B .3 x -3y 与2x 2―2xy -5都是多项式 C .多项式-2x 2+4xy 的次数是3 D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 7、x 减去y 的平方的差,用代数式表示正确的是() A 、2)(y x - B 、22y x - C 、y x -2 D 、2y x - 8、某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。已知该楼梯长S 米, 同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是()米/分。

A 、2b a + B 、b a s + C 、b s a s + D 、b s a s s +2 9、若3b ma n 是关于a 、b 的五次单项式,且系数是3-,则=mn ()。 A10B-10C15D-15 10、25ab π-的系数是() A-5B π5-C3D4 二、填空题(每小题4分,共40分) 11、单项式23 -xy 2z 的系数是__________,次数是__________。 18、单项式2237 xy π-的系数是,次数是。 13、多项式:y y x xy x +-+3223534是次项式; 14、在代数式a ,12 mn -,5,xy a ,23x y -,7y 中单项式有 个。 15、写出一个系数为-1,含字母x 、y 的五次单项式 。 16、多项式x 3y 2-2xy 2- 43xy -9是___次___项式,其中最高次项的系数是,二次项是,常数项是.

多项式辗转相除法求最大公因式

#include #include #include struct chain // 定义一个多项式的结构体 { int n; // 该多项式的最高次数 double *an; // 存放多项式的系数 }; void creat_chain(struct chain *c) // 建立一个多项式 { int i,n; double ai; printf(" 请输入该多项式最高次数:"); scanf("%d",&n); (*c).n = n; (*c).an = (double *)calloc(n+1,sizeof(double)); // 给该多项式系数动态分配内存printf(" 按下列格式输入系数:(例如x^4 + 2x^3 - 7x^1 + 5 输入:1 2 0 -7 5)\n"); printf(" 等待输入:"); for(i=n;i>=0;i--) { scanf("%lf",&ai); (*c).an[i] = ai; } } void show(struct chain c) // 按照多项式的格式显示多项式 { int i=c.n; printf(" 多项式是:"); while(i>=0) { if((i!=c.n)&&(c.an[i]>=0)) printf(" + "); switch(i) { case 1:printf("%.2lfX",c.an[i]);break; case 0:printf("%.2lf",c.an[i]);break; default:Pri ntf("%.2lfX^%d",c.a n[i],i);break; } i--; } Printf("\n");

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

七年级数学单项式与多项式例题及练习

单项式与多项式例题及练习 例:试用尽可能多的方法对下列单项式进行分类:3a 3x ,bxy ,5x 2,-4b 2y ,a 3,-b 2x 2, 12axy 2 解:(1)按单项式的次数分:二次式有5x ;三次式有bxy ,-4b 2y ,a 3;四次式有3a 3x ,?-b 2x 2, 12axy 2。 (2)按字母x 的次数分:x 的零次式有-4b 2y ,a 3;x 的一次式有3a 3x ,bxy , 12axy 2;x 的二次式有5x 2,-b 2x 2。 (3)按系数的符号分:系数为正的有3a 3x ,bxy ,5x 2,a 3, 12axy 2;系数为负的有-4b 2y ,-b 2x 2。 (4)按含有字母的个数分:只含有一个字母的有5x 2,a 3;?含有两个字母的有3a 3x ,?-4b 2y ,-b 2x 2;含有三个字母 的有bxy ,12 axy 2。 评析:对单项式进行分类的关键在于选择一个恰当的分类角度。如按单项式的次数、按式中某个字母的次数、按系数的符号、按含有字母的个数等等。 1、把代数式222a b c 和32a b 的共同点填在下列横线上,例如:都是代数式。 ①都是 式;②都是 。 2、写出一个系数为-1,含字母x 、y 的五次单项式 。 3、如果52)2(4232+---+-x x q x x p 是关于x 的五次四项式,那么p+q= 。 4、若(4a -4)x 2y b+1是关于x ,y 的七次单项式,则方程ax -b=x -1的解为 。 5、下列说法中正确的是( ) A 、x -的次数为0 B 、x π-的系数为1- C 、-5是一次单项式 D 、b a 25-的次数是3次 6、若12--b y ax 是关于x ,y 的一个单项式,且系数是7 22,次数是5,则a 和b 的值是多少? 7、已知:12)2(+-m b a m 是关于a 、 b 的五次单项式,求下列代数式的值,并比较(1)、(2)两题结果:(1)122+-m m , (2)()21-m ●体验中考 1、(2008年湖北仙桃中考题改编)在代数式a ,12mn - ,5,xy a ,23x y -,7y 中单项式有 个。 2、(2009年江西南昌中考题改编)单项式23 -xy 2z 的系数是__________,次数是__________。 3、(2008年四川达州中考题改编)代数式2ab c -和222a y 的共同点是 。

初中数学几何知识点总结北师大版(供参考)

初中数学(几何)知识点总结 考点六、投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。 主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。 俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。 左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。 第九章三角形 考点一、三角形 1三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“?”表示,顶点是A、B、C的三角形记作“?ABC”,读作“三角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形) 三角形锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形) 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形。②当已知两边时,可确定第三边的范围。③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

最新单项式与多项式测试题

整式加减综合训练 1、2322431111,,,,,,0,5,372222 a a mn xy a x m n a y x ----+-+①②③④⑤⑥⑦⑧⑨ 代数式中是单项式的是________,是多项式的是________,是整式的是____________. 2、写出下列单项式的系数和次数 3a 的系数是______,次数是______; 32-5ab 的系数是______,次数是______; —23a bc 的系数是______,次数是______; 237x y π的系数是______,次数是______; 3、写出下列各个多项式的项几和次数 (1)1222--+-xz xy yz x 有___项,分别是:_____________________;次数是_____; (2)2143 x x -+-是 次 项式,它的项分别是 ,其中常数项是 ; 4、若28m x y -是一个六次单项式,则210m -+的值为_______. 5、若|2|3(5)k k x y --是关于,x y 的6次单项式,则k=___________________. 6、若-3x a -2b y 7与2x 8y 5a +b 是同类项,则a =__________,b =__________. 7、若523m x y +与3n x y 的和是单项式,则m n = . 8、多项式32(1)n m a a --++是关于a 的三次二项式,则m=_______,n=_________. 9、在()22 269a k ab b +-++中,不含ab 项,则k = 10、关于x 的多项式35222++-+-bx ax x x 的值与x 无关,则a=______,b=______. 11、若233m n ---的值为,则24-5m n -+的值为________ 12、当1x =-时,代数式6199920012003+--cx bx ax 的值为-2,当1x =时,这个代数式 的值为_____________ 13、一个两位数,它的十位数字为a ,个位数字为b ,若把它的十位数字与个位数字对调, 新数与原数的差为____________________. 14、下列说法中正确的是( ) A 、5不是单项式 B 、2y x +是单项式 C 、2x y 的系数是0 D 、32 x -是整式 15、如果3 21 22--n y x 是七次单项式,则n 的值为( )A 、4 B 、3 C 、2 D 、1 16、多项式122 +-x x 的各项分别是( ) A 、1,,22x x B 、1,,22x x - C 、1,,22--x x D 、1,,22---x x

初中数学几何定理大全

初中数学公理和定理 一、公理(不需证明) 1、两直线被第三条直线所截,如果同位角相等,那么这两条 直线平行; 2、两条平行线被第三条直线所截,同位角相等; 3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA) 5、三边对应相等的两个三角形全等; (SSS) 6、全等三角形的对应边相等,对应角相等. 7、线段公理:两点之间,线段最短。 8、直线公理:过两点有且只有一条直线。 9、平行公理:过直线外一点有且只有一条直线与已知直线 平行 10、垂直性质:经过直线外或直线上一点,有且只有一条 直线与已知直线垂直 以下对初中阶段所学的公理、定理进行分类: 一、直线与角 1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。 3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等 二、平行与垂直 5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6、经过已知直线外一点,有且只有一条直线与已知直线平行。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。 8、夹在两平行线间的平行线段相等 9、平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. (5)如果两条直线都和第三条直线平行,那么这两条直线也平行 10、平行线的性质: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转) 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等. 12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 15、轴对称的性质: (1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。 16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等 17、旋转对称: (1)图形中每一点都绕着旋转中心旋转了同样大小的角度(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等 18、中心对称: (1)具有旋转对称的所有性质: (2)中心对称图形上的每一对对应点所连成的线段都被对 称中心平分 四、三角形: (一)一般性质 19、三角形内角和定理:三角形的内角和等于180° 20、三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个内角的和; ②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360° 21、三边关系: (1)两边之和大于第三边; (2)两边之差小于第三边 22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 23、三角形的三边的垂直平分线交于一点(外心),这点 到三个顶点的距离(外接圆半径)相等。 24、三角形的三条角平分线交于一点(内心),这点到三 边的距离(内切圆半径)相等。 (二)特殊性质: 25、等腰三角形、等边三角形 (1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的 边也相等.(简写成“等角对等边”) (3)“三线合一”定理:等腰三角形的顶角平分线、底边 上的中线和底边上的高互相重合 (4)等边三角形的三个内角都相等,并且每一个内角都等 于60°. (5)三个角都相等的三角形是等边三角形。 (6)有一个角是60°的等腰三角形是等边三角形 26、直角三角形: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的 平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30°,那么它所 对的直角边等于斜边的一半. (6)三角形一边的中线等于这边的一半,这个三角形是直 角三角形。 五、四边形 27、多边形中的有关公理、定理: (1)四边形的内角和为360° (2)N边形的内角和:( n-2)×180°. (3)任意多边形的外角和都为360° 28、平行四边形的性质: (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。

线性代数重要公式、定理大全

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1) (1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1 (1) n n D D -=-;(1) 2 2 (1) n n D D -=- 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明 A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

相关主题
文本预览
相关文档 最新文档