当前位置:文档之家› 江苏大学,大学物理13--15练习答案

江苏大学,大学物理13--15练习答案

江苏大学,大学物理13--15练习答案
江苏大学,大学物理13--15练习答案

O

A

2

练习 十三

(简谐振动、旋转矢量、简谐振动的合成)

一、选择题

1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C )

(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。

解:(C) 竖直弹簧振子:kx mg l x k dt x d m -=++-=)(22(mg kl =),0222=+x dt x

d ω

弹簧置于光滑斜面上:kx mg l x k dt x d m -=++-=αsin )(22 (mg kl =),0222=+x dt

x

d ω

2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前

2π; (B )A 落后2π

;(C )A 超前π; (D )A 落后π。

解:(A)t A x A ωcos =,)2/cos(πω-=t A x B

3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最

大位移这段路程所需要的最短时间为: (B ) (A )

4T ; (B )12T ; (C )6T ; (D )8

T

解:(B)振幅矢量转过的角度6/πφ=?,所需时间12

/26/T T t ==?=ππωφ,

4. 分振动表式分别为)π25.0π50cos(31+=t x 和)π75.0π50cos(42+=t x (SI 制)则它们的合振动表达式为: (C )

(A ))π25.0π50cos(2+=t x ; (B ))π50cos(5t x =;

(C )π1

5cos(50πarctan )27

x t =+

+; (D )7=x 。 解:(C)作旋转矢量图或根据下面公式计算

)cos(210202122

2

1

φφ-++=A A A A A 5)25.075.0cos(432432

2

=-??++=ππ

7

1

2)75.0cos(4)25.0cos(3)75.0sin(4)

25.0sin(3cos cos sin sin 112021012021011

0---+=++=++=tg tg A A A A tg πππππφφφφφ

5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且212l l ?=?,则两弹簧振子的周期之比21:T T 为 (B )

(A )2; (B )2; (C )2/1; (D )2/1。 解:(B) 弹簧振子的周期k m

T π

2=,11l m g k ?=, 22l m g k ?=,2212

1=??=l l T T 6. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为

x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (B )

(A) 2

max

2max /x m k v =; (B) x mg k /=; (C) 2

2/4T m k π=; (D) x ma k /=。 解:B

7. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质

点的振动表式为 (B ) (A) )π21cos(2++=αωt A x ; (B) )π21

cos(2-+=αωt A x ; (C) )π2

3

cos(2-+=αωt A x ; (D) )cos(2π++=αωt A x 。解:(B)作旋转矢量图

A

8. 一质点沿x 轴作简谐振动,振动表式为 )3

1

2cos(1042π+π?=-t x (SI 制)。从t = 0时刻起,到质点位

置在x = -2cm 处,且向x 轴正方向运动的最短时间间隔为

(C )

(A )18s ; (B

)16s ; (C )12s ; (D )14s 。

解:(C)作旋转矢量图s t

2/12//min ==?=ππωφ 二、填空题 1. 一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =______;ω =______;φ

0=______。 解:由图可知m cm A 1.010

==,s T 12=,16//2-==s T ππω,

作旋转矢量得3/0πφ=

2.单摆悬线长l ,在悬点的铅直下方2/l 处有一小钉,如图所示。则单摆的左右两方振动

周期之比21:T T 为 。解:单摆周期g l T π2=,2

2

=

=右左右左l l T T 3.一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点。已知周期为T ,振幅为A 。

(1)若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为 x =________。

(2)若t = 0时质点处于A x 2

1

=

处且向x 轴负方向运动,则振动方程为x =_____。 解:作旋转矢量图,由图可知(1))22cos(ππ-=t T A x ;(2))3

2cos(π

π+=t T A x

4.有两个相同的弹簧,其劲度系数均为k ,(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 ;(2)把它们并联起来,下面挂一质量为m 的重物,此系统作简谐振动的周期为 。

解:两个相同弹簧串联, 劲度系数为

2k

,k

m T 22π=;两个相同弹簧并联,劲度系数为k 2,k m T 22π=. 5.质量为m 的物体和一轻质弹簧组成弹簧振子,其固有振动周期为T ,当它作振幅为A 的自由简谐振动

时,其振动能量E = 。解:弹簧振子振动周期k

m T π2=,224T

m k π=,振动能量22

22

221A T m kA E π== 6.若两个同方向、不同频率的谐振动的表达式分别为t A x π10cos 1=和t A x π12cos 2=,则它们的合振动频率为 ,拍频为 。

解:πνω2=,51=ν, 62=ν,合振动频率Hz 2

11212=+=ννν,拍频Hz 112=-=?ννν

7.两个同方向的简谐振动曲线如图所示。合振动的振幅为________________,合振动的振动方程为___________________。

解:作旋转矢量图12A A -; ???

??+-=22cos )(12ππt T

A A x

三、计算题

1.质量m = 10 g 的小球按如下规律沿x 轴作简谐振动:

)3

2

8cos(1.0π+

π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值以及振动的能量。 解:圆频率)/1(8s πω=,周期)(4/1/2s T ==ωπ,振幅m A 1.0=,初相3/20πφ= 振动速度最大值)/(5.28.081.0max s m A v ==?==ππω,

加速度最大值)/(634.6)8(1.02

2

2

2

max s m A a ==?==ππω

振动的能量J mv kA E 222max 210125.35.201.02

1

2121-?=??===

2*. 边长为l 的一立方体木块浮于静水中,其浸入水中部分的深度为0h ,今用手指沿竖直方向将其慢慢压下,使其浸入水中部分的深度为h ,然后放手任其运动。若不计水对木块的粘滞阻力,试证明木块作简谐运

)(t A

4πO

)

0(A O

)

0(1A

动,并求振动的周期T 和振幅A 。(水和木块的密度分别为12ρρ和)

解:木块平衡时:g l h mg 201ρ=,取液面为坐标原点,向下为x 轴正向,当木块浸入水中深度增加x 时

mg F dt x d m +-=浮22,xg l g l g h x l dt

x d l 213202122

32)(ρρρρ-=++-= x l g dt x d 212

2ρρ-=,02

022=+x dt x d ω,l g 21ρρω=,g

l T 1222ρρπωπ==, 022

020/h h v x A -=+=

ω

3.一水平放置的弹簧振子,振动物体质量为0.25kg ,弹簧的劲度系数25N m k =?-1

(1) 求振动的周期T 和角频率ω; (2) 以平衡位置为坐标原点。如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求振动的表达式; (3) 求振动速度的表达式。 解:(1) 角频率)/1(1025.0/25/s m k ===ω,)(2.0/2s T πωπ==

(2) 作旋转矢量图,由图可知3/0πφ=

??

? ?

?+=310cos 15.0πt x (SI 制), (3)??

? ?

?

+-=310sin 5.1πt v (SI 制)

4. 一个弹簧振子作简谐振动,振幅m 2.0=A ,如弹簧的劲度系数N/m 0.2=k ,所系物体的质量kg 50.0=m ,试求:(1)当系统动能是势能的三倍时,物体的位移是多少?(2)物体从正的最大位移处运动到动能等于势能的三倍处所需的最短时间是多少? 解(1)由题意,3k p E E =,2

2212144kA kx E E E E p p k =?==+=,得224x A = , 10.12

x A m =±=± (2) 由题意知

)/1(25.0/0.2/s m k ===ω,

作旋转矢量图知:3/πφ=?,最短时间为)(6//s t πωφ=?=?

5.有两个同方向、同频率的简谐振动,它们的振动表达式为:

130.05cos 10π4x t ?

?=+ ??

?,210.06cos 10π4x t ??=+ ???(SI 制)

(1)求它们合成振动的振幅和初相。(2)另有一个振动300.07cos(10)x t φ=+,问0φ为何值时,

31x x +的振幅最大;0φ为何值时,32x x +的振幅最小。

解:(1)由图可知m A A A 078.022

2

1

=+=

,0108.846

5

4=+=-tg π

φ

(2) 31x x +的振幅最大时πφφ4

3

100=

=; 32x x +的振幅最小时πφφ±=-200 ,)43(,450ππ?-=或

练习 十四 平面简谐波、波的能量

一、选择题

1.一个平面简谐波沿x 轴负方向传播,波速m/s 10=u 。0=x 处,质点振动曲线如图所示,则该波的表达式(SI 制)为 (B ) (A ))2π20π2πcos(2++=x t y ;(B ))2π20π2πcos(2-+=x t y ; (C ))2π20π2πsin(2++=x t y ;

(D ))2π20π2πsin(2-+=x t y 。 解:(B)由图可知s T 4=,0=x 处质点振动方程??? ??-=???

??+=22

cos 22cos 00ππφπt t T A y 波的表达式??????-+=??????-??? ??+=???

?????-???? ??-=2202cos 22102cos 222cos 2πππππππx t t x t t u x t y 2.一个平面简谐波沿x 轴正方向传播,波速为m/s 160=u ,0=t 时刻的波形图如图所示,则该波的表达

A

-

O )0(A x =0处质点在t =0

时振幅矢量.

O )

0(A x =0处质点在t =0 时振幅矢量.

式(SI 制)为 ( C )

(A )2π4ππ40cos(3-+=x t y ;(B ))2

π

4ππ40cos(3++=x t y ;

(C ))2π

4ππ40cos(3--=x t y ;(D ))2π4ππ40cos(3+-=x t y 。

解:(C)由图可知m 8=λ,s m u /160=,)/1(20/s u ==λν,)/1(402s ππνω== 设0=x 处质点振动方程为()0040cos φπ+=t A y , 0=t 时0=x 处质点位移为

零且向y 轴正向运动, 作旋转矢量图知20π

φ-=,???

?

?-=240cos 30ππt y

波的表达式??? ??--=???

?

?-??? ??-=2440cos 3216040cos 3πππππx t x t y 3*. 一平面简谐波以速度u 沿x 轴正方向传播,在t = t

为 ( D ) (A) ]2)(cos[π

+'-=t t b u a y ;(B) ]2

)(2cos[π-'-π=t t b u a y ; (C) 2)(cos[π+'+π=t t b u a y ;(D) ]2

)(cos[π-'-π=t t b u a y 。

解:(D) 由图可知b 2=λ,b v v 2//==λν,b v /2ππνω==

t t '=时0=x 处质点位移为零且向y 轴正向运动,∴0cos 0=φ,0sin 0>-φ,2/0πφ-=

4. 一个平面简谐波在弹性媒质中传播,媒质质元从最大位移处回到平衡位置的过程中 ( C )

(A )它的势能转化成动能; (B )它的动能转化成势能; (C )它从相邻的媒质质元获得能量,其能量逐渐增加;

(D )把自己的能量传给相邻的媒质质元,其能量逐渐减小。

解:(C)质元的动能2v dE k ∝,势能()2/x y dE P ??∝,质元由最大位移处回到平衡位置过程中,v 和x y ??/由

↑0到最大值.

5.一平面简谐波在弹性媒质中传播时,在传播方向上某质元在某一时刻处于最大位移处,则它的 ( B )

(A )动能为零,势能最大; (B )动能为零,势能也为零; (C )动能最大,势能也最大;(D )动能最大,势能为零。 解:(B)质元的动能2v dE k ∝,势能()2/x y dE P ??∝,质元在最大位移处,v 和x y ??/均为0.

6.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为3/π,则此两点相距 ( C ) (A) 2.86 m ; (B) 2.19 m ; (C) 0.5 m ; (D) 0.25 m 。

解:(C) 波长m u 3100/300/===νλ,φπλ???x ,2,)3//(2/3ππ=x ,m x 5.0= 7.在同一媒质中两列频率相同的平面简谐波强度之比是4:21=I I ,则两列波的振幅之比21:A A 为 (A )4; (B )2; (C )16; (D )0.25。 ( B )

解:(B)波强u A I 2221ωρ=,42

22

121==A A I I

8.在下面几种说法中,正确的是: ( C )

(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;

(C )在波传播方向上,任一质点的振动位相总是比波源的位相滞后; (D )在波传播方向上,任一质点的振动位相总是比波源的位相超前。 解:(C)在波传播方向上,任一质点的振动位相总是比波源的位相滞后 二、填空题

1. 产生机械波的必要条件是 和 。解:波源,介质.

2. 一平面简谐波的周期为s 0.2,在波的传播路径上有相距为cm 0.2的M 、N 两点,如果N 点的位相比

M 点位相落后

6

π

,那么该波的波长为 ,波速为 。 -)

解:φπλ???x ,2, φ

πλ?=?2x ,cm x 2426/22=?=??=ππ

φπλ,s cm T u /12/==λ

3. 我们 (填能或不能)利用提高频率的方法来提高波在媒质中的传播速度。 解:不能.波速由媒质的性质决定.

4. 处于原点(0=x )的一波源所发出的平面简谐波的波动方程为)cos(Cx Bt A y -=,其中A 、B 、C 皆为常数。此波的速度为 ;波的周期为 ;波长为 ;离波源距离为l 处的质元振动相位比波源落后 ;此质元的初相位为 。

解:)(cos )/(cos )cos(u

x

t A c B x t B A Cx Bt A y -=-

=-=ω,C B u /=,B T /2/2πωπ==, C uT /2πλ==,λπφ/2/l =?,Cl l ==?λπφ/2,初相Cl -

5. 一平面简谐波沿x 轴正向传播,波动方程为]4

π

)(cos[+-=u x t A y ω,则1L x =处质点的振动方程

为 ,2L x -=处质点的振动和1L x =处质点的振动的位相差为=-12φφ 。

解:波方程中x 用特定值表示后即表示特定质点振动方程111cos ]4

)(cos[φπωA u L t A y =+-= 222cos ]4)(cos[φπωA u L t A y =++=,u L L )

(1212+=

-ωφφ 6.一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)2

1

cos(2.0x t y π-

π=(SI 制),则x = -3 m 处媒质质点的振动加速度a 的表达式为____________________________。

解:)2

1cos(2.0222x t t y a ππ--=??=π,t t a x πππsin 2.0)23cos(2.02

23ππ-=+-=-=

三、计算题

1.一平面简谐波,振动周期0.5T =s ,波长λ = 10m ,振幅A = 0.1m 。当 t = 0时,波源振动的位移恰好为正方向的最大值。若坐标原点和波源重合,且波沿x 轴正方向传播,求:(1)波源的振动表达式;(2)简谐波的波动表达式;(3) x 1 = λ /4处质点,在t 2 = T /2时刻的位移和振动速度。 解:由题意可知)/1(4/2s T ππω==,s m T u /205.0/10/===λ

(1) 设波源的振动表达式为)4cos(1.00φπ+=t y ,m y t 1.0,00== ,0,cos 1.01.000==∴φφ,t y π4cos 1.0= (2) 波动表达式)20/(4cos 1.0x t y -=π(SI 制)

(3) 将s t m x 25.0,5.221==代入波动表达式得:05.0cos 1.0)20/5.225.0(4cos 1.0==-=ππy 振动速度)20/(4sin 4.0/x t t y v --=??=ππ

将s t m x 25.0,5.221==代入,)/(4.05.0sin 4.0)20/5.225.0(4sin 4.0s m v πππππ-=-=--=

2.一振幅为0.1m ,波长为2 m 的平面简谐波。沿x 轴正向传播,波速为1m/s 。t = 2s 时,x =1m 处的质点处于平衡位置且向正方向运动。求:(1)原点处质点的振动表达式;(2)波的表达式;(3)在x = 1.5m 处质点的振动表达式.

解:由题意可知s m u m m A /1,2,1.0===λ, )(2/s u T ==λ,)/1(/2s T ππω== (2)设x =1m 处的质点振动表达式)cos(1.0)cos(001φπφω+=+=t t A y

因为t = 2s 时,该质点处于平衡位置且向正方向运动

所以0)2cos(1.00=+φπ,0)2sin(1.00>+-φππ,2/0πφ-=,)2/cos(1.01ππ-=t y

波的表达式为()??????+-=??????-??? ?

?--=2cos 1.0211cos 1.0ππππx t x t y (SI 制)

(1) 令0=x 得,)2/cos(1.0ππ+=t y (SI 制)

(3) 令m x 5.1=得,()[])cos(1.02/5.1cos 1.0ππππ-=+-=t t y (SI 制)

3. 一平面简谐波在介质中以速度m/s 20=u 沿x 轴负方向传播,如图所示。已知a 点的振动表式为

t y π4cos 3a =(SI 制)

。 (1)以a 为坐标原点写出波动表达式。

u

a

b

p

p 0 u 1m

(2)以距a 点m 5处的b 点为坐标原点,写出波动表达式。

解:(1))5

4cos(3)20(4cos 3)20(4cos 3x

t x t x t y ππππ+=+=-=(SI 制)

(2))5

4cos(3)]205(4cos[3ππππ-+=--=x t x t y (SI 制)

4.某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点的位移为

0.03 m,且向正方向运动,求:(1) 该质点的振动表达式;(2) 此振动以速度u =2m/s 沿x 轴负方向传播时,波的表达式; (3) 该波的波长。

解:(1) 由题意可知)/1(/2,06.0s T m A ππω===,

设振动表达式为 )cos(06.00φπ+=t y ,

t = 0 时刻,质点的位移为0.03 m,且向正方向运动,∴5.0cos 0=φ,0sin 0>-φ,3/0πφ-=

)3/cos(06.0ππ-=t y

(2) 波的表达式]3/)2/(cos[06.0]3/)2/(cos[06.0ππππ-+=--=x t x t y (SI 制)

(3) 波长m uT 4==λ

5.一列沿x 正向传播的简谐波,已知01=t 和s 25.02=t 时的波形如图所示。(假设周期s 25.0>T )试求 (1)P 点的振动表达式;(2)此波的波动表式;

(3)写出o 点振动方程并画出o 点的振动曲线。

解:由图可知

s T 125.04=?=,m 6.0=λ,s m T v /6.0/==λ,)/1(2/2s T ππω==

(1)P 点振动表达式)2/2cos(2.0)cos(0ππφω-=+=t t A y P P (SI 制) (2) 波动表式]2)6.03.0(2cos[2.0ππ---=x t y ]2

)6.0(2cos[2.0ππ+-=x t (SI 制) (3)O 点振动方程)2

2cos(2.0π

π+

=t y O (SI 制)

6.一平面简谐声波,沿直径为0.14m 的圆柱形管行进,波的强度为9.0?10-3W/m 2,频率为300Hz ,波速

为300m/s 。问:(1)波的平均能量密度和最大能量密度是多少?(2)每两个相邻的、相位差为π2的同相面间有多少能量?

解(1)35322100.3300/100.9/,2

1---??=?====

m J u I w u w u A I ωρ,35max 100.62--??==m J w w (2)J w d V w w s V 721062.44

1

,,-?====λπλ

练习 十五

知识点:波的干涉、驻波、多普勒效应

一、选择题

1.如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: ( )

(A) λk r r =-12; (B) π=-k 212φφ;

(C)

π=-π+-k r r 2/)(21212λφφ; (D) 21122()/2r r k φφλ-+-=ππ。

解:(D) 111111cos )(2cos Φ=??

????+-=A u r

t A y p φπ,222222cos )(2cos Φ=??????+-=A u r t A y p φπ

πλ

πφφλ

πφφk r

r r r 2222112121212=-+-=---=Φ-Φ=?Φ

2.两个相干波源的相位相同,它们发出的波叠加后,在下列哪条线上总是加强的? ( )

(A )两波源连线的垂直平分线上; (B )以两波源连线为直径的圆周上; (C )以两波源为焦点的任意一条椭圆上;(D )以两波源为焦点的任意一条双曲线上。

)

m (

(y )

s

p u

解: (A)λ

π

φφφ1

210202r r ---=?,对相干波源,1020φφ=,在垂直平线上0,12=?=φr r .

3.平面简谐波)π3π5sin(4y t x +=与下面哪列波干涉可形成驻波? ( )

(A )4sin 2π(2.5 1.5)y t x =+; (B )4sin 2π(2.5 1.5)y t x =-; (C )4sin 2π(2.5 1.5)x t y =+; (D )4sin 2π(2.5 1.5)x t y =-。

解:(D)波方程)35sin(4y t x ππ+=中,x 为各质点相对平衡位置的位移,y 为质点平衡位置的坐标.

4.在驻波中,两个相邻波节间各质点的振动 ( ) (A) 振幅相同,相位相同; (B) 振幅不同,相位相同;

(C) 振幅相同,相位不同; (D) 振幅不同,相位不同。 解: (B) 相邻波节间各质点的振动振幅不同,相位相同。

5. 在波长为λ 的驻波中,两个相邻波腹之间的距离为 ( ) (A) λ /4; (B) λ /2; (C) 3λ /4; (D) λ 。 解: (B) 两个相邻波腹(波节)之间的距离为λ /2。

6*. 一机车汽笛频率为750 Hz ,机车以时速90公里远离静止的观察者.观察者听到的声音的频率是(设空气中声速为340 m/s ). ( ) (A) 810 Hz ; (B) 699 Hz ; (C) 805 Hz ; (D) 695 Hz 。 解: (B)Hz u u u T u u u u 69975025

340340(=?+=+=+=''=

'νλν源源) 7*. 设声波在媒质中的传播速度为u ,声源的频率为S v ,若声源S 不动,而接收器R 相对于媒质以速度R υ沿S 、R 连线向着声源S 运动,则接收器R 接收到的信号频率为: ( )

(A )S v ; (B )

S R v u u υ+; (C )S R v u u υ-; (D )S R

v u u

υ-。 解: (B)观察者收到的信号频率=测得的波速与波长的比值νλνu

v u uT v u u 观

观+=+=''='

二、填空题

1.设1S 和2S 为两相干波源,相距0.25λ,1S 的相位比2S 的相位超前0.5π。若两波在1S 与2S 连线方向上的强度相同均为0I ,且不随距离变化。则1S 与2S 连线上在1S 外侧各点合成波的强度为_____,在2S 外侧各点合成波的强度为_______________。

解: 1S 外侧πλ

λ

ππλ

πφφφ-=--=---=?25.025.02121020r r ,波的强度为零

2S 外侧025.025.02121020=---=---=?λ

λ

ππλπφφφr r ,波的强度为04I

2.简谐驻波中,在同一个波节两侧距该波节的距离相同的两个媒质元的振动相位差为________。解:

π

3. 一驻波表式为t x y 400cos π2cos 1042-?=(SI 制)

,在1/6(m)x =处的一质元的振幅为 ,振动速度的表式为 。

解: ()m A 221026/12cos 104--?=??=π,m x 6/1=处质点振动方程为t y 400cos 1022-?=,质点速度的表式

t v 400sin 8-=(SI 制).

4. (a )一列平面简谐波沿x 正方向传播,波长为λ。若在0.5x λ=处质点的振动方程为t A y ωcos =,则该平面简谐波的表式为 。

(b )如果在上述波的波线上L x =(0.5L λ>)处放一垂直波线的波密介质反射面,且假设反射波的振幅衰减为A ',则反射波的表式为 (L x ≤)。 解: (a )???

?

?--

=u x t A y 2/cos λω ??

?

??+-

=??? ??+-=πλπωωλωωx t A u u x t A 2cos 2cos (b )??

????-??? ??----

'=πλωu x L u L t A y 2/cos ??? ??-+=λπλπωL x t A 42cos

5.一驻波方程为t x A y π100cos π2cos =(SI 制),位于m x 8/31=的质元与位于m x 8/52=处的质元的振动位相差为 。 解: t A t A y

x πππ100cos 2

2100cos 43cos

1

-==, t A t A y

x πππ100cos 2

2100cos 85cos

2

-==;位相差为0 6*

. 一汽笛发出频率为Hz 700的声音,并且以15m/s 的速度接近悬崖。由正前方反射回来的声波的波长为(已知空气中的声速为m/s 330) 。 解:m u u T u u 45.0700/315/((==-=-='νλ))源源

三、计算题

1.波速为1

0.20m s u -=?的两列平面简谐相干波在P 点处相遇,两个波源S 1和S 2的振动表式分别为

100.1cos 2y t π=(SI 制)和200.1cos(2)y t π=+π(SI 制)

。已知1PS 0.40m =,2PS 0.50m =,求: (1)两列波的波函数;(2)两列波传播到P 点的位相差;(3)干涉后P 点的振动是加强还是减弱,以及P

点合振幅。

解:(1)设1r 为空间某点到波源S 1的距离, 2r 为空间某点到波源S 1的距离,则

)102cos(1.0)2.0/(2cos 1.0111r t r t y πππ-=-=(SI 制)

, )102cos(1.0])2.0/(2cos[1.0222πππππ+-=+-=r t r t y (SI 制) (2)在两波相遇处02

.040

.050.0221

21020=--=---=?π

πλ

π

φφφr r

(3)0=?φ,P 点的振动加强,合振幅为m 2.0

2. 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)2/4cos(01.0ππ--=x t y (SI 制)。若在x = 5.00 m 处发生固定端反射,设反射波的强度不变,试写出反射波的表达式。 解: 入射波引起分界面处质点的振动方程

)5.54cos(01.0)2/54cos(01.0πππ-=--=t t y

设反射波的表达式为)4cos(01.00φ++=x t y π

反射波引起分界面处质点的振动方程)54cos(01.00φπ++=t y ,反射波比入射波在分界面处引起质点的分振动相位落后π

ππφπ-=--++)5.54(540t t

πφ5.110-=

)2/4cos(01.0)5.114cos(01.0ππ++=-+=x t x t y ππ

3.设入射波的表达式为 )(2cos 1T

t

x A y +π=λ,在x = 0处发生反射,反射点为一固定端。设反射时无

能量损失,求:(1) 反射波的表达式;(2) 合成的驻波的表达式;(3) 波腹和波节的位置。 解: (1)入射波引起分界面处(x =0)质点的振动方程T t A y /2cos 10π=

反射波比入射波在x =0处引起质点的分振动相位落后π 反射波引起x =0处质点的振动方程[]π-=T t A y /2cos 20π

反射波的表达式为 ??????

-???

??-=πλx T t A y π2cos 2

(2)??

? ??-??? ??

+=+=22cos 22cos 221πππλπT t x A y y y

(3)波节 2,1,02==k k x λ;波腹 2,1,04

)12(=+=k k x λ

4*. 一声源的频率为Hz 1080,相对于地以m/s 30的速率向右运动。在其右方有一反射面相对于地以5m/s 6的速率向左运动。设空气中的声速为m/s 331。求

(1)声源前方空气中声波的波长; (2)每秒钟到达反射面的波数; (3)反射波的速率。

解:(1)m u u T u u 279.01080/301/((==-=-='νλ))源源

(2)Hz T v u v u u 1421108030

33165

331)(=?-+=-+=''=

'源观λν (3)反射波的速率为m/s 331。

5*. 如图所示,试计算:

(1)波源S 频率为Hz 2040,以速度S υ向一反射面接近,观察者在A 点听得拍音的频率为Hz 3=?v ,求波源移动的速度大小S υ。设声速为m/s 340。

(2)若(1)中波源没有运动,而反射面以速度m/s 20.0=υ向观察者A 接近。观察者在A 点所听得的拍音频率为Hz 4=?v ,求波源的频率。 解: (1)2040340340)(1?+=+=''=

'=S s v T v u u u λνν 2040340340

)(2?-=-=''='=S

s v T v u u u λνν

3204034034022040340340

20403403402

212=?-??=?+-?-=-=?s s S S v v v v ννν

s m v S /25.0≈

(2)20401=ν,νλνν?-+=-+=''=

'=2

.03402

.0340)(2T v u v u u 48

.3392

.34012=-?=

-=?ννννν,Hz 3398=ν

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理练习册习题答案

大学物理练习册习题答案

练习一 (第一章 质点运动学) 一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s 2.(0008)8 m 10 m 3.(0255)() []t t A t ωβωωωβ βsin 2cos e 22 +--,()ωπ/122 1+n , (n = 0, 1, 2,…) 4.(0588) 30/3 Ct +v 4 00112 x t Ct ++ v 5.(0590) 5m/s 17m/s 三、 1.(0004)解:设质点在x 处的速度为v , 2 d d d 26 d d d x a x t x t ==?=+v v ()2 d 26d x x x =+??v v v () 2 2 1 3 x x +=v 2.(0265)解:(1) /0.5 m/s x t ??==-v (2) 2 =/96dx dt t t =- v (3) 2= 6 m/s -v |(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-= 3.(0266)解:(1) j t r i t r j y i x r ????? sin cos ωω+=+=

(2) d sin cos d r r t i r t j t ωωωω==-+v v v v v 22 d cos sin d a r t i r t j t ωωωω==--v v v v v (3) ()r j t r i t r a ???? sin cos 22 ωωωω-=+-= 这说明 a ?与 r ? 方向相反,即a ?指向圆心. 4. 解:根据题意t=0,v=0 --------==?+?∴=?+?=====?+?=+?+?? ??? ??由于及初始件v t t r t t r dv adt m s i m s j dt v m s ti m s tj dr v t r m i dt dr vdt m s ti m s tj dt r m m s t m s t j 0 220 220 220 2222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)] 质点运动方程的分量式: --=+?=?x m m s t y m s t 2 2 22 10(3)(2) 消去参数t ,得到运动轨迹方程 =-y x 3220 练习二(第一章 质点运动学) 一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A ) 二、1.(0009) 0 bt +v 2. (0262) -c (b -ct )2/R

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

大学物理II练习册答案3

大学物理练习三 一.选择题 1.一力学系统由两个质点组成,它们之间只有引力作用。若两质点所受外力的矢量和为零,则此系统 [ ] (A) 动量、机械能以及对一轴的角动量都守恒。 (B) 动量、机械能守恒,但角动量是否守恒不能断定。 (C) 动量守恒,但机械能和角动量守恒与否不能断定。 (D) 动量和角动量守恒,但机械能是否守恒不能断定。 解:[ C ] 按守恒条件: ∑=0i F 动量守恒, 但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒。 2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉。则物体 [ ] (A)动能不变,动量改变。 (B)动量不变,动能改变。 (C)角动量不变,动量不变。 (D)角动量改变,动量改变。 (E)角动量不变,动能、动量都改变。 解:[ E ] 因对 o 点,合外力矩为0,角动量守恒 3.有两个半径相同,质量相等的细圆环A 和B 。A 环的质量分布均匀,B 环的质量分布不均匀。它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 [ ] O R

(A)A J >B J (B) A J < B J (C) A J =B J (D) 不能确定A J 、B J 哪个大。 解:[ C ] 细圆环的转动惯量与质量是否均匀分布无关 ?==220mR dmR J 4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其 转动惯量为3 1m L 2 ,起初杆静止。桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示。当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为 [ ] (A) L v 32. (B) L v 54 (C)L v 76 (D) L v 98 解:[ C ] 角动量守恒 二.填空题 1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s ,t = 20s 时角速 度ω=ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮 所转过的角度θ= 。 解:因均匀减速,可用t βωω=-0 , O v 俯视图

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

大学物理(上)练习题及答案详解

大学物理学(上)练习题 第一编 力 学 第一章 质点的运动 1.一质点在平面上作一般曲线运动,其瞬时速度为,v 瞬时速率为v ,平均速率为,v 平均 速度为v ,它们之间如下的关系中必定正确的是 (A) v v ≠,v v ≠; (B) v v =,v v ≠; (C) v v =,v v =; (C) v v ≠,v v = [ ] 2.一质点的运动方程为2 6x t t =-(SI),则在t 由0到4s 的时间间隔内,质点位移的大小为 ,质点走过的路程为 。 3.一质点沿x 轴作直线运动,在t 时刻的坐标为23 4.52x t t =-(SI )。试求:质点在 (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; (3)第2秒内运动的路程。 4.灯距地面的高度为1h ,若身高为2h 的人在灯下以匀速率 v 沿水平直线行走,如图所示,则他的头顶在地上的影子M 点沿地 面移动的速率M v = 。 5.质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式 (1) dv a dt =, (2)dr v dt =, (3)ds v dt =, (4)||t dv a dt =. (A )只有(1)、(4)是对的; (B )只有(2)、(4)是对的; (C )只有(2)是对的; (D )只有(3)是对的. [ ] 6.对于沿曲线运动的物体,以下几种说法中哪一种是正确的。 (A )切向加速度必不为零; (B )法向加速度必不为零(拐点处除外); (C )由于速度沿切线方向;法向分速度必为零,因此法向加速度必为零; (D )若物体作匀速率运动,其总加速度必为零; (E )若物体的加速度a 为恒矢量,它一定作匀变速率运动. [ ] 7.在半径为R 的圆周上运动的质点,其速率与时间的关系为2 v ct =(c 为常数),则从 0t =到t 时刻质点走过的路程()s t = ;t 时刻质点的切向加速度t a = ;t 时刻质点 的法向加速度n a = 。 2 h M 1h

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

大学物理练习册答案

大学物理练习册答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章 练习一 一、选择题 1、下列四种运动(忽略阻力)中哪一种是简谐振动?( ) (A)小球在地面上作完全弹性的上下跳动 (B)细线悬挂一小球在竖直平面上作大角度的来回摆动 (C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动 2、质点作简谐振动,距平衡位置2.0cm 时,加速度a=4.0cm/s 2,则该质点从一端运动到另一端的时间为( ) (A)1.2s (B)2.4s (C)2.2s (D)4.4s 3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为( ) (A) 0 (B) 2π (C) 2 π- (D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅 为A 时,该弹簧振子的总能量为E 。若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等( ) (A) 2A (B) 4A (C)2 A (D)A 二、填空题 1、已知简谐振动A x =)cos(0?ω+t 的周期为T ,在2 T t = 时的质点速度为 ,加速度为 。 2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 。 3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。 该振动的振幅为 ,周期为 。

大学物理练习册答案

狭义相对论基础(二)第十六页 1.电子的静止质量M0=9.1×10–31kg,经电场加速后具有 0.25兆电子伏特的动能,则电子速率V与真空中光速 C之比是:(C ) [ E k=mC2-m0C2, m=m0/(1-V2/C2)1/2 1兆=106, 1电子伏=1.6×10–19焦耳] (A) 0.1 ( B) 0.5 (C) 0.74(D) 0.85 2.静止质量均为m0的两个粒子,在实验室参照系中以相同大小的速度V=0.6C相向运动(C为真空中光速), 碰撞后粘合为一静止的复合粒子,则复合粒子的静止 质量M0等于:(B ) [ 能量守恒E=M0C2=2mC2 =2m0C2/(1-V2/C2)1/2 ] ( A) 2m0(B) 2.5m0(C) 3.3m0(D) 4m0 3.已知粒子的动能为E K,动量为P,则粒子的静止能量(A )(由 E = E K+E0和E2=E02 + C2P2 )(A)(P2C2-E K2)/(2E K)(B)(P2C2+E K2)/(2E K)(C)(PC-E K )2/(2E K) (D) (PC+E K )2/(2E K) 4.相对论中的质量与能量的关系是:E=mC2;把一个静止质量为M0的粒子从静止加速到V=0.6C时,需作功 A=(1/4)M0C2 A=MC2-M0C2 = γM0C2-M0C2=(γ-1)M0C2 5.某一观察者测得电子的质量为其静止质量的2倍,求

电子相对于观察者运动的速度V =0.87C [ m=m 0/(1-V 2/C 2)1/2, m=2m 0 , 则1-V 2/C 2=1/4 ] 6. 当粒子的速率由0.6C 增加到0.8C 时,末动量与初动 量之比是P 2:P 1=16:9,末动能与初动能之比是 E K2:E K1=8:3 V 1=0.6C,γ1=1/2211C V -=5/4, m 1=γ1m 0=5m 0/4 P 1=m 1V 1=3m 0C/4, V 2=0.8C 时, γ2=1/222/1C V -=5/3 m 2=γ2m 0=5m 0/3,P 2=m 2V 2=4m 0 C/3,∴P 2:P 1=16:9 E K1=m 1C 2-m 0C 2, E K2=m 2C 2-m 0C 2 ∴E K2:E K1=8:3 7. 在惯性系中测得相对论粒子动量的三个分量为:P x=P y = 2.0×10-21kgm/s, P z =1.0×10-21kgm/s ,总能量 E=9.4×106ev ,则该粒子的速度为V=0.6C [E=mC 2 P=mV P=(P x 2+P y 2 +P z 2 )1/2 ] 8. 试证:一粒子的相对论动量可写成 P=(2E 0E K +E 2K )1/2/C 式中E 0(=m 0C 2)和E K 各为粒子的静能量和动能。 证:E=E 0+E k ?E 2=E 20+P 2C 2 ? (E 0+E k )2= E 20+P 2C 2 ? P=(2E 0E K +E 2K )1/2/C 9.在北京正负电子对撞机中,电子可以被加速到动能为E K =2.8×109ev 这种电子的速率比光速差多少米/秒?这样的一个电子的动量多大?(已知电子的静止质量

大学物理实验习题和答案

第一部分:基本实验基础 1.(直、圆)游标尺、千分尺的读数方法。 答:P46 2.物理天平 1.感量与天平灵敏度关系。天平感量或灵敏度与负载的关系。 答:感量的倒数称为天平的灵敏度。负载越大,灵敏度越低。 2.物理天平在称衡中,为什么要把横梁放下后才可以增减砝码或移动游码。 答:保护天平的刀口。 3.检流计 1.哪些用途?使用时的注意点?如何使检流计很快停止振荡? 答:用途:用于判别电路中两点是否相等或检查电路中有无微弱电流通过。 注意事项:要加限流保护电阻要保护检流计,随时准备松开按键。 很快停止振荡:短路检流计。 4.电表 量程如何选取?量程与内阻大小关系? 答:先估计待测量的大小,选稍大量程试测,再选用合适的量程。 电流表:量程越大,内阻越小。 电压表:内阻=量程×每伏欧姆数 5.万用表 不同欧姆档测同一只二极管正向电阻时,读测值差异的原因? 答:不同欧姆档,内阻不同,输出电压随负载不同而不同。 二极管是非线性器件,不同欧姆档测,加在二极管上电压不同,读测值有很大差异。 6.信号发生器 功率输出与电压输出的区别? 答:功率输出:能带负载,比如可以给扬声器加信号而发声音。 电压输出:实现电压输出,接上的负载电阻一般要大于50Ω。 比如不可以从此输出口给扬声器加信号,即带不动负载。 7.光学元件 光学表面有灰尘,可否用手帕擦试? 答:不可以 8.箱式电桥 倍率的选择方法。 答:尽量使读数的有效数字位数最大的原则选择合适的倍率。 9.逐差法 什么是逐差法,其优点? 答:把测量数据分成两组,每组相应的数据分别相减,然后取差值的平均值。 优点:每个数据都起作用,体现多次测量的优点。 10.杨氏模量实验 1.为何各长度量用不同的量具测?

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理课后习题答案

练习一 质点运动学 1、26t dt d +== ,61+= ,t v 261 331+=-=-? , a 241 31 331=--=- 2、020 22 12110 v Kt v Ktdt v dv t Kv dt dv t v v +=?-?=??-= 所以选(C ) 3、因为位移00==v r ?,又因为,0≠?0≠a 。所以选(B ) 4、选(C ) 5、(1)由,mva Fv P ==dt dv a =Θ,所以:dt dv mv P =,??=v t mvdv Pdt 0 积分得:m Pt v 2= (2)因为m Pt dt dx v 2==,即:dt m Pt dx t x ??=0 02,有:2 3 98t m P x = 练习二 质点运动学 (二) 1、 平抛的运动方程为 202 1gt y t v x ==,两边求导数有: gt v v v y x ==0,那么 2 220 t g v v +=, 2 22 022t g v t g dt dv a t +==, = -=22 t n a g a 2 220 0t g v gv +。 2、 2241442s /m .a ;s /m .a n n == 3、 (B ) 4、 (A ) 练习三 质点运动学

1、023 2332223x kt x ;t k )t (a ;)k s (t +=== 2、0321`=++ 3、(B ) 4、(C ) 练习四 质点动力学(一) 1、m x ;912== 2、(A ) 3、(C ) 4、(A ) 练习五 质点动力学(二) 1、m 'm mu v )m 'm (v V +-+-=00 2、(A ) 3、(B ) 4、(C ) 5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 1762 1212 024=-= 练习六、质点动力学(三) 1、J 900 2、)R R R R ( m Gm A E 2 12 1-= 3、(B ) 4、(D ) 5、)(2 1 222B A m -ω 练习七 质点动力学(四) 1、) m m (l Gm v 212 2 12+= 2、动量、动能、功 3、(B )

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

大学物理学练习册参考答案全

大学物理学练习册参考答案 单元一 质点运动学 四、学生练习 (一)选择题 1.B 2.C 3.B 4.B 5.B (二)填空题 1. 0 0 2.2 192 x y -=, j i ρρ114+, j i ρρ82- 3.16v i j =-+v v v ;14a i j =-+v v v ;4. 0 20 2 11V kt V -;5、16Rt 2 4 6 112M h h h =-v v (三)计算题 1 解答(1)质点在第1s 末的位置为:x (1) = 6×1 2 - 2×1 3 = 4(m). 在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m), 经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1), v (2) = 12×2 - 6×22 = 0 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0, 第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). 2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程: 164 252 2=+y x 2)t dt dy v t dt dx v y x ππππ6cos 486sin 30==-== 当t=5得;πππππ4830cos 48030sin 30===-=y x v v t dt dv a t dt dv a y y x x ππππ6sin 2886cos 18022-==-== 当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a y y x 3.解答:1) () t t dt t dt d t t v v 20 4240 +=+==??? 则:t t )2(42++= 2)()t t t dt t t dt d t t r )3 12(2)2(43 2 2 ++=++= =? ?? t t t )31 2()22(3 2 +++=

相关主题
文本预览
相关文档 最新文档