当前位置:文档之家› 高强钢焊接质量的改善

高强钢焊接质量的改善

高强钢焊接质量的改善
高强钢焊接质量的改善

高强钢焊接质量的改善

发表时间:2020-04-03T01:11:54.048Z 来源:《建筑学研究前沿》2019年24期作者:李栋栋王文钊[导读] 施工单位工作人员须提高对焊材韧性选择的重视度,以此为后期各项作业的顺利实施打下坚实基础。

中核工程咨询有限公司四川分公司四川省乐山市 614100

摘要:很多大型建筑钢结构中都广泛应用了高强钢。为了将高强钢的重要优势发挥出来,工作人员要严格把控各细节,焊接要严格和规范,要保障焊接质量。因此,深入分析高强钢焊接技术,将其应用于工程之中并改善常见焊接难点,同时使用高质量焊接材料是当下发展进程中的重点。

关键词:高强钢;焊接质量;优化措施

1现阶段我国钢结构焊接技术的基本概述

1.1高强焊接技术

在进行工程施工作业过程中,由于钢结构本身具有复杂多样的特点,因此,在进行焊接作业过程中,其施工难度往往要远高于其他建筑材料的作业难度,为此,要想从根本上规避一系列其他问题的产生,选择合适的焊接技术是现阶段基层产业机构和相关主管部门的核心发展方向。简单而言,所谓的“高强焊接”其实是指焊接材料熔敷金属的强度和冲击韧性高于材料标准规定的最低值,在进行施工作业时,为确保其满足工程施工作业需求,施工单位工作人员须提高对焊材韧性选择的重视度,以此为后期各项作业的顺利实施打下坚实基础。

1.2低温焊接技术

在进行焊接作业过程中,低温环境进行焊接作业也极为普遍,为此要想从根本上规避一系列其他问题的产生,采取合适的低温焊接技术进行焊接处理,对于推动企业整体发展而言是极为必要的。具体而言就是在低温环境下进行焊接作业时,施工单位的工作人员须从根本上做好保温措施,即通过搭建防护棚,让焊接的区域形成一定封闭空间,减少热量的损失,从而规避残余应力的产生,以此为钢结构焊接作业奠定良好基础。

2.高强钢高效焊接难点

高强钢焊接时会遇到很多困难,焊接需要不断打破原状。首先受到高强钢焊接特点影响,焊接时可能出现脆化现象。若接头出现脆化,焊接性能会受影响;其次在焊接时热影响区晶体可能会长大,晶体变大到一定程度后会出现脆化现象,这一区域内的组织会软化进而降低焊接结构的稳定性。所以在进行高强钢焊接时,要注意这两点现象发生,进行焊接操作时注意临界粗晶热影响区、亚临界粗晶热影响区、过临界粗晶热影响区这三个区域,避免出现脆化现象。

3.焊接的常用技术

3.1低温焊接技术

低温下,钢结构容易发生表面出现裂纹或者脆断的情况,没有很好的控制,将会导致其质量下降而出现难以预估的安全隐患。因此低温焊接中因根据框架的结构特点,合理安排焊接的顺序。正确的选择预热方式,一般是采用电加热,电加热能够使预热区温度均匀,防止受热不均造成的附加应力,升温的速度相对较快可控,防止结构过热无法焊接的情况,同时对整个建筑框架而言,防止受热不均使建筑结构发生形变的情况。

3.2高强焊接技术

高强焊接技术对钢材的要求较高,要求材料间有着很高的相关性,这样焊接时会使二者高度结合,同时对材料的强度要求高。高强焊接技术是我国目前在建筑行业中的高端技术,其对每一个焊口、焊缝等材料要求很高很严格,因此,在运用此技术时要对材料的质量和安全性进行更加严格的审查。

4焊接的方式

4.1二氧化碳气体保护焊

二氧化碳气体保护焊适合自动焊和全方位焊接,二氧化碳的易于生产,所以此种方法的成本较低,是大小企业应用最广泛的方式。但采用二氧化碳气体保护法时,抗风能力较差,因此适用于室内作业。此种方式的效率较高,是一个线条电弧焊的1~4倍,操作简单,限制条件低,可进行全方位焊接。钢材焊接后的裂缝抗裂性高,且不易发生变形,焊接时的飞溅小。

高强钢通用焊接工艺

高强钢焊接通用工艺 一、适用范围 本工艺适用于本公司已通过焊接工艺评定的船用高强钢的焊接,对于尚未做过焊接工艺评定的高强度钢不在本通用工艺适用范围内。 二、工艺内容 1.焊接材料的选用及焊接方法 1.1.焊接方法主要采用埋弧自动焊,CO 气体保护焊及手工电弧焊。 2 焊丝TWE-711,1.2.焊接材料采用自动焊丝H10Mn2G(牌号为BHM-5),焊剂HJ331,CO 2焊条TL-507。定位焊采用手工电弧焊。自动焊丝在焊前需经100℃保温,手工焊条及焊剂需经350℃~400℃烘焙1~2个小时后方可保温使用。以上材料一旦受潮,则禁止使用。 2.定位焊及装配要求 2.1.定位焊装配时要避免强力装配,对接错边量不得超过1mm,定位焊缝长度为50mm, 角焊缝的焊喉厚度应小于正式焊缝的厚度,严禁在非焊接处引弧。正式焊接前焊道两侧10mm及坡口内均应打磨干净,不得有油污、水份、毛刺、铁锈等杂物,定位焊缝若有裂纹,则在正式焊接前要求彻底去除。 2.2.装配马板、起吊马板及加强排等的焊缝应离开正式焊缝的边缘不少于30mm。拆除时, 不允许用锤击法拆除,只能用气割拆除后用碳刨铲平,不得损伤母材表面,然后用砂轮磨平。 2.3.因所用的船用钢板均为高强钢,所以所有的焊接,无论是正式焊接还 ...... ....................是定位焊接, 包括补焊,均应在焊前进行预热,预热温度为 ...℃。 ....................120 3.焊接要求及施工工艺 3.1.高强钢的长直焊缝对接采用埋弧自动焊,采用多层多道焊。正面焊缝焊3层7~8道, 反面焊缝焊2层5道。正面焊缝焊完后,反面焊缝碳刨清根,用8mm碳棒扣槽8mm(出白为止),再采用自动焊接。为减少焊接变形,焊正面焊缝时放5mm的反变形,焊反面焊缝时加马板固定。在焊接时需控制焊接线能量,保持层间温度在120℃左右。 焊接坡口见图3-1,焊接参数见附表1。 3.2.每焊完一道焊缝后,需将焊渣清理干净,并检查焊缝中有无气孔、裂纹等缺陷,如 有上述缺陷,必须将其彻底清除后,方可继续焊接下一道焊缝。 3.3.高强钢其它各种位置的对接采用手工电弧焊及CO2气体保护焊,手工焊条为 TL-507,焊丝为TWE-711及Supercored81-K2。Supercored81-K2焊丝仅用于大于60mm厚的高强钢的对接焊。25mm及以下的钢板之间的对接采用CO2衬垫焊,开V型坡口;大于25mm的钢板之间的对接采用CO2焊,开双面不对称X型坡口。为防止焊接收缩引起焊接变形,在焊前需加排,加强排的规格为-20×200×300,间隔150mm。焊完一面焊缝后,将排移到另一面。坡口详见图3-2。焊接参数详见附表2。

不锈钢焊接技术要求

2.定位焊及正常焊接必须由具有相应等级不锈钢焊工证书的焊工进行施焊。 四、焊前准备: 1.储存、吊装、运输 1.1不锈钢件储存:应有专用存放架,存放架应为木质或表面喷漆的碳钢支架或垫以橡胶垫,以与碳钢等其它金属材质隔离。存放时,储存位置应便于吊运,与其它材料存放区相对隔离,应有防护措施,不锈钢钢管两端加防护盖以避免灰尘、油污、铁锈对不锈钢的污染。 1.2不锈钢件吊装:吊装时,应采用专用吊具,如吊装带、专用夹头等,严禁使用钢丝绳以免划伤表面;并且在起吊和放置时,应避免冲击磕碰造成划伤。 1.3不锈钢件运输:运输时,应用运输工具(如小车、拖拉机等),并应洁净有隔离防护措施,以防灰尘、油污、铁锈污染不锈钢。严禁拖拉,避免磕碰、划伤。 2.对于受损的钢板表面需要进行酸洗、钝化处理。 三、焊接过程: 1.焊接规范见《焊接工艺》(YTRS643-91-01A),除以下特殊要求外,其他焊接要求均按照《焊接技术要求》(YTRS643-91-02)执行。 2.保护金属表面,严禁随处引弧,任意用铁锤敲击金属表面。 3.与不锈钢焊接的临时性构件(如马板、吊耳等),要使用相同的不锈钢材料,采用相应的焊接工艺。 4.焊接不锈钢钢管时,管内应通惰性气体进行净化,焊接时焊缝附近 区域必须持续有氩气保护。 5.焊接不锈钢钢管时,需用TIG焊打底。

6.使用不锈钢材质的砂轮和钢丝刷等进行打磨和清理工作。 四、焊后处理: 2.酸洗、钝化步骤如下: 2.1将焊缝表面清理干净。 2.2再将酸洗、钝化膏涂抹于焊缝及近缝区具有氧化皮处,涂膜厚度为 1~3mm。 2.3反应一般为1-10分钟,0℃以下,氧化皮厚处,需适当延长时(反应时间视膏体品牌及金属氧化膜厚度而定)。

高强钢超长超厚板现场焊接工法

高强钢超长、超厚板现场焊接工法 中建三局股份钢结构公司 二00七年二月

高强钢超长、超厚板现场焊接工法 中建三局股份钢结构公司 一、前言 近年来,随着经济的发展、产钢量的提高,钢结构工程由于其优越的力学和环保节能等性能得到了迅速的发展,特别是2008年奥运会、2010年上海世博会、2010年广州亚运会即将在我国举行,大型体育场馆、公共建筑、构筑物以及大跨经的厂房及市政共用工程等建设方兴未艾,给我国的钢结构设计施工带来了前所未有的挑战。随着各类特大型复杂钢结构工程的涌现,高强超厚板(如60~100mm 厚的Q390D、Q420D、Q460E等材质钢板)的现场焊接就越来越多,焊接难度也越来越大,特别是多杆件汇交形成的复杂节点,为满足节点构造要求和现场吊装要求,一些超长、超厚焊缝在施工现场进行焊接也就在所难免,而高强钢材的可焊性程度、焊接参数、焊接应力和变形控制等受现场条件、焊接位臵及环境的影响,存在较多的不确定性因素,尚无成熟的规范及焊接工艺参数作参照。研究、探索高强超厚板现场焊接工艺具有十分重要的理论意义和实际意义,也是十分必要迫切需要解决的问题;同时对施工单位也提出很高的要求,需要根据工程本身特点与实际工况,依托传统、成熟的焊接技术,开展科技创新、大胆探索,进行施工工艺革新。 中建三局股份钢结构公司近年来在钢结构厚板焊接方面不断总结经验,推陈出新。通过在中央电视台新台址工程CCTV主楼钢结构安装中,以10根超大型复杂蝶形节点的多箱型分体钢柱为代表的超长、超厚焊缝的成功焊接,总结了一整套关于高强钢超长、超厚

板的现场焊接思路和方法,形成本焊接工法。 二、工法特点 2.1使用半自动实芯焊丝C02气体保护焊(FCAW-G)和半自动药芯焊丝C02气体保护焊(GMAW)相结合的焊接方法,模拟工况进行焊接工艺试验,获取焊接参数。 2.2用电脑控制的电加热设备进行焊前预热、焊中层间温度控制以及焊后后热消氢处理,确保母材受热均匀,有效控制了冷裂纹的产生,提高了焊接工效、保障了连续施焊,避免了大量火焰烘烤工的集中作业,节约了焊接时间和焊接成本。 2.3采取分段退焊顺序,并在焊前、焊中与焊后用全站仪进行时实监测,及时调整加热能量,减少焊接变形。 2.4焊后48小时焊接探伤和15天后延迟裂纹探伤检验,进一步保障了焊接质量。 三、适用范围 本工法适用于厚板、长焊缝的焊接,最适用于钢结构安装工程中高强材质Q390D、Q420D、Q460E的长焊缝的二氧化碳气体半自动保护焊、立焊位臵的焊接;对于其它板厚在100mm以上的现场焊缝焊接同样具有很大的参考价值。 四、工艺原理 4.1 施工前,根据焊接形式有针对性地进行焊接工艺评定。 4.2 钢分体安装,先安装本体钢柱、并部分焊接,然后安装分离下来的一部分钢柱。 4.3 焊接前先对焊接坡口两侧的母材进行超声波无损探伤检测,检查母材内部有无缺陷,同时用焊缝量规对焊缝坡口大小、角度以及安装组对情况进行仔细的检查。

钢结构焊接工艺标准【最新】

钢结构焊接工艺标准 一、范围 本工艺标准适用于一般工业与民用建筑工程中钢结构制作与安装手工电弧焊焊接工程。 二、施工准备 三、操作工艺 3.1 工艺流程: 作业准备→电弧焊接(平焊、立焊、横焊、仰焊)→焊缝检查 3.2 钢结构电弧焊接: 3.2.1 平焊 3.2.1.1 选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。

3.2.1.2 清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 3.2.1.3 烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,放在焊条保温桶内,随用随取。 3.2.1.4 焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊接电流。 3.2.1.5 引弧:角焊缝起落弧点应在焊缝端部,宜大于10mm,不应随便打弧,打火引弧后应立即将焊条从焊缝区拉开,使焊条与构件间保持2~4mm间隙产生电弧。对接焊缝及时接和角接组合焊缝,在焊缝两端设引弧板和引出板,必须在引弧板上引弧后再焊到焊缝区,中途接头则应在焊缝接头前方15~20mm处打火引弧,将焊件预热后再将焊条退回到焊缝起始处,把熔池填满到要求的厚度后,方可向前施焊。 3.2.1.6 焊接速度:要求等速焊接,保证焊缝厚度、宽度均匀一致,从面罩内看熔池中铁水与熔渣保持等距离(2~3mm)为宜。 3.2.1.7 焊接电弧长度:根据焊条型号不同而确定,一般要求电弧长度稳定不变,酸性焊条一般为3~4mm,碱性焊条一般为2~3mm为宜。

3.2.1.8 焊接角度:根据两焊件的厚度确定,焊接角度有两个方面,一是焊条与焊接前进方向的夹角为60~75°;二是焊条与焊接左右夹角有两种情况,当焊件厚度相等时,焊条与焊件夹角均为45°;当焊件厚度不等时,焊条与较厚焊件一侧夹角应大于焊条与较薄焊件一侧夹角。 3.2.1.9 收弧:每条焊缝焊到末尾,应将弧坑填满后,往焊接方向相反的方向带弧,使弧坑甩在焊道里边,以防弧坑咬肉。焊接完毕,应采用气割切除弧板,并修磨平整,不许用锤击落。 3.2.1.10 清渣:整条焊缝焊完后清除熔渣,经焊工自检(包括外观及焊缝尺寸等)确无问题后,方可转移地点继续焊接。 3.2.2 立焊:基本操作工艺过程与平焊相同,但应注意下述问题: 3.2.2.1 在相同条件下,焊接电源比平焊电流小10%~15%。 3.2.2.2 采用短弧焊接,弧长一般为2~3mm。 3.2.2.3 焊条角度根据焊件厚度确定。两焊件厚度相等,焊条与焊条左右方向夹角均为45°;两焊件厚度不等时,焊条与较厚焊件一

屈服强度900 MPa级高强钢焊接工艺

第28卷第9期焊接学报V01.28No.92oo7年9月TRANSAC兀ONS0F7IH匮CHINA骊TEIDINGINgITnJ.110N&挚terrlber2007 屈服强度900MPa级高强钢焊接工艺 高有进1’2,王乘1,徐宗林2 (1华中科技大学水电与数字化工程学院,武汉4姗4 2.郑州煤矿机械集团有限责任公司。郑州450013) 摘要:针对煤矿机械用屈服强度900枷)a级高强钢板焊接工艺特点,研究了该钢材焊 接热影响区组织转变规律、焊接冷裂纹敏感性及焊接工艺参数对焊接接头组织性能的 影响。结果表明,黯嘞D钢有较强的淬硬倾向,焊接过程中应采取必要的措施防止焊 接冷裂纹的产生;焊接工艺参数对焊接接头组织和性能均有一定的影响,为确保焊接质 量,应合理控制焊接热输入量及焊道间温度。研究成果已成功应用于高端液压支架的 焊接。 关键词:900hⅡh;高强度钢;焊接工艺;液压支架 中围分类号:1鲫.儿文献标识码:A文章编号:哪一360x(2叫7)09一103—05向碉皿 0序言 随着国内综合采煤机械化水平的不断提升,高端液压支架需求量不断增大。为实现支架高强度和高可靠性要求,同时又尽量减轻支架重量,方便井下运输和安装,支架用钢材的强度也愈来愈高。为保证高端液压支架焊接接头的综合力学性能满足高强度高可靠性的设计及使用要求,达到国际先进水平,郑州煤矿机械集团有限公司与哈尔滨焊接研究所合作对高端液压支架上使用的屈服强度900胁级高 强钢板的焊接性、配套焊接材料及焊接工艺进行了研究,同时根据液压支架推移框架的结构特点,对sm咖D钢焊接的焊接工艺及接头性能进行了试验与评定。 1试验材料及试验方法 试验用屈服强度900MPa级高强钢板Sm900D 由上海三钢有限责任公司生产,交货状态为调质,钢板厚度20mm。试验钢板的化学成分及力学性能见表l。Sm900D钢配套焊接材料选用德国DR^HT.zL】GsrEIN公司生产的庐1.2I眦MEcA兀I.1100M无缝药芯焊丝,该焊丝符合美国AwsA5.28E120c—G标准要求,采用80%Ar+20%c02气体保护焊熔敷金属力学性能及扩散氢含量见表2。采用FoR.MAsroR—D型快速膨胀仪研究不同焊接热循环条件下焊接热影响区(HAz)过热区组织转变规律;插销冷裂纹试验按国家标准GB9446一1988规定进行,使用HCL一3Mc微机控制五头插销试验机。插销试件从20mm厚Sm靴D钢板的l/4处取,试件直径为≠6m,插销试件的缺口形式及尺寸见图1所示。插销试验采用断裂准则进行评定;斜Y坡口焊接裂纹试验按国家标准cB4675.1—89规定进行,试件焊后放置48h,进行表面、断面裂纹检查;几种不同焊接热输人量及不同焊道间温度下Sm900D钢对接接头性能试验的焊接工艺如表3所示,试板尺寸为加m×150Ⅲ×300m,采用单边300v形坡口;焊接接头冲击试验和焊缝金属拉伸试验按 表1s}仃∞0D钢板化学成分(质量分数.%)及力学性能 1曲b1Chem酬co呻0sni∞sandm∞怕n酬pr。pen酷afS卜n弓00Ds眙eIpI己岫 收稿日期:娜一循一∞照国家标准cB2650—2652—89规定进行;焊接接 头的组织采用标准的金相分析方法进行分析。  万方数据

双相不锈钢S焊接工艺评定报告

双相不锈钢S焊接工艺 评定报告 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

焊接工艺评定报告 PQR-2018-02 目录 1、焊接工艺评定指导书 2、焊接工艺评定报告 上海电气集团股份有限公司 2018年08月26日 表1预焊接工艺规程(P WPS)

表1(续)

焊道 / 焊层焊接 方法 填充金属焊接电流 焊接电 压(V) 焊接速度 (cm/min) 线能量 (KJ/cm)牌号 直径 (mm) 极性 电流 (A) 内1GTAW ER2209Φ正接110~15012~148~10/ 外1SMAW E2209-16Φ直、 反 90~12020~227~9~ 内2GTAW ER2209Φ正接110~15012~148~10/ 外2SMAW E2209-16Φ直、 反 120~16022~2510~12~ 内3GTAW ER2209Φ正接110~15012~148~10/ 技术措施: 摆动或不摆动不摆动摆动参数 / 焊前清理和层间清理焊前用不锈钢专用砂轮机将坡口表面及两侧各20㎜范围内的铁锈、油污等清 除 干净。焊接过程中要用专用砂轮机、钢丝刷等工具进行层间清背面清根方法 / 单道焊或多道焊(每面)多层焊+多道焊单丝焊或多丝焊单丝 导电嘴至工件距离(mm)钨极伸出长度3-5mm 锤击 / 其他: / 编制日 期 审核日期批准日期 表2焊接工艺评定报告 单位名称:上海电气集团股份有限公司 焊接工艺评定报告编号: PQR-2018-02 预焊接工艺规程编号: pWPS-2018-02 焊接方法: GTAW+SMAW 机械化程度:手工 接头简图:(坡口形式、尺寸、衬垫、每种焊接方法或焊接工艺的焊缝金属厚度) 母材: 材料标准 HSDH0204-2016 材料代号 S32304与 S32304相焊,相类、组焊后热处理: 保温温度(℃) / 保温时间(h) /

(完整版)钢结构焊接技术交底

钢结构安装技术交底记录

4. 焊接作业区环境温度低于0℃时,应将构件焊接区各方向大于或等于两倍钢板厚度且不小于100mm范围内的母材,加热到20%以上后方可施焊,且在焊接过程中均不应低于这一温度:实际加热温度应根据构件的构造特点、钢材类别及质量等级和焊接性能、焊接材料熔敷金属扩散氢含量、焊接方法和焊接热输入等因素确定,其加热温度应高于常温下的焊接预热温度,并由焊接技术责任人员制定作业方案经认可后方可实施。作业方案应保证焊工操作技能不受环境低温的影响,同时对构件采取必要的保温措施。 5.施焊前,焊工应复核焊接件的接头质量和焊接区域的坡口、间隙、钝边等的处理情况。当发现有不符合要求时,应修整合格后方可施焊。 6.焊前应对焊丝仔细清理,去除铁锈和油污等杂质。 7.熔嘴不应有明显锈蚀和弯曲,用前在250℃温度下烘干1h,在80℃左右存放。栓钉和配套使用的瓷环在使用前也应烘烤除湿。 8.焊丝的盘绕应整齐紧密,没有硬碎弯、锈蚀和油污。焊丝盘上的焊丝量最少不得少于焊一条焊缝所需焊丝量。 9.所有焊机的各部件应处于正常工作状态。 10.保证电源的供应和稳定性,避免焊接中途断电和电压波动过大。 11.焊工必须经考试合格并取得合格证良持证焊工必须在其考试合格项目及认可范围内施焊。 二、施工工艺 2.1 手工电弧焊 1.适用范围 凡电极的送给、前进和摆动三个动作都是靠手工操作来实现的,均称为手工电弧焊。它是熔化焊中最基本的焊接方法,具有设备简单,操作方便灵活等特点。广泛适用于桁架或网架(壳)结构、多层或高层梁、柱、框架结构等工业与民用建筑和一般构筑物的钢结构制作与安装焊接工艺,是目前焊接工业中最墓本、最主要的焊接方法。 2.操作工艺 (1)焊接参数的选择 1)焊条直径的选择 焊条直径主要根据焊件厚度选择,一般焊件的厚度越大,选用的焊条直径也越大。参见表7-1。 多层焊的第一层以及非水平位置焊接时,焊条直径应选小一点。在同样厚度条件下,平焊用的焊条直径可以比在其他位置用的焊条直径大一些,立、横、仰焊位置的焊条,最大直径一般不超过4mm。焊接固定位置管道环缝的焊条,为适应各种位置的操作,宜采用小直径焊条。对某些要求防止过热及控制限能量的焊件,宜选用小直径焊条。

常见钢焊接性

1.试述低碳钢的焊接性。 由于低碳钢含碳量低,锰、硅含量也少,所以,通常情况下不会因焊接而产生严重硬化组织或淬火组织。低碳钢焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。焊接低碳钢时可采取哪些措施消除应力裂纹? (1)降低消应力退火温度。(2)控制母材中V、B的含量。

⑶坡口形式将焊件尽量开成U形坡口式进行焊接。如果是铸件缺陷,铲挖出的坡口外形应圆 滑,其目的是减少母材熔入焊缝金属中的比例,以降低焊缝中的含碳量,防止裂纹产生。 ⑷焊接工艺参数由于母材熔化到第一层焊缝金属中的比例最高达30%左右,所以第一层焊 缝焊接时,应尽量采用小电流、慢焊接速度,以减小母材的熔深。 ⑸焊后热处理焊后最好对焊件立即进行消除应力热处理,特别是对于大厚度焊件、高刚性结 构件以及严厉条件下(动载荷或冲击载荷)工作的焊件更应如此。消除应力的回火温度为600~650℃。 若焊后不能进行消除应力热处理,应立即进行后热处理。 4.试述高碳钢的焊接工艺要点。 ⑴焊接性当高碳钢的碳的质量分数大于0.60%时,焊后的硬化、裂纹敏感倾向更大,因此 焊接性极差,不能用于制造焊接结构。常用于制造需要更硬度或耐磨的部件和零件,其焊接工作主要是焊补修复。 ⑵焊条选用由于高碳钢的抗拉强度大都在675MPa以上,所以常用的焊条型号为E7015、 E6015,对构件结构要求不高时可选用E5016、E5015焊条。此外,亦可采用铬镍奥氏体钢焊条进行焊接。 ⑶焊接工艺1)由于高碳钢零件为了获得高硬度和耐磨性,材料本身都需经过热处理,所 以焊前应先进行退火,才能进行焊接。 2)焊件焊前应进行预热,预热温度一般为250~350℃以上,焊接过程中必需保持层间温度不低于预热温度。 3)焊后焊件必需保温缓冷,并立即送入炉中在650℃进行消除应力热处理。 5.试述低合金高强钢的焊接性。 强度级别较低的低合金高强钢,如300~400MPa级,由于钢中合金元素含量较少,其焊接性良好,接近于低碳钢。随着钢中合金元素的增加,强度级别提高,钢的焊接性也逐渐变差,出现的主要问题是: ⑴热影响区的淬硬倾向含碳时较少、强度级别较低的钢种,如09Mn2、09Mn2Si、09MnV 钢等,淬硬倾向很小。随着强度级别的提高,淬硬倾向也开始加大,如16Mn、15MnV钢焊接时,快速度冷却会导致在热影响区出现马氏体组织。 ⑵冷裂纹低合金高强钢焊接时,热影响区的冷裂纹倾向加大,并且这种冷裂纹往往具有延迟 的性质,危害性很大。例如,材料为18MnMoNb钢壁厚115mm的一大型容器,由于预热温度不够,焊后在热影响区形成大量冷裂纹。 低合金高强钢的定位焊缝很容易开裂,其原因是由于焊缝尺寸小、长度短、冷却速度快,这种开裂属于冷裂纹性质。 ⑶热裂纹一般情况下,强度等级为294~392MPa的热轧、正火钢,热裂倾向较小,但在厚 壁压力容器的高稀释率焊道(如根部焊道或靠近坡口边缘的多层埋弧焊焊道)中也会出现热裂纹。电渣焊时,若母材的含碳量偏高并含镍时,电渣焊缝中可能会出现呈八字形分布的热裂纹。 强度等级为800~1176MPa的中碳调质钢(如30CrMnSiA钢),焊接时热裂的敏感性较大。 ⑷粗晶区脆化热影响区中被加热至1100℃以上的粗晶区,当焊接线能量过大时,粗晶区的 晶粒将迅速长大或出现魏氏组织而使韧性下降,出现脆化段。 6.试述低合金高强钢焊接时的主要工艺措施。 ⑴预热预热是防止裂纹的有效措施,并且还有助于改善接头性能。但预热会恶化劳动条件, 使生产工艺复杂化,过高的预热温度还会降低接头韧性。因此,焊前是否需要预热以及预热温度的确定应根据钢材的成分(碳当量)、板厚、结构形状、刚度大小以及环境温度等决定。

如何做好焊接工艺评定-评定的程序

如何做好焊接工艺评定-评定的程序 焊接工艺评定的程序是:编制和下达焊接工艺评定任务书—编制焊接工艺评定方案—焊制试件和检验试件—编制焊接工艺评定报告—根据焊接工艺评定报告编制焊接作业指导书(或称焊接工艺卡) 一、编制和下达焊接工艺评定任务书 任务书的主要作用是下达评定任务,因此,其主要的内容应为:评定目的、评定指标、评定项目和承担评定任务的部门及人员的资质条件等。 (一)评定指标的确定 根据规程和钢材的理论基础知识(焊接性)等,确定各项技术指标。按照《焊接工艺评定规程》 DL/T869的规定,要求焊缝金属的化学成分和力学性能(强度、塑性、韧性等指标)应与母材相当或不低于母材相应规定值的下限。 (二)评定项目的确定 根据工程的实际工作情况要求,按规程适用范围做好项目的相关覆盖,确定好评定项目。 焊接工艺评定的项目确定应从以下几方面来考虑: 1.钢材 焊接工程应用的钢材品种和规格繁多,如每种均进行“评定”,不但复杂且数量很多,为减少评定数量,且又能取得可靠的工艺,将钢材按其化学成分、冶金性能、焊后热处理条件、力学性能、规格、设计和使用条件等因素综合考虑.划分成类级别进行评定。按规程要求可以进行替代覆盖。 (1)钢材类级别划分 电力工业火力发电厂常用钢材按类级别划分,它们的划分方法是:按用途划分成A、B、C 等三个类别,而级别则以力学性能、化学成分和组织类型综合划分为I、Ⅱ、Ⅲ三个级别。几个规程钢材类别划法已统一,具体是: 1)碳素钢及普通低合金钢为一类,代号为“A”。其级别为: 碳素钢(含碳量≤0.35%)代号为:A I。 普通低合金钢(6 s≤400MPa)代号为:AⅡ。

高强钢焊接工艺的研究

Q420高强钢性能分析和焊接工艺研究 张宇 南通新华钢结构工程有限公司 摘要:通过对低合金高强度结构钢的焊接影响因素的分析, 为制定合理的焊接工艺提供了依据, 应用该工艺保证了低合金高强度钢的焊接效果。 关键词:焊接性;影响因素;工艺 引言 自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb、V、Ti等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢; (2)低合金高强度钢不再是“简易”生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。 高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能。如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。 1、焊接性试验的相关内容 试验目的 评价母材焊接性能的好坏,确定合理的焊接工艺参数。 试验方法 最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。 计算法(间接法):碳当量法、焊接裂纹敏感指数法。 式中: 焊接冷裂纹敏感性分析 钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。计算碳当量的公式很多,对于Q420钢,采用了国际焊接学会(IIW)推荐的非调质钢碳当量Ceq(IIW)计算公式(公式1)和日本工艺标准(JIS)推荐的碳当量Ceq(JIS)计算公式(公式2)进行计算。 根据JGJ81—2002规定:钢材碳当量小于,焊接难度一般;在—范围内,焊接程度较难。 热影响区最高硬度试验 热影响区最高硬度试验是以测定焊接热影响区的淬硬倾向来评定钢材的冷裂纹敏感性。试验按照—84《焊接热影响区最高硬度试验方法》的规定进行。 试验检测面经打磨抛光后,用2%硝酸酒精溶液浅腐蚀后,参照如图1所示。 图1 硬度的检测位置 斜Y坡口焊接裂纹试验 斜Y坡口焊接裂纹试验(小铁研)主要是评定焊接热影响区产生冷裂纹的倾向性。试参照—84《斜Y坡口焊接裂纹试验方法》的规定进行。试验焊缝结束后,经48小时后进行裂纹检查。

钢结构焊接技术要求

钢结构焊接技术要求 一、常规要求 1、焊工应经培训合格并取得资格证书,方可担任焊接工作。 2、重要结构件的重要焊缝,焊缝两端或焊缝交叉处必须打上焊工代号钢印。 3、焊前对焊件应预先清除焊缝附近表面的污物,如氧化皮、油、防腐涂料等。 4、在零摄氏度以下焊接时,应遵守下列条件: ①保证在焊接过程中,焊缝能自由收缩; ②不准用重锤打击所焊的结构件; ③焊接前需除尽所焊结构件上的冰雪; ④焊接前应按规定预热,具体温度根据工艺试验定。 5、焊接前应按规定预热,必须封焊主板(腹板)、筋板、隔板的端(厚度方向)及连接件的外露端部的缝隙; 6、钢结构件隐蔽部位应焊接、涂装、并经检查合格后方可封闭。 7、双面对接焊焊接应挑焊根,挑焊根可采用风铲、炭弧气刨,气刨及机械加工等方法。 8、多层焊接应连续施焊,每一层焊道焊完后应及时清理检查、清除缺陷后再焊。 9、焊接过程中,尽可能采用平焊位置。 10、焊接时,不得使用药皮脱落或焊芯生锈的焊条和受潮结块的焊剂及已熔烧过的渣壳;焊丝、焊钉在使用前应清除油污、铁锈。 11、施工单位对首次采用的钢材、焊接材料、焊接方法、焊后热处理等,应进行焊接工艺评定,写出工艺评定报告,并且根据评定报告确定焊接工艺。 12、焊工停焊时间超过6个月,应重新考核。 13、焊接时,焊工应遵守焊接工艺,不得自由施焊及在焊道外的母材上引弧。 14、对接接头、T形接头、角接接头、十字接等对接焊缝及对接和角接组合焊缝,应在焊缝的两端设置引弧和引出板,其材质和坡口形式应与焊件相同。引弧和引出的焊缝长度:埋弧焊应大于50mm,手工电弧焊及气体保护焊应大于20mm。焊接完毕应采用气割切除引弧和引出板,并修磨平整,不得用锤击落。 15、焊缝出现裂纹时,焊工不得擅自处理,应查清原因,订出修补工艺后方可处理。焊缝同一部位的返修次数,不宜超过两次,当超过两次时,应按返修工艺进行。 16、焊接完毕,焊工应清理焊缝表面的溶渣及两侧的飞溅物,检查焊缝外观质量。检查合格后,应在工艺规定的焊缝部位打上焊工钢印。 17、碳素结构钢应在焊缝冷却到环境温度、低合金结构钢应在完成焊接24小时以后,方可进行焊缝探伤检验。 二、根据焊接结构件的特点、材料及现场条件的可能,焊接方法可选择手工电弧焊、埋弧自动焊和二氧化碳气体保护焊。

超高强钢焊接注意事项

超高强钢焊接注意事项 为了降低结构自重、提高承载能力,低合金高强度钢在工矿机械上的应用越来越受重视。近年来屈服强度> 800MPa超高强度钢在国内的工程机械上被普遍采用,以满足工程机械向大型化、轻量化、高效能化方向发展的需求。由于超高强钢合金系统复杂、淬硬性较大,焊接时容易产生冷裂纹;此外超高强钢强度级别高,焊接过程中容易导致包括焊 接热影响区在内的焊接接头脆化。因此防止焊接冷裂纹产生、确保焊接接头具有优良的力学性能是该系列钢材的焊接技 术关键。 焊接材料的选择和匹配超高强度钢由于强度提高,钢材塑性、韧性相应下降。如果仍采用等强原则,选用高组配的焊接接头,焊缝的韧性不容易保证,将可能导致由于焊缝金属韧性不足引起低应力脆性破坏。因此高强钢焊接应采用等韧性原则,选择焊缝韧性不低于基体金属的低组配焊接接头比较合理。采用低强的焊缝金属并不总是意味着焊接接头的强度一定低于母材。根据多年来的焊接接头力学性能试验经验,只要焊缝金属的强度不低于母材的87%,仍可保证接头与母材等强。 当焊接较厚的超高强度钢板材时,在焊缝的不同部位应匹配不同强度级别的焊接材料。即:根部焊道采用低强度焊材打底、

填充与盖面焊道采用高强度焊材;对角焊而言通常采用低强焊材。选用低强焊接材料比选择高强焊接材料的优点在于,焊缝金属的塑韧性储备大、焊接接头延伸性能好,使接头产生裂纹的可能性减小。 超高强钢焊接时应选用超低氢焊接材料,熔敷金属的含氢量应不超过5 ml/100 g(水银法),以尽量减少焊接过程中由焊接材料带入焊接接头的氢含量。同时为了避免吸潮,焊接材料应根据规定进行储存,使用前按要求重新烘焙。预热温度的确定实际焊接过程中应特别重视对超高强度钢对接焊缝和根 部焊道的预热。钢板越厚,预热的必要性越大。预热温度与钢板的当量板厚相关,此外,预热温度应根据实际情况进行相应调整: (1)如果环境湿度大或温度低于5℃ ,则预热温度应再增加25℃ ;如果工件属刚性固定,预热温度也应相应增加; (2)在当量板厚小于极限值,工件温度低于5℃或空气湿度大于65%时,应将工件预热至50~80℃。焊接热输入控制焊接热输入量的变化将改变焊接冷却速度,从而影响焊缝金属及热影响区的组织组成,并最终影响焊接接头的力学性能及抗裂性。为了避免超高强钢焊接时产生焊接冷裂纹和焊缝热影响区韧性的降低,必须严格控制焊接热输入量,控制焊接冷却速度以得到理想的焊缝及焊接热影响区金相组织。冷却时间t8 /5是决定焊后超强钢的性能和焊接接头性能的一个

Q高强钢焊接工艺的研究

Q高强钢焊接工艺的研 究 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

Q420高强钢性能分析和焊接工艺研究 张宇 南通新华钢结构工程有限公司 摘要:通过对低合金高强度结构钢的焊接影响因素的分析,为制定合理的焊接工艺提供了依据,应用该工艺保证了低合金高强度钢的焊接效果。 关键词:焊接性;影响因素;工艺 引言 自20世纪60年代以来,低合金高强钢领域取得了惊人的进展,由此而形成了“现代低合金高强钢”,在合金设计及生产工艺诸方面导入了很多新的概念,主要的是:(1)Nb、V、Ti等强烈碳化物形成元素的应用,以及晶粒细化和析出强化为主要内容的钢的强韧化机理的建立,出现了新一代的低合金高强钢,即以低碳、高纯净度为特征的微合金化钢; (2)低合金高强度钢不再是“简易”生产的普通低合金钢,而是采用一系列现代冶金新技术生产的精细钢类,包括铁水预处理、顶底复吹转炉冶炼、钢包冶金、连铸、控扎控冷(热机械处理)等技术得到普遍应用,已成为低合金高强度钢的基本生产流程。 高强钢的焊接性能也是塔杆设计和制造部门比较关心的一个问题,这主要包括两个方面,一时裂纹敏感性,二是焊接热影响区的力学性能。如果焊接工艺不当,高强钢焊接时,有焊接热影响区脆化倾向,易形成热裂纹,冷却速度较快时,有明显的冷裂倾向。 1、焊接性试验的相关内容 试验目的 评价母材焊接性能的好坏,确定合理的焊接工艺参数。

试验方法 最常用的方法(直接法):焊接裂纹试验(冷裂纹试验、热裂纹试验、再热裂纹试验、脆性断裂)。 计算法(间接法):碳当量法、焊接裂纹敏感指数法。 式中: 焊接冷裂纹敏感性分析 钢材的焊接冷裂纹敏感性一般与母材和焊缝金属的化学成分有关,为了说明冷裂纹敏感性与钢材化学成分的关系,通常用碳当量来表示。计算碳当量的公式很多,对于Q420钢,采用了国际焊接学会(IIW)推荐的非调质钢碳当量Ceq(IIW)计算公式(公式1)和日本工艺标准(JIS)推荐的碳当量Ceq(JIS)计算公式(公式2)进行计算。 根据JGJ81—2002规定:钢材碳当量小于,焊接难度一般;在—范围内,焊接程度较难。 热影响区最高硬度试验 热影响区最高硬度试验是以测定焊接热影响区的淬硬倾向来评定钢材的冷裂纹敏感性。试验按照—84《焊接热影响区最高硬度试验方法》的规定进行。 试验检测面经打磨抛光后,用2%硝酸酒精溶液浅腐蚀后,参照如图1所示。 图1硬度的检测位置 斜Y坡口焊接裂纹试验 斜Y坡口焊接裂纹试验(小铁研)主要是评定焊接热影响区产生冷裂纹的倾向性。试参照—84《斜Y坡口焊接裂纹试验方法》的规定进行。试验焊缝结束后,经48小时后进行裂纹检查。

钢结构焊接工艺及要求

钢结构焊接工艺及要求 1焊接顺序 为了最大限度减少焊接应力对结构产生的影响,焊接顺序采取“单杆双焊,双杆单焊”的原则,主桁架两侧同时对称施焊,焊接方向从中间向两边逐渐扩散开来。 2 焊前准备 1人员准备及要求: 1)进行钢结构施工的所有作业人员必须经职业技能培训合格,取得焊工证,持证上岗。 2)施工作业人员进场后,必须及时登记造册,并在进场作业前进行培训,培训合格后方可进行作业。 3)项目部配置专门的钢结构工长,直接负责现场钢结构施工的生产安排和质量管理。 2措施准备: 1)编制钢结构焊接专项方案,明确施工方法、工艺参数、质量标准。 2)项目部管理人员根据焊接专项方案的要求,编制培训计划,组织相关人员参加培训。 3)明确质量验收程序,贯彻执行三检制度。 3材料准备: 1)材料管理: a.焊条必须有质量合格证明,并且在有效期内方可使用。

b.现场设专用焊材存放室,并保持室内干燥、整洁,存放在室内的焊材,必须按种类、型号、规格严格区分,并做好明显的标记,严禁乱堆乱放。 c.对于受潮、药皮褪色、脱落、焊芯有锈蚀的焊条不准使用。 2)焊条的烘烤和发放: a.为避免焊条药皮因温度陡降或剧升而开裂,烘箱的升温与降温应缓慢,不允许往正处于高温的烘箱内放入或取出焊条,应待焊条烘烤符合要求并降至保温温度后方可取出使用。 b.从烘干箱内取出的焊条,应盛装在保温筒内,数量应根据实际施焊需要而定。 c.从烘干箱内取出的焊条应在四小时内用完,剩余焊条需重新烘烤。重新烘烤次数不能超过两次。 3)对焊条烘烤人员的要求: a.焊条烘烤员应能区分不同型号、规格的焊条,熟悉各种焊条烘烤温度和恒温时间,熟练操作焊条烘烤设备。 b.每次烘烤焊条前,应在开包后认真检查焊条的型号是否正确,有无质量问题,确认无误后,方可放入焊条烘箱中进行烘烤。 c.负责焊条的领取、发放和回收,并做好焊条发放和回收记录、烘烤记录和环境监测记录。 4焊工交底 现场钢结构焊接前,必须对焊工和相关人员进行焊接技术交底。 1)焊工上岗必须持有有效的证件。 2)为了让安装班组及时掌握钢结构焊接要求,我们以班组为单位,对全班

EH36高强钢焊接工艺评定2G

EH36高强钢焊接工艺评定(2G) 、试板 ABS —EH36 t=65mm 65X250X600 一组两块(标示V) 二、焊接设备 CO2焊接 三、焊接材料 焊丝SQJ501 3Y (所用的材料必需要有ABS证书) 保护气体CO2 四、坡口形式 五、焊接位置 横焊 六、装配 装配钢板,焊缝间隙为0~2mm,定位焊条CHE50, ? 3.2,焊在板正面,定位焊长度20~30mm,间距150~200mm。 七、焊前预热温度80C ~150C; 层间温度< 150C; 焊后保温缓冷

八、焊接参数 九、试样 600 1、试板取样图 (1)试板取样前先要在取样部位打上ABS钢印 (2)将焊缝刨至与试板表面齐平。

(3) 用机械切割,相邻的两块试样中间隔 10mm 。 2、拉伸试样 (1) 拉伸试样加工后尺寸见下图。 (2) 试板编号为 V1,V2,V3,加工完成后编号钢印敲在 40x30mm 端面上。 (3) ABS 钢印需要在加工时先进行转移 3. 侧弯试样 (1) 侧弯试样加工后尺寸见下图。 (2) 试板侧弯试样编号为 V4、V5、V6、V7 ,受拉伸的一边倒圆角 1~2。完工后将编号钢印敲在10X65mm 端面上 ' R1~2

(3)ABS钢印要加工时先要进行钢印转移。 4、冲击试样 (1)冲击试样组1~5取样时从试板表面下2mm处开始,冲击试样组1 长度中心线在焊缝中心,冲击试样组2长度中心线为焊缝熔合线,冲击试样组3长度中心线距熔合线外侧1mm处,冲击试样组4长度中心线距熔合线外侧3mm处,冲击试样组5长度中心线距熔合线外侧5mm 处。取样时5组试样分别沿厚度方向取。 (2)、将各冲击试样组一剖为三,每只尺寸为10.4X10.4X55mm。冲击试样组1的三个冲击试样编号为V8-10;冲击试样组2的三个冲击试样编号为V11-13;冲击试样组3的三个冲击试样标号为V14-16;冲击试样组4的三个冲击试样标号为V17-19;冲击试样组5的三个冲击试样标号为 V20-22。 (3)、对冲击试样沿板厚方象在试样长度中心开V型槽,V型槽尺寸见节点。 10 J ■ 4

钢结构构件焊接技术要求及焊接技术

钢结构构件焊接技术要求 一、常规要求 1、焊工应经培训合格,方可担任焊接工作。 2、重要结构件的重要焊缝,焊缝两端或焊缝交叉处必须打上焊工代号钢印。 3、焊前对焊件应预先清除焊缝附近表面的污物,如氧化皮、油、防腐涂料等。 6、钢结构件隐蔽部位应焊接、涂装、并经检查合格后方可封闭。 7、双面对接焊焊接应挑焊根,挑焊根可采用风铲、炭弧气刨,气刨及机械加工等方法。 8、多层焊接应连续施焊,每一层焊道焊完后应及时清理检查、清除缺陷后再焊。 9、焊接过程中,尽可能采用平焊位置。 10、焊接时,不得使用药皮脱落或焊芯生锈的焊条和受潮结块的焊剂及已熔烧过的渣壳;焊丝、焊钉在使用前应清除油污、铁锈。 12、焊接时,焊工应遵守焊接工艺,不得自由施焊及在焊道外的母材上引弧。 13、对接接头、T形接头、角接接头、十字接等对接焊缝及对接和角接组合焊缝,应在焊缝的两端设置引弧和引出板,其材质和坡口形式应与焊件相同。引弧和引出的焊缝长度:埋弧焊应大于50mm,手工电弧焊及气体保护焊应大于20mm。焊接完毕应采用气割切除引弧和引出板,并修磨平整,不得用锤击落。 14、焊缝出现裂纹时,焊工不得擅自处理,应查清原因,订出修补工艺后方可处理。 15、焊接完毕,焊工应清理焊缝表面的溶渣及两侧的飞溅物,检查焊缝外观质量。 二、根据焊接结构件的特点、材料及现场条件的可能,焊接方法可选择手工电弧焊、埋弧自动焊和二氧化碳气体保护焊。 三、返修 1、焊接过程中或焊后发现缺陷必须及时返修。 2、焊缝缺陷可用风铲或碳弧气刨清除,对于淬火倾向大的钢材,使用碳弧气刨时必须将焊件预热至150℃以上。

3、发现缺陷,特别是裂纹应进行质量分析,找出原因,订出措施后返修,裂纹清除前应仔细查找其首尾,在尾端钻孔以防扩展,然后再清除、焊补。 4、要求焊后热处理的构件,应在热处理前返修,如果在热处理之后发现缺陷,待返修后应重新热处理。 四、焊接检查 1、焊接检查员应根据构件技术条件、工艺文件和本守则规定内容进行检查。 2、检查工作内容: ①焊前检查焊接材料、焊接零部件、构件及装配质量; ②焊接过程中检查焊接规范、焊接顺序和分段方法; ③焊后检查焊接质量、合格后打上检查员印记。 五、安全操作技术 执行《焊工安全操作规程》 六、焊后工作 1、焊件摆放整齐,堆放要安全,场地打扫干净。 2、填好交接班记录。 现场安装手工电弧焊焊接技术 一、本章适用于普通碳素结构钢(GB700—800)优质碳素结构钢(GB699—88),低

浅析超高强钢焊接

浅析超高强度钢的焊接 张勇 摘要:针对性地介绍了超高强度钢焊接时如何合理选择工艺参数、存在的主要问题、注意事项及应采取的预防措施。 关键词:超高强度钢;焊接;冷裂纹;疲劳 超高强度钢一般是指屈服强度大于700Mpa的细晶粒高强钢,如:HQ80(鞍钢)、STE690、STE890、STE960(德国)、WELDOX700、WELDOX900、WELDOX960、WELDOX1100(瑞典奥克隆德钢铁公司)等。其焊接存在的主要问题为:焊接氢致裂纹(冷裂纹)、焊接热影响区软化及韧性下降、焊接接头的疲劳等。本文针对高强钢焊接进行比较详细的分析和介绍。 1.高强钢焊接目标: 在焊接接头处获得适当的强度(抗拉强度和疲劳强度),在焊接接头处获得良好的韧性,避免产生冷裂纹。 2.防止冷裂纹措施 2.1 焊前预热 预热对对接焊缝和根部焊道最为重要,焊接过程中和焊接后的温度越高,则氢越易从钢中逸出;钢板越厚,预热的必要性越大,以补偿厚板更快的冷却速度,而且厚板比薄板的碳当量(CE)值更高。工件具体的预热温度和要求见表一与图一,如果不同钢种的焊接或所用焊材的碳当量比母材高,则预热温度由碳当量高的母材或焊材的碳当时决定。 2.2确保焊接面的清洁和干燥 产生冷裂纹的主要原因是有应力存在的焊缝金属中有氢的存在。焊件在组装前应彻底清除坡口表面及附近母材上的各种脏物(例如:氧化皮,铁锈,油污,水份等,这些脏物在焊接时分解出氢而导致焊缝产生延迟纹或气孔,使焊接接头性能受损),

直至露出金属光泽并保证清理范围内无裂纹与夹层等缺陷。 2.3减小构件内应力 通过采用良好的焊接顺序;合理组装,避免强力组对以减少构件的残余应力;焊接组装时应将工件压紧或垫置牢固,以防止因焊接受热而产生附加的应力和变形。 2.4选择含氢量小的焊接材料 选用的焊接材料其熔敷金属含氢量应小于5ml/100g;为了避免吸潮,焊接材料应根据厂家的规定进行储存,使用前按厂应家要求重新烘焙,以免工件在焊后或使用过程中产生延迟冷裂纹。 2.5焊后后热消氢处理 在焊接完成后,立即将焊件后热到150-250℃,并按每毫米板厚不少于5分钟进行恒温处理后缓冷(且总的恒温时间不得小于1小时),确保焊接接头中的残余氢能扩散逸出,减少延迟冷裂纹的产生。 2.5焊后热处理 进行焊后热处理是为了减少焊接残余应力,高强钢焊后一般不进行焊后热处理,热处理会使接头的某些机械性能下降,如:冲击韧性等。只有在设计规则有特殊说明时,方应进行焊后热处理。但应注意其焊后热处理温度不能超过其调质回火温度。 图一: 预热温度测量位置及当量板厚的确定 S3=0 S1= S2 钢板的当量板厚S K=S1+S2+S3,或至少为2倍板厚 S1=距焊缝金属75mm内的平均厚度

高强度钢焊接工艺

目录 1、概述 2、焊接高强度钢注意事项 3、操作要点 4、焊接材料的选用及焊接方法 5、定位焊及装配要求 6、焊接要求及施工工艺 7、手工焊及CO2焊接要点 8、焊缝缺陷的返修及补焊 9、焊接参数规范

高强度钢在船体焊接中的要点 1、概述 高强度钢建造的船舶其“应力水平”普遍高过一般强度钢,这样对船舶建造工艺水准提出挑战我们的工艺要求,工艺纪律不能随便。,随着我厂建造的大吨位单壳散货船临近开工在,对于高强度钢的焊接施工工艺方案采用正确与否直接涉及到船体焊接质量。对焊接程序、定位焊要求、焊缝缺陷返修补焊,以及手工焊、CO2焊、埋弧焊焊接规范参数都有一定要求,在此特编写如下: 2、使用高强度钢注意事项 (1)、标示:高强度钢标示所指是:AH32、DH32、AH36、DH36、EH36,钢板上必须有标示、构件上必须有标示。 (2)、预热:高强度钢在定位焊前必须预热,预热温度80℃-100℃,预热范围为板厚的5倍,但不小于100㎜。 (3)、保温:507焊条在烘箱拿出后使用必须放入保温筒,带入施工现场,且每4小时换用。 (4)、清洁:焊前必须对待焊的焊缝边缘宽30㎜内的氧化皮、油污等杂质清除干净,不能及时焊接,会使焊缝及焊缝边缘宽30㎜重新生锈或污染,焊前应重新清理。 (5)、焊接方法:必须采用多层多道层间温度100℃,同一层焊道的焊接方向要一致,各层的焊接方向相反,但接头要错开。 (6)、焊前应对CO2焊机送丝顺畅情况和气体流量作认真检查。 3、操作要点 1.垂直或倾斜的位臵开坡口的街头必须从下到上焊接,对不开坡口的薄板对接和立角焊可采用向下焊接;平、横、仰对接接头可采用坐向焊接法。 2.必须根据被焊接工件的结构及室外作业再风速大于1M/S时,选择合理的焊接顺序。 3.对接两端应设臵同板厚150*150的引弧和熄弧板。 4.有坡口的板缝,尤其是板厚是多道焊缝,焊丝摆动时再坡口的两侧应稍作停留,锯齿形运条每层厚度不大于4mm,以使焊缝熔合良好。 5.应经常清理软管内的污物及喷嘴的飞溅,送丝软管焊接时必须拉顺,不能盘曲,送丝软管半径不小于150mm,施焊前应将送气软管内残存的不纯气体排出。 6.根据焊丝直径正确选取焊丝导电阻,导电阻磨损后孔径增大,引起焊接不稳定,需重

相关主题
文本预览
相关文档 最新文档