当前位置:文档之家› siRNA技术诱导基因沉默在骨科疾病中的研究进展

siRNA技术诱导基因沉默在骨科疾病中的研究进展

siRNA技术诱导基因沉默在骨科疾病中的研究进展
siRNA技术诱导基因沉默在骨科疾病中的研究进展

siRNA技术诱导基因沉默在骨科疾病中的研究进展

【关键词】RNAi;siRNA;基因;骨科疾病

中图分类号:R738.1文献标识码:ADOI:

10.3969/j.issn.10031383.2016.02.023

自从1998年Fire等[1]证实Guo等[2]发现的正义RNA抑制同源基因表达的现象为RNA干扰(RNA interference,RNAi)以来,RNAi技术经历了一个迅速发展的过程。RNAi技术是利用双链RNA(doublestranded RNA,dsRNA)降解细胞内同源信使RNA(messenger RNA,mRNA),从而阻断特定基因表达,使细胞出现靶基因缺失的表型[3],具有高效、特异地沉默目的基因的特点[4],其种类包括:小干扰RNA(Small Interfering RNAs,siRNA)、微小RNA(Micro RNAs,miRNA)和短发夹RNA(Short Hairpin RNAs,shRNA)。目前,RNAi

技术已被视为分子医学领域的一个重大突破。基于RNAi技术的性质特点及作用,其已被广泛应用于肿瘤[5]、抗病毒[6]以及遗传性疾病[7]等研究中。尽管RNAi技术用于骨科疾病的研究尚处于初步阶段,但已经取得了一定的进步。笔者就近年来siRNA技术诱导基因沉默在相关骨科疾病(比如骨关节炎、骨肉瘤、骨质疏松症和股骨头缺血性坏死)应用方面的研究作一综述。

1siRNA 技术在骨关节炎中的应用

骨关节炎(Osteoarthritis,OA)是一种最常见的慢性骨关节疾病,可引起患者的关节活动受限。随着年龄的增长,OA的发病率会逐渐增加。然而,OA在发生和发展过程中所涉及的确切分子机制尚未阐明。研究表明[8,9],OA的病因是多因素的,包括遗传易感性、老化、肥胖、关节畸形或关节损伤等。针对严重OA的治疗,目前除了全关节置换手术外,尚未发现明显有效的干预措施来减缓OA的进展或延缓软骨的退化。随着基因工程技术的迅速发展,RNAi技术能靶向目的基因的表达。根据RNA干扰技术的独特性质,其已作为一种有效的工具,被广泛应用于OA的研究中。缺氧诱导因子2α(hypoxiainducible factor2α,Hif2α)是一种调节关节软骨代谢的因子,由EPAS1基因编码生成。最近的研究表明[10],在OA患者中,Hif2α呈现出显著的高表达状态,与Muraki等[11]研究结果相一致。这表明,Hif2α在OA的发生及发展中可能扮演重要的作用。Pi等[12]通过膝关节前交叉韧带切除术(ACLT)构建小鼠骨关节炎模型,单纯向关节腔内注射携带Hif2αsiRNA的靶向软骨细胞纳米颗粒发现,siRNA可下调包括Hif2α在内的多种代谢因子,并抑制降解酶的表达,阻碍关节软骨的退化。这与Jaffe[13]研究结果相吻合,从而初步表明Hif2α是诱导关节软骨退变的重要因子。ADAMTS5是蛋白多糖酶家族(ADAMTS)中的一员,与关节

软骨退变程度呈正相关[14]。在体内试验和体外试验的研究中发现[15],抑制ADAMTS5的表达能明显减轻蛋白多糖的降解、丢失,从而起到保护软骨?A作用。这说明ADAMTS5在OA的发病机制中可能发挥至关重要的作用。在鼠类骨关节炎模型的研究中发现[16],通过向膝关节腔内单纯注射慢病毒载体介导的沉默ADAMTS5基因的siRNA,可引起该基因表达下调,从而抑制关节软骨的退变。以上学者利用Hif2α和ADAMTS5对OA进行研究表明,这两种因子能影响OA发生的进程。但OA是否还存在其他重要基因需要进一步研究。因此,构建特异的siRNA抑制OA发生及发展相关细胞因子的表达,对OA的发生及发展有一定的抑制或延缓作用。

2siRNA技术在骨肉瘤中的应用

骨肉瘤(Osteosarcoma)是一种最常见的潜在广泛破坏性的原发性高度恶性骨肿瘤,其病因及相关发病机制尚未阐明。目前,骨肉瘤的治疗仅局限于手术及手术前后的化疗,虽然这种综合治疗方法在一定程度上能够改善骨肉瘤患者

的状况,但仍未取得令人满意的长远效果。骨肉瘤仍然是目前致残率和死亡率较高的恶性骨肿瘤之一[17]。最近的报道表明,一些关键基因及分子在骨肉瘤的发生发展及分化的过程中起重要的作用,主要包括:脱嘌呤/脱嘧啶核酸内切酶1(AP endonuclease class I,APE1)、分化抑制因子(Inhibitor of DNA differentiation,Id)、热休克蛋白75(Heat shock protein

75,HSP75)等。其中,作为恶性肿瘤之一的骨肉瘤,其发生与DNA修复相关酶的基因突变有密切关系,而APE1为DNA 修复相关酶的重要分子。因此,APE1可能与骨肉瘤的发生密切相关。APE1不仅能够修复DNA,而且还可以氧化还原DNA。基于APE1这种功能,其可能有望成为治疗骨肉瘤的潜在靶点。DAI等[18]在研究转染了AEP1siRNA 质粒的骨肉瘤细胞HOS中发现,13个miRNA发生显著改变。其中,7个miRNA 表达上调而其余6个miRNA表达下调。此外,该研究还发现,发生显著变化的13个miRNA及其靶基因参与骨肉瘤的发生发展,从而初步阐明AEP1siRNA可通过调节相关miRNA靶基因的表达来调控骨肉瘤的发生发展。Id因子又称DNA 结合抑制因子,是螺旋环螺旋转录调节因子家族中唯一具有抑制细胞分化、刺激细胞增殖的负性作用的因子。Id因子在多种肿瘤中的异常高表达已经得到研究者的广泛认可[19~21]。Id 因子在骨肉瘤的形成中呈现出高表达状态[22]。因此,可通过下调Id因子的表达来抑制骨肉瘤细胞的增值。有学者[23]应用特异性针对小鼠Id1 基因的小干扰RNA 重组腺病毒(AdsimId1)感染骨肉瘤细胞K7M2WT,进一步研究Id1 基因沉默后对骨肉瘤细胞增殖的影响,并通过RTPCR 及Western Blot 的方法检测,结果显示重组腺病毒AdsimId1

感染3 d 后K7M2WT 细胞Id1 基因mRNA 及蛋白水平的表达较非处理组明显降低,其增殖受到抑制。HSP75siRNA能

够显著降低骨肉瘤细胞HSP75蛋白的表达,明显抑制骨肉瘤细胞增殖和迁移[24],表明沉默HSP75能有效抑制人骨肉瘤

细胞的增殖和迁移。骨肉瘤的发生发展是多基因综合作用的结果,病理过程中既有抑癌基因又有促癌基因的作用。从骨肉瘤中发现更多抑癌基因并作为靶向治疗的靶点是目前骨

肉瘤基因治疗的首选方向。因此,利用RNA干扰技术靶向目的基因的表达有望成为骨肉瘤治疗的新途径。[3]田瑞敏,鄢佳程,王含彦,等.RNA干扰技术在肿瘤基因治疗中的研究现状[J].重庆医学,2013,42(7):811814.

[4]陈春林,叶剑.RNA干扰技术及其在眼科疾病中的应用[J].眼科新进展,2008,28(1):6064.

[5]Wu S,Wen F,Li Y,et al.PIK3CA and PIK3CB silencing by RNAi reverse MDR and inhibit tumorigenic properties in human colorectal carcinoma[J].Tumour Biol,2016.[Epub ahead of print]

[6]Wang H,Liu K,Fang BA,et al.Identification of acetyltransferase genes (HAT1 and KAT8)regulating HBV replication by RNAi screening[J].Cell Biosci,2015(5):66.

[7]Schmidt PJ,Racie T,Westerman M,et https://www.doczj.com/doc/a84109006.html,bination therapy with a Tmprss6 RNAitherapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of βthalassemia intermedia[J].Am J Hematol,2015,90(4):310313.

[8]Rai MF,Sandell LJ.Inflammatory mediators:tracing links between obesity and osteoarthritis[J].Crit Rev Eukaryot Gene Expr,2011,21(2):131142.

[9]Mobasheri A.Osteoarthritis year 2012 in review:biomarkers[J].Osteoarthritis Cartilage,2012,20(12):1451164.

[10]Yang S,Kim J,Ryu JH,et al.Hypoxiainducible factor2alpha is a catabolic regulator of osteoarthritic cartilage destruction[J].Nat Med,2010,16(6):687693.

[11]Muraki S,Oka H,Akune T,et al.Prevalence of radiographic knee osteoarthritis and its association with knee pain in the elderly of Japanese populationbased cohorts:the ROAD study[J].Osteoarthritis Cartilage,2009,17(9):11371143.

[12]Pi Y,Zhang X,Shao Z,et al.Intraarticular delivery of antiHif2αsiRNA by chondrocytehoming nanoparticles to prevent cartilage degeneration in arthritic mice[J].Gene Ther,2015,22(6):439448.

[13]Jaffe N.Osteosarcoma:review of the past,impact on the future.The American experience[J].Cancer Treat Res,2009(152):239262.

[14]董富强.ADAMTS4、ADAMTS5在骨关节炎患者关节滑膜中的表达及意义[D].石河子:石河子大学,2014.

[15]Xu B,Sun Y,Tang G,et al.Id1 expression in

androgendependent prostate cancer is negatively regulated by androgen through androgen receptor[J].Cancer Lett,2009,278(2):220229.

[16]McAllister SD,Murase R,Christian RT,et al.Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation,invasion,and metastasis[J].Breast Cancer Res Treat,2011,129(1):3747.

[17]Li J,Jia H,Xie L,et al.Correlation of inhibitor of differentiation 1 expression to tumor progression,poor differentiation and aggressive behaviors in cervical carcinoma[J].Gynecol Oncol,2009,114(1):8993.

[18]Dai N,Zhong ZY,Cun YP,et al.Alteration of the microRNA expression profile in human osteosarcoma cells transfected with APE1 siRNA[J].Neoplasma,2013,60(4):384394. [19]迭小红.siRNA沉默Id1基因对小鼠骨肉瘤细胞增殖、迁移及凋亡的影响[D].重庆:重庆医科大学,2014.

[20]陈健华,王欢.HSP75小干扰RNA对骨肉瘤细胞U2OS 增殖和迁移的影响[J].中国医科大学学报,2013,42(12):11451147.

[21]Saito T,Fukai A,Mabuchi A,et al.Transcriptional regulation of endochondral ossification by HIF2alpha during skeletal growth and osteoarthritis development[J].Nat Med,

2010,16(6):67886.

[22]仇超,康权,迭小红,等.Id1基因对人骨肉瘤细胞恶性逆转向成骨分化的影响[J].第三军医大学学报,2016,38(4):344349.

[23]Stanton H,Rogerson FM,East CJ,et al.ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in

vitro[J].Nature,2005,434(7033):648652.

[24]楚翔宇.慢病毒介导siRNAs沉默ADAMTS5基因治疗骨关节炎的实验研究[D].武汉:华中科技大学,2013.

[25]张智海,刘忠厚,李娜,等.中国人骨质疏松症诊断标准专家共识(第三稿?2014版)[J].中国骨质疏松杂志,2014,20(9):10071010.

[26]Li J,Sarosi I,Cattley RC,et al.Dkk1mediated inhibition of Wnt signaling in bone results in osteopenia[J].Bone,2006,39(4):754766.

[27]Heath DJ,Chantry AD,Buckle CH,et al.Inhibiting Dickkopf1 (Dkk1)removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma[J].J Bone Miner Res,2009,24(3):425336.

[28]刘媛,剧锦哲,张伟,等.DKK1siRNA真核表达载体的构建及其对骨质疏松大鼠治疗作用的研究[J].中国骨质疏

松杂志,2015,21(2):125131,151.

[29]张新昌.CKIP1敲除对抗微重力环境下小鼠骨质疏松机理研究[D].北京:中国人民解放军军事医学科学院,2015.

[30]Guo B,Zhang B,Zheng L,et al.Therapeutic RNA interference targeting CKIP1 with a cross-species sequence to stimulate bone formation[J].Bone,2014(59):7688.

[31]Jiang Y,Zhang Y,Zhang H,et al.Pravastatin prevents steroidinduced osteonecrosis in rats by suppressing PPARγexpression and activating Wnt signaling pathway[J].Exp Biol Med (Maywood),2014,239(3):347355.

[32]Jiang Y,Liu D,Kong X,et al.Huogu I formula prevents steroidinduced osteonecrosis in rats by downregulating PPARgamma expression and activating wnt/LRP5/ betacatenin signaling[J].J Tradit Chin Med,2014,34(3):342350.

[33]李劲峰.联合调控PPARγ及CGRP基因表达预防酒精性股骨头坏死的实验研究[D].郑州:郑州大学,2015.

(收稿日期:2016-03-08修回日期:2016-04-22)

(编辑:梁明佩)

宏基因组学的研究进展

宏基因组学的研究状况及其发展 摘要:宏基因组学是近年来发展起来的一门新兴学科,主要技术包括从环境样品中提取微生物混合基因组DNA、利用可培养的宿主菌建立宏基因组文库及筛 选目的基因。该技术可以克服传统培养技术的不足,是研究未培养微生物、寻找新功能基因和开发获得新资源的重要新途径。目前宏基因组学已广泛应用于各个领域,并在医药、农业、能源开发、环境修复、生物技术、生物防御等方面有了较深入的研究。 关键词:宏基因组学、宏基因组、基因组文库构建、文库筛选、未培养微生物、研究进展 随着微生物学的发展,微生物基因组全序列测定计划正在全球被快速地推行,但现有技术条件下,自然界存在的可培养微生物不到总数的1%,阻碍了该计划 的发展,使得绝大多数的微生物资源不能被开发和利用。21世纪初,随着测序能力的提高和基因组学的发展,科学家提出了一种研究不可培养微生物基因组的新思路——直接对含有各种不可培养的微生物的群体进行基因组序列的测定。这类研究称为Metagenomics,前缀“Meta”源于希腊语。意思是“超越”。科学家选择它来表示这种基因组研究超越了传统意义上分析单一物种的基因组学,将研究对象定为由种类众多的微生物组成的整个菌落。国内的研究者也据此将该术语翻译为“宏基因组学”。 1 宏基因组的概念 宏基因组 (也称微生物环境基因组、宏基因组学、元基因组学、生态基因组学) 是由Handelsman等1998年提出的新名词, 其定义为“the genomes of the total microbiota found in nature”,即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因, 目前主要指环境样品中的细菌 和真菌的基因组总和。而所谓宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象, 以功能基因筛选和测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 克隆DNA到合适 的载体,导入宿主菌体,筛选目的转化子等工作。宏基因组文库既包含了可培养的又包含了不能培养的微生物基因,避开了微生物分离培养的问题,极大地扩展了微生物资源的利用空间,增加了获得新的生物活性物质的机会,为新的医药产业和发现新的生物技术提供丰富的基因文库,并利于环境微生物有机群体的分布和功能的研究。 2 宏基因组学的研究过程 2.1 宏基因组文库的构建 宏基因组文库的构建沿用了分子克隆的基本原理和技术方法,并根据具体环境样品的特点和建库目的采用了一些特殊的步骤和策略。一般包括样品总DNA的 提取、与载体连接和克隆到宿主中。 2.1.1样品总DNA的提取 宏基因组文库构建的关键之一是获得高质量的目的样品的总DNA。目的样品 的采集是第一步,除了需严格遵循取样规则外,取样中应尽量避免对样品的干扰,缩短保存和运输的时间,使样品能更好地代表自然状态下的微生物原貌。 根据提取样品总DNA前是否分离细胞,提取方法可以分为原位裂解法和异位 裂解法。原位裂解法主要是通过去污剂处理(如SDS)、酶解法(如蛋白酶K)、机械

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

基因沉默与RNAi技术

基因沉默与RNAi技术 定义:基因沉默双是指链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA 与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。 RNA干扰是指在进化过程中高度保守的、由双链RNA诱发的、同源mRNA高效特异性降解的现象。由双链引发的植物RNA沉默,主要有转录水平的基因沉默(TGS)和转录后水平的基因沉默(PTGS)两类:TGS是指由于DNA修饰或染色体异染色质化等原因使基因不能正常转录;PTGS是启动了细胞质靶mRNA序列特异性的降解机制。有时转基因会同时导致TGS和PTGS。 基因沉默是一种RNA干扰技术。 RNA干扰是由双链RNA 引发的转录后基因静默机制。其原理是:RNaseIII核酶家族的Dicer,与双链RNA结合,将其剪切成21 - 25nt及3'端突出的小干扰RNA (small interfering RNA ,siRNA),随后siRNA与RNA诱导沉默复合物(RNA - induced silencing complex ,RISC结合,解旋成单链,活化的RISC受已成单链的siRNA引导,序列特异性地结合在靶mRNA上并将其切断,引发靶mRNA的特异性分解,从而阻断相应基因表达的转录后基因沉默机制. 一、基因沉默的分类及其机制 (一)转录水平基因沉默 转录水平基因沉默是指对基因专一的细胞核 RNA合成的失活, 它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种: 1.基因及其启动子甲基化 甲基化是活体细胞中最常见的一种DNA共价修饰形式,通常发生在DNA的CG序列的碱基上,该区碱基甲基化往往导致转录受抑制,该区甲基化的频率 在人类及高等植物中分别可达4%和36%。[4] 近来的研究表明,发生在转基因启动子5'端的甲基化是造成转录水平基因沉默的主要原因。虽然转基因的甲基化可延伸至转基因的3'端,但甲基化过程均是从启动子区域开始的。从所报道的转基因沉默例子来看,几乎所有的转基因沉默现象与转基因及其启动子的甲基化有关。 2.同源基因间的反式失活 反式失活主要是由于拥有同源序列的沉默位点和其他位点的DNA的相互作用而引起的基因沉默。通过顺式作用而甲基化并失活的基因能作为一种"沉默子",对其他与之分离的具有同源性的靶基因施加一种反式作用,使具有同源序列的靶基因发生甲基化并导致失活。反式失活的靶基因既可以与沉默基因是等位基因,也可以是非等位基因。 3.后成修饰作用导致的基因沉默 后成修饰作用是指转基因的序列和碱基组成不发生改变,但是其功能却在个体发育的某一阶段受到细胞因子的修饰作用后而关闭。这种修饰作用所造成的转基因沉默是可以随着修饰作用的解除而被消除。后成修饰作用导致的转基因沉默与受体植物的核型构成有关。 4.重复序列 外源基因如果以多拷贝形式整合到同一位点上,形成首尾相连的正向重复或头对头、尾对尾的反向重复,则不能表达,而且拷贝数越多,基因沉默现象越严重。这种重复序列诱导的基

基因沉默研究进展

基因沉默研究进展 摘要:基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达或者表达减少的现象。基因沉默是基因表达调控的一种重要方式 ,是生物体在基因调控水平上的一种自我保护机制 ,在外源 DNA 侵入、病毒侵染和DNA 转座、重排中有普遍性。对基因沉默进行深入研究 ,可帮助人们进一步揭示生物体基因遗传表达调控的本质 ,在基因工程中克服基因沉默现象 ,从而使外源基因能更好的按照人们的需要进行有效表达;利用基因沉默在基因治疗中有效抑制有害基因的表达 ,达到治疗疾病的目的 ,所以研究基因沉默具有极其重要的理论和实践意义[1]。 关键词:基因沉默,转录水平基因沉默,转录后水平基因沉默,病毒介导的基因沉默. 基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。一方面,基因沉默是遗传修饰生物(genetically modified organisms )实用化和商品化的巨大障碍 ,另一方面 ,基因沉默是植物抗病毒的一个本能反应 ,为用抗病毒基因植物工程育种提供了具有较大潜在实用价值的策略—RNA介导的病毒抗性(RNA-mediated virus resistance ,RMVR)[2~4]。 基因沉默现象首先在转基因植物中发现,接着在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现。基因沉默主要发生在两种情况,一种是转录水平上的基因沉默(transcriptional gene silencing, TGS) ,另一种是转录后基因沉默(post- transcriptional gene silencing, PTGS)。RNA干扰(RNA interference, RNAi)是近几年发展起来的转录后基因阻断技术,RNAi在2002年被Science评为全球十大科技突破之一,作为一种在细胞水平的基因敲除工具,RNAi 正在功能基因组学领域掀起一场革命[5]。 一、基因沉默的分类及其机制 (一)、转录水平基因沉默 转录水平基因沉默是指对基因专一的细胞核RNA合成的失活,它的发生主要是由于基因无法被顺利转录成相应的RNA而导致基因沉默。转录水平基因沉默可以通过有性世代传递,表现为减数分裂的可遗传性。引起转录水平基因沉默的机制主要有以下几种:1.基因及其启动子甲基化。2. 同源基因间的反式失活。 3. 后成修饰作用导致的基因沉默。 4. 重复序列。 5. 位置效应。 (二)、转录后水平基因沉默 转录后水平基因沉默是指基因在细胞核内能稳定转录,但在细胞质里却无相应稳定态mRNA存在的现象。与转录水平基因沉默不同,转录后水平基因沉默具有逆转性,即受抑制基因通过减数分裂可以恢复表达活性,表现为减数分裂不可遗传性。目前发现主要有以下几种转录后水平基因沉默现象。1. 共抑制。2. 基因压制。3. RNA干扰。 二、植物基因沉默研究进展 基因沉默是普遍存在于植物界的一种防御反应.近年来,转录后水平上的基因沉默(PTGS)在植物中特别是在转基因植物中得到了广泛的研究.PTGS是植物的一种自然防御机制,是指基因能正常地转录,但所转录的mRNA在细胞质内积累量很低或根本检测不到.这是由于细胞核内转录mRNA进入细胞质后,与具

基因沉默

基因沉默 摘要随着基因技术的迅速发展和广泛应用,在转基因技术实践中首先暴露出来的外源基因不能按照预期设想进行表达的问题越来越显得普遍,而人们对基因沉默现象的不断深入研究和探索,不仅揭示出了基因沉默的发生机制,也在一定程度上推动了新技术的产生和应用,这不仅推动了基因研究领域的发展,更在遗传群体构建、疾病治疗等方面建立了新方法、新体系,为生物学技术的发展做出了贡献。 关键字基因沉默分类机理应用 1.引言 基因沉默(Gene Silencing),又称为基因沉寂,是真核生物细胞基因表达调节过程中的一种特殊生理现象,是指细胞基因在表达过程中受到各种因素的综合作用而导致基因部分区段发生“沉寂”现象,从而失去转录活性并不予表达或表达减少。该现象最先于1986年Peerbolte在转基因植物研究中所发现,随后科学家在线虫、真菌、水螅、果蝇以及哺乳动物中陆续发现了基因沉默现象的存在。 转基因沉默是基因沉默现象最为频发和常见的,这也是转基因为何在受体难以百分之百全部表达的因素之一,其基本特征是导入并整合到受体基因组的外源基因在当代或后代中表达活性受到抑制。研究发现,其主要原因是由于转基因之间或转基因与内源基因之间存在着序列同源性,因此转基因沉默又被称为同源性依赖的基因沉默(homology-dependent gene silencing)。 根据沃森-克里克的核酸碱基互补配对模型,基因沉默可能涉及到DNA-DNA、DNA-RNA以及RNA-RNA三种不同形式的核酸分子之间的互作,简单地说就是插入的外源DNA或自身基因区段在核内高浓度的RNA作用下,能够与内源反向DNA 或者RNA进行碱基互补配对,并且在核内被重新甲基化,进而导致基因沉默;而另一种可能则是内源基因与转基因转录生成的RNA之间互补配对生成可被RNases酶性降解的双链RNA(dsRNA),其水解直接导致基因的不表达,即基因沉默效果。从染色体水平上看,基因沉默现象的实质是形成异染色质(Heterochromation)的过程,检查发现被沉寂的基因区段往往呈现出高浓缩状态,显然,这在一定程度上也决定了被沉寂基因的难表达性。实验早已证明,在高度浓缩的基因区段,正常的DNA转录活动是难以进行并维持的,换言之,即一旦形成异染色质进入高度浓缩状态,那么相应区段的基因片段就必然因为不能被

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

基因沉默

《细胞》:不依赖于RNAi的基因沉默机制被发现 来自瑞士日内瓦大学细胞生物学系的研究人员发现了一种不依赖于RNAi(RNA干扰)的基因沉默机制,这为进一步揭示生物体中基因沉默的多样化,以及功能作用提供了重要信息。这一研究成果公布在最新一期的《细胞》(Cell)杂志上。 RNA沉默存在两种既有联系又有区别的途径:siRNA(small interference RNA)途径和miRNA(microRNA)途径。siRNA途径是由dsRNA(double-stranded RNA)引发的,dsRNA被一种RNaseⅢ家族的内切核酸酶(RNA- induced silencing complex,Dicer)切割成21-26nt长的siRNA,通过siRNA指导形成RISC蛋白复合物(RNA-induced silencing complex)降解与siRNA序列互补的mRNA而引发RNA沉默。而miRNA途径中miRNA是含量丰富的不编码小RNA(21-24个核苷酸),由Dicer酶切割内源性表达的短发夹结构RNA(hairpin RNA,hpRNA)形成。miRNA同样可以与蛋白因子形成RISC蛋白复合物,可以结合并切割特异的mRNA而引发RNA沉默。尽管引发沉默的来源不同,但siRNA 和miRNA都参与构成结构相似的RISC,在作用方式上二者有很大的相似性。 在最近的一项研究中,来自加州大学河畔分校的研究人员发现了一种新的小RNAs分子,而这些小RNAs与近期的研究热点PIWI-interacting RNAs (piRNAs)和repeat-associated siRNAs (rasiRNAs)也不相同,这说明了小RNA家族和小RNA介导的基因调控远比之前预想的复杂。同样在这篇文章中,研究人员也发现基因沉默机制包含有多种途径,他们最新发现酿酒酵母中,反义RNA稳定(Antisense RNA Stabilization)能通过组蛋白去乙酰化引起转录基因沉默。在之前的研究中,酿酒酵母全基因组研究分析揭示出其转录本中包含了大量的反义RNA(antisense RNAs),以及由外切酶体元件(exosome component)Rrp6调控的基因间转录(intergenic transcripts)。通过进一步研究,瑞士的研究人员发现当缺失了Rrp6的功能后,两个PHO84反义转录就会变得稳定,并且抑制了PHO84基因的转录。有趣的是,研究人员在野生型中也发现了同样的现象:在时间性老化(chronological aging)的过程中Rrp6功能缺失也能稳定PHO84反义转录。上位性和染色质免疫共沉(Epistasis and chromatin immunoprecipitation)实验结果说明Rrp6功能的缺失与PHO84基因以及邻近基因的Hda1组蛋白去乙酰化的补充有关,但是组蛋白的去乙酰化受限于PHO84基因,这又说明Hda1活性依赖于反义RNA。因此敲除反义产物,即使是在缺失Rrp6的条件下也会阻碍PHO84基因抑制。这些数据表明反义转录的稳定通过不同于转录干扰的一种机制导致了PHO84基因抑制,而Rrp6功能调节则通过RNA依赖性表观遗传修饰调控基因。 基因沉寂 基因沉寂(Gene Silencing) 也可以被称为“基因沉默”。基因沉寂是真核生物细胞基因表达调节的一种重要手段。在染色体水平,基因沉寂实际上是形成异染色质(Heterochromatin)的过程,被沉寂的基因区段呈高浓缩状态。 定义RNAi与转录后基因沉默(post-transcriptional gene silencing and transgene silencing)在分子层次上被证实是同一种现象。 原理基因沉寂需要经历不同的反应过程才能实现,包括组蛋白N端结构域的赖氨酸残基的去乙酰基化加工、甲基化修饰(由甲基转移酶催化,修饰可以是一价、二价和三价甲基化修饰,后者又被称为'过度’甲基化修饰(Hypermethylation) ) 、以及和甲基化修饰的组蛋白结合的蛋白质(MBP)形成“异染色质”,在上述过程中,除了部分组蛋白的N端尾部结构域需要去乙酰化、甲基化修饰之外,有时也许要在其他的组蛋白N端尾部结构域的赖氨酸或精氨酸残基上相应地进行乙酰化修饰,尽管各种修饰的最终结果会导致相应区段的基因“沉寂”失去转录活性。 作用这个“原则”就是目前尚没有真正完全清楚的“组蛋白密码”(Histone Code)。能够

宏基因组学研究方法及应用概述

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165) 摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。 关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。这种状况不利于全面认识微生物在自然界所扮演的重要角色。为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。 1 宏基因组学的研究方法 宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。 1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。DNA的提取是宏基因文库构建的关键步骤。提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。 对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。 2 宏基因组学的应用 2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得

课程论文 转基因作物的研究进展

生物与环境工程学院课程论文 转基因作物的研究进展 学生姓名: 学号: 专业/班级: 课程名称:生物工程原理 指导教师:教授 生物与环境工程学院 2011年5月

转基因作物的研究进展 摘要:人们将所需要的外源基因(如高产、抗病虫害优质基因) 定向导入作物细胞中, 使其在新的作物中稳定遗传和表现,产生转基因作物新品种, 是大幅度提高作物产量的一项新技术。本文先描述了转基因作物的发展进程,对其基因问题的研究作了讨论,并列出转基因作物目前存在的主要问题并作分析,最后对此项技术作出展望。 关键词:转基因作物;DNA技术;基因导入;安全性 前言 转基因植物(transgenic plant),是指基因工程中运用DNA 技术将外源基因整合于受体植物基因组、改变其遗传组成后产生的植物及其后代。转基因植物的研究主要在于改进植物的品质,改变生长周期等提高其经济价值或实用价值。[ 1 ]其主要范围是在作物方面,如可食用的大豆、玉米等,或者可投入生产的棉花等作物。 从表面上看来,转基因作物同普通植物似乎没有任何区别,它只是多了能使它产生额外特性的基因。从1983年以来,生物学家已经知道怎样将外来基因移植到某种植物的脱氧核糖核酸中去,以便使它具有某种新的特性:抗除莠剂的特性,抗植物病毒的特性,抗某种害虫的特性。[ 2 ]这个基因可以来自于任何一种生命体:细菌、病毒、昆虫等。这样,通过生物工程技术,人们可以给某种作物注入一种靠杂交方式根本无法获得的特性,这是人类9000年作物栽培史上的一场空前革命。[ 3 ] 1 转基因作物的发展进程 转基因作物的研究最早始于20世纪80年代初期。1983年,全球第一例转基因烟草在美国问世。1986年,首批转基因抗虫和抗除草剂棉花进入田间试验。1996年,美国最早开始商业化生产和销售转基因作物(包括大豆、玉米、油菜、

宏基因组学概述

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics Wang Ying, Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,) Key words: Metagenome; Metagenomics; The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA (也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"met a-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和Lior Pachter 将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生 物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法 宏基因组学的研究过程一般包括样品和基因(组)的富集;提取特定环境中的基因组 DNA;构建宏基因组 DNA 文库;筛选目的基因;目的基因活性产物表达(图 1)五个步骤。

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

siRNA技术诱导基因沉默在骨科疾病中的研究进展

siRNA技术诱导基因沉默在骨科疾病中的研究进展 【关键词】RNAi;siRNA;基因;骨科疾病 中图分类号:R738.1文献标识码:ADOI: 10.3969/j.issn.10031383.2016.02.023 自从1998年Fire等[1]证实Guo等[2]发现的正义RNA抑制同源基因表达的现象为RNA干扰(RNA interference,RNAi)以来,RNAi技术经历了一个迅速发展的过程。RNAi技术是利用双链RNA(doublestranded RNA,dsRNA)降解细胞内同源信使RNA(messenger RNA,mRNA),从而阻断特定基因表达,使细胞出现靶基因缺失的表型[3],具有高效、特异地沉默目的基因的特点[4],其种类包括:小干扰RNA(Small Interfering RNAs,siRNA)、微小RNA(Micro RNAs,miRNA)和短发夹RNA(Short Hairpin RNAs,shRNA)。目前,RNAi 技术已被视为分子医学领域的一个重大突破。基于RNAi技术的性质特点及作用,其已被广泛应用于肿瘤[5]、抗病毒[6]以及遗传性疾病[7]等研究中。尽管RNAi技术用于骨科疾病的研究尚处于初步阶段,但已经取得了一定的进步。笔者就近年来siRNA技术诱导基因沉默在相关骨科疾病(比如骨关节炎、骨肉瘤、骨质疏松症和股骨头缺血性坏死)应用方面的研究作一综述。

1siRNA 技术在骨关节炎中的应用 骨关节炎(Osteoarthritis,OA)是一种最常见的慢性骨关节疾病,可引起患者的关节活动受限。随着年龄的增长,OA的发病率会逐渐增加。然而,OA在发生和发展过程中所涉及的确切分子机制尚未阐明。研究表明[8,9],OA的病因是多因素的,包括遗传易感性、老化、肥胖、关节畸形或关节损伤等。针对严重OA的治疗,目前除了全关节置换手术外,尚未发现明显有效的干预措施来减缓OA的进展或延缓软骨的退化。随着基因工程技术的迅速发展,RNAi技术能靶向目的基因的表达。根据RNA干扰技术的独特性质,其已作为一种有效的工具,被广泛应用于OA的研究中。缺氧诱导因子2α(hypoxiainducible factor2α,Hif2α)是一种调节关节软骨代谢的因子,由EPAS1基因编码生成。最近的研究表明[10],在OA患者中,Hif2α呈现出显著的高表达状态,与Muraki等[11]研究结果相一致。这表明,Hif2α在OA的发生及发展中可能扮演重要的作用。Pi等[12]通过膝关节前交叉韧带切除术(ACLT)构建小鼠骨关节炎模型,单纯向关节腔内注射携带Hif2αsiRNA的靶向软骨细胞纳米颗粒发现,siRNA可下调包括Hif2α在内的多种代谢因子,并抑制降解酶的表达,阻碍关节软骨的退化。这与Jaffe[13]研究结果相吻合,从而初步表明Hif2α是诱导关节软骨退变的重要因子。ADAMTS5是蛋白多糖酶家族(ADAMTS)中的一员,与关节

基因表达技术

基因表达技术 https://www.doczj.com/doc/a84109006.html, 2007年5月16日09:43 生物技术世界 目前,基因表达已经成为生物学、医学和药物开发研究中的主流技术。基因表达就是基因转录及翻译的过程。广义来说,基因表达有两类:分析型和功能型。前者是指检测和定量基因,尤其是在比较两个样本时,如处理/非处理,疾病/正常。功能型的基因表达,目的是获得一定数量的蛋白质。Invitrogen公司的JudyMacemon称,在她的顾客中,对研究基因功能的基因表达/敲除感兴趣的人是采用基因表达制造蛋白质的人的两倍。 cDNA过度表达优势大 经典的基因表达操作常对病变细胞或组织、以及用药治疗之后的情况进行比较。为了验证某种化合物对基因的效果,研究人员用siRNA或反义化合物返回去做敲除试验。这些技术可以让基因或者基因组表现出特殊的沉默现象。OpenBioSystems公司的PaulTodd博士指出,虽然基因敲除很流行,但它不是证实基因性能的唯一方法。 Todd博士把cDNA过度表达称之为基因敲除的“合理逆转”。siRNA是让基因沉默,以确定基因下游的效应,而cDNA 引入许多目标基因的复制样本,引起基因及其下游产物都超表达。很多时候,从cDNA获得的信息要比siRNA的信息要更好,Todd认为这与设计无关。 采用siRNA方法,研究人员必须确定短寡聚核苷酸序列,该方法可以最佳方式敲除目标基因。并非所有的寡聚物都能发挥效用,因此,就无法做到把所有基因的反应都准确预测出来。通常要敲除20~80%的序列,采用cDNA会出现过表达现象,这样就可以提供足够的目标基因用于插入。Todd认为,cDNA可以确保产生更多的信使RNA,也就会产生更多的蛋白质或下游产物。 cDNA优于siRNA的主要优势在于前者具有更广泛的潜在应用范围,可以用股票的短期销售或者是长期交易进行比喻。短期销售只可能赚到原来的股票价格,然而,长期购买,股票可能会翻两倍或者是三倍。siRNA试验的信号只限制于基因原始状态的性能,因为可能从最高水平降低为零。cDNA能正调节一个基因的性能,而且,把目标基因与绿色荧光蛋白相融合,可以直接观察到在活细胞中产生的蛋白质及其分布位置。 基因表达在药物发现上有许多应用。在最近纽约科学院的一次会议上,Avalon制药公司副总裁PaulYoung向大家

相关主题
文本预览
相关文档 最新文档