当前位置:文档之家› 国内外路用探地雷达性能概述

国内外路用探地雷达性能概述

国内外路用探地雷达性能概述
国内外路用探地雷达性能概述

国内外路用探地雷达性能概述

摘要:本文调研了国内外主要道路用探地雷达(GPR)生产厂家及其检测能力,提出适宜路用雷达天线中心频率范围,为工程和研究人员合理选用探地雷达的提供参考。

关键词:道路工程探地雷达(GPR)天线性能

1 概述

探地雷达(GPR)检测路面和桥面板,可给出定性、定量的结果,用于快速、可靠的评定路面、桥面状况,是一种非常经济、高效的检测手段。随着科学技术的进步,特别是分析处理软件的进一步开发和完善,雷达必将在公路快速检测中应用越来越广。

2 ASTM和AASHTO雷达标准简介

由于国内目前尚没有专用的雷达路面桥面检测标准规范。大多依赖厂家的软件、资料和参照美国ASTM 和AASHTO等测试方法和标准。

1)ASTM D4748—98《使用短脉冲雷达测定组合路面层厚度测试方法标准》(Standard Test Method for determining the thickness of Bound Pavement Layers Using Short—Pulse Radar)。本规程包括使用短脉冲雷达进行组合路面层厚度无损检测。本方法的精确度和适应性取决于雷达系统的穿透性、分辨率和介电常数。

2) ASTM D6097—97el《使用地面探测雷达评定沥青铺层混凝土桥面板测试方法标准》,本规程包括可用于评定铺有沥青混凝土磨耗层的混凝土桥面板状况的步骤,尤其是判断是否存在剥离。最严重的损坏是由内部钢筋的锈蚀引起的。

3)ASTM 06432—99 《使用地表面探测雷达方法进行地下勘探标准指南》(Standard Guide for using the Surface Ground Penetrating Radar Method for Subsurface Investigation),本指南是脉冲雷达方法的概述,而不是理论、测试步骤和数据解释的详细资料,限于地表面雷达探测的一般用途。

4)AASHTO TP36《使用脉冲雷达评定沥青加铺层混凝土桥面板测试方法标准》(Standard Test Method for Evaluting Asphalt-Coverd Concrete Bridge Decks using pulse Radar),本标准基于SHRP成果2015,内容基本与ASTM6087相同。

3国内外雷达(GPR)生产厂家及路面雷达性能调查

3.1 加拿大Sensers&Software公司PULSE RODAR路面雷达系统

RODAR是Pulse雷达公司研制的专利产品,大范围的天线频率(50 MHz-3

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

探地雷达在公路检测中的应用

探地雷达在公路检测中的应用 发表时间:2018-09-17T15:24:06.533Z 来源:《基层建设》2018年第25期作者:朱学荣 [导读] 摘要:探地雷达是探测地下目标的无损探测技术,具有探测速度快、分辨率高、可连续探测、操作方面灵活、费用低等特点,在我国工程勘察中应用愈发广泛。 身份证号:62012119660228XXXX 摘要:探地雷达是探测地下目标的无损探测技术,具有探测速度快、分辨率高、可连续探测、操作方面灵活、费用低等特点,在我国工程勘察中应用愈发广泛。现就探地雷达勘探技术工作原理、测量参数以及探地雷达在公路检测中的应用展开总结性分析,以提升业内同行对探地雷达的应用认知。 关键词:探地雷达;公路检测;工作原理;测量参数;应用 交通是国民经济发展中的基础产业,所谓“交通带来经济”,不仅提升了国民生活水平,同时也加速了整个社会经济的发展。加强公路工程质量、运行状态的检测,是维持我国公路建设发展的重要内容,同时也是确保交通安全的重要途径[1]。探地雷达技术的研发在公路检测工作中起到了重要作用,保障了公路工程质量与公路工程的实时维修,减少了因质量引起的重大事故,现就探地雷达在公路检测中的应用展开分析,提出几点对该技术的认识,为业内同行提供参考。 一、探地雷达勘探技术的应用原理 探地雷达(Ground Penetrating Radar,GPR)又被称为探测雷达、地下雷达、地质雷达、脉冲雷达等,指的是面向地质勘探目标,借用高频脉冲电磁对地质目标内部结构的探测方法,具有高精度、高效率、无损等特点。探测中通常具备发射部分与接收部分,前者主要用于高频脉冲的产生与发射,而接收部分则由接收机、信号方法器、接收天线、信号处理等设备组成,主要借用电磁波对不同介质的折射、绕射、反射、散射、吸收等物理现象完成检测,其应用机理主要为:借助不同频率电磁波可随着不同介质传播速度差异性等特点,探地雷达通过向地下发射高频电磁波,以获得低些不同介质的反射波,并完成信息的分析,最终绘制出该区域雷达图形,以便于工程施工期间对地下介质实际情况的了解。 在公路工程检测期间,公路基层、面层、路基等材料介电常数均不同,这为探地雷达的实际应用创造了先决条件。电磁波在传播期间,在遇到差异性介电常数时可出现反射情况,介质的不同介电常数也不一致,如空气介电常数多为1,公路面层沥青、混凝土则分别在4~7左右,公路路基、基层则多数超过8[2]。此类明显的介电常数划分为探地雷达监测提供了重要技术支持。通过获悉电磁波反射时间、脉冲波形。、速度等测量,可准确获得公路各项基线参数,以此判定异常物位置,路基密实程度、路面材料厚度等。 二、探地雷达测量参数影响 1、地界面的回波 探地雷达检测中,界面回波信号是反应道路介质的主要参数,但由于公路原始波形相对复杂,如何区分路面与路基反射回波,是探地雷达技术的主要探究内容。事实上,目前绝大多数干扰波表现稳定,在实际勘探期间均有对应的措施进行干预,减少对反射波的影响。在探地雷达的使用中可对含界面反射波、非含界面反射波予以不同回波信号分析,以便确定底界面回波信号,获悉底界面回波时间,值得注意的是,操作中需充分应用已获得探测点进行探测参考,并比对探测图像中多个探测点,或利用已获得的反射波形展开区分、确定。 2、确定地面零点 如何确定地面零点是公路工程测量中重要内容,可对道路地面厚度检测结果造成直接影响。实际工作期间,主要借助金属板进行地面零点的确定,即:于天线下方置放金属板,以此在显示屏中获得全反射波形,通过比对雷达波与路面发射波,以确定地面零点情况。 3、标定介电常数值 路面介电常数值在很大程度上直接决定了路面厚度值的准确性,在探地雷达勘探中意义重大。但因路面材料结构、密实程度、潮湿度等因素差异,均会对路面介电常数值造成影响,以至于引起整个探地雷达勘探作业的正常开展。因此,在钻孔取样中应选在探测图像均匀的地方标定介电常数值,以确保检测结果的可靠。其次,特殊地段,如面层较厚与较薄的介电常数值同样存在差异性,因此在取样标定期间,需选择对应的介电常数值,以确保探测精度,不仅如此,在整个施工前,应综合考虑整体路面的结构变化与材料更换情况,以保证介电常数准确性。 4、正确选择天线频率 探地雷达在勘探期间,路面厚度的不同可对其天线频率造成影响,如高速路段的建设,其路面硬度要求为25.0cm,而普通路面厚度则仅需15.0cm即可,因此施工期间其具体数值应选择适宜的天线中心频率,以满足施工期间对接受天线的要求,保证反射波清晰与最佳探测效果。另外酌情考虑天线宽度与路面最小尺寸对天线频率造成的影响。 三、探地雷达勘探技术的应用 1、检测路面层厚 在整个公路工程质量的评估中,公路路面厚度是主要评价内容,采用探地雷达技术检测公路路面厚度具有必要性,是确保公路面层厚度符合工程设计的关键,同时利于公路后续的使用、维护、修复等工作的开展。在检测路面厚度中,探地雷达主要利用电磁波在曾界面反射时间、传播速度等因素综合考量,并随着探地雷达设备、仪器、技术等进步,为整个检测工作精确性提供了助力。探地雷达在使用中其无损性优势,在很大程度上避免了传统钻孔取芯的局限性,如减少对路面的损害、增加了施工工作量、降低了工作效率等。在有关数据调查中显示,我国探地雷达检测路面厚度误差率仅在3.0%左右,在保留检测客观性、准确性的基础上,减少了人力与经济的不必要浪费[3]。 2、总结路基病害 路基病害是造成整个公路质量的基础因素,广泛存在于现实工程中,不仅可导致面层;裂隙、层面脱空等路面变化,甚至引起面层二灰结石层、路床及其床下软弱,对整个公路造成更大危害性。探地雷达勘探利用电磁波探测,可发现路基沉降等引起的空洞、暗穴、坍塌等现象,并确定地基软弱层位置,了解其软弱层影像因素,制定有效的解决方案[4]。 3、检测维修质量 公路建设完成后,加强对公路质量的维修、维护是确保工程使用安全的保障,探地雷达勘探技术可实现地质的快速探测,了解公路病害有无针对性解决,加上探地雷达实时成像技术,在公路维修质量方面具有重要意义。

解读我国探地雷达的应用现状及展望

解读我国探地雷达的应用现状及展望 发表时间:2019-04-26T16:27:00.530Z 来源:《基层建设》2019年第4期作者:李柯辉[导读] 摘要:本文从建筑工程质量检测、岩土工程勘察及地质勘探、城市基础设施探测、公路、铁路质量检测、水利工程探测、考古探测、军事及安全领域等方面,对我国探地雷达的应用现状进行了说明,并阐述了我国探地雷达的应用展望,以期为促进我国对探地雷达技术的更好应用,推动我国更多领域的发展提供参考。 广东省公路工程质量监测中心广东广州 510500摘要:本文从建筑工程质量检测、岩土工程勘察及地质勘探、城市基础设施探测、公路、铁路质量检测、水利工程探测、考古探测、军事及安全领域等方面,对我国探地雷达的应用现状进行了说明,并阐述了我国探地雷达的应用展望,以期为促进我国对探地雷达技术的更好应用,推动我国更多领域的发展提供参考。 关键词:探地雷达;应用现状;展望引言 就探地雷达而言,其在我国之中也被称为地质雷达,于应用方面主要是通过对频率在106到109Hz的超高频脉冲电磁波的利用,来实现对地下介质所具有的分布特征方面的有效探测的一种地球物理方法,且在近年来的不断发展之中,其在应用范围方面也愈加广阔,呈现出一片大好的应用前景。 一、我国探地雷达的应用现状 (一)在建筑工程质量检测之中的应用对于建筑工程领域而言,其一系列工作的开展,都需要相应的数据作为支撑,也就是说其对于数据本身的可靠性方面的要求较高,但就实际情况而言,其中包含了很多具有较高隐蔽性的工程,若仅仅通过常规手段展开数据的获取,则存在较大的困难。但就我国当前阶段的探测雷达技术应用而言,其在建筑工程质量检测领域之中的应用具有较为良好的成效,能够对以上的问题良好的解决,其能够针对建筑工程建设施工之中,缺陷部位与完好部位介质之间的介电常数差异性的对比,来对其中存在的较为隐蔽的质量缺陷良好的探测出来,以便于对缺陷部位问题进行及时的了解及补救。在探地雷达技术实际应用于建筑工程质量检测之中时,其往往是在建筑物的结构及探伤、混凝土浇筑的质量、保护层厚度及其中钢筋的分布情况等方面发挥相应的探测作用。 (二)在岩土工程勘察及地质勘探之中的应用在岩土工程勘察及地质勘探工作的开展之中,常规的地质勘查方法都是以钻孔勘查为主,其虽然发挥了一定的作用,但因勘查的过程之中其钻孔的数量毕竟有限,使之难以对工程建设开展区域地下地层的分布情况及相应的特征全面的掌握,这便会对工程实际的建设开展带来一定的质量及安全方面的隐患。此时,在建设所在区域地质勘查工作之中对探地雷达加以应用,能够对其快速且大面积普查的优势加以发挥,进而能够对传统钻孔勘查的缺陷加以弥补,实现对地下之中的障碍物分布情况、回填土所具有的厚度、地下断裂发育以及地层分层特征等方面的情况及内容拥有较为全面的了解,进而能够为岩土工程整体设计施工的开展提供有利依据。此外,在实际开展岩土工程勘察及地质勘探时,将探地雷达技术与其他技术相结合,能够实现对地基及矿产资源调查、地层划分、断层及断裂查找、水文地质勘察等方面情况的良好勘察,以便于拥有更高依据的开展施工操作。 (三)在城市基础设施探测之中的应用在城市整体的运行过程之中,其基础设施探测工作的开展必不可少,且所包含的内容较多,有地下空洞、金属及非金属管线探索、突发工程事故抢险、城市路面坍塌等等,但又因为城市之中本身的环境条件较为复杂,存在电磁干扰、机械振动等多方面的干扰源,致使大多数探测方法的开展都难以达到相应的探测效果。此时,应用探地雷达技术其本身的天线具有一定的屏蔽功能,使之能够无惧干扰正常开展探测工作,尤其是在桩基及复合地基等基础工程之中,能够实现对地基加固效果方面的准确检测。 (四)在公路、铁路质量检测之中的应用随着近年来我国公路及铁路领域的飞速发展,因探地雷达技术本身所具有的优势,使之在以上领域之中获得了较为广泛的应用,对其分别进行说明,则可分为以下几点。第一点,在公路建设方面,充分发挥了探地雷达的探测精度及速度方面的优势,使之能够在公路路基、路基病害检测、桥梁结构及沥青厚度的检测方面良好的发挥作用,经由相应的雷达图像,能够实现对缺陷部位的清晰观看。第二点,在铁路建设方面,探地雷达技术已经在包括翻浆、裂缝、孔洞等在内的路基病害检测、路基岩溶、采空区等方面的探测工作之中发挥了作用,并达到了较为良好的应用效果。就近年来的发展情况来看,探地雷达于铁路路基领域之中的应用,已经由原本的未经运营状态之下得到铁路线路探测,逐渐向处于通车运行状态之下的铁路线路方向发展,且正在着力开展轨道车载式铁路路基质量检测系统的大力研发工作[1]。 (五)在水利工程探测之中的应用就探地雷达技术而言,其在我国水利工程领域之中的应用,主要是在工程开展前期的滑坡体与基岩埋深方面的勘察工作,中期的水利工程施工质量、堤坝隐患探测等方面的应用,不仅仅能够对整体的施工开展及施工质量提供保障,还能够对施工整体的进度及质量控制工作的开展达到一定的促进作用。其中,探地雷达应用效果最佳的便是在水利工程的质量检测及地把隐患问题的探测方面,仅仅在这两个方面的应用,便已经帮助水利工程建设解决了诸多的施工问题[2]。 (六)在考古探测之中的应用在考古这一领域之中,探地雷达技术的应用本身便拥有较高的优势,其能够通过其优越的低下探测能力,实现对低些埋藏物、地下墓穴、古遗址及古文化层埋深等方面的良好探测及调查,进而能够提升考古的整体水平,但就当前阶段的发展而言,虽然我国于此方面的起步较晚,但到目前为止已经取得了一定的成就,如我国的中国地质大学便利用这一技术,开展了针对位于甘肃省的敦煌莫高窟这一古遗迹的探索及研究工作。 (七)在军事及安全领域之中的应用就我国而言,与国外的许多国家相比,将探地雷达技术应用于军事及安全领域的开展年限较短,于我国而言仍旧属于拓展及探索领域,到目前为止其主要是在建筑物内的隐蔽物、地下隐蔽物及战争遗留未爆炸物等方面的探测之中加以应用,可以达到较好的开展效果,具有较好的应用前景。

合成孔径声纳概述

合成孔径声纳 合成孔径声纳的研究起源于五十年代末期,但直到八十年代以后,合成孔径声纳的研究才逐步全面展开。目前国际上只有少数国家和地区研制出了合成孔径声纳原型机并进行了海上试验。 合成孔径声纳是一种新型高分辨水下成像声纳,合成孔径雷达原理推广到水声领域,就出现了合成孔径声纳。其基本原理是利用小孔径基阵的移动,通过对不同位置接收信号的相关处理,来获得移动方向(方位方向)上大的合成孔径,从而得到方位方向的高分辨力。从理论上讲,这种分辨力和探测距离无关。直观地说,距离越大,合成孔径长度就越长,合成阵的角分辨率就越高,从而抵消了距离增大的影响,保持了分辨力不变。 但合成孔径声纳作为一种水下成像设备,受水下复杂条件的影响,有不同于合成孔径雷达的特点。首先是声传播信道的非理想性比合成孔径雷达中电磁波传播的严重;其次是声纳拖体的运动稳定性比合成孔径雷达要差得多;再者因为声速大大低于电磁波在空间的传播速度,从而大大限制了拖体运动的速度;最后由于声纳中常采用宽带信号而使雷达中的一些窄带信号处理方法在合成孔径声纳中不再适用,需对已有的算法进行改进或研究新的算法。这正是合成孔径声纳研究极富挑战性之所在。 合成孔径声纳系统一般由三个分系统组成:1)声纳分系统,由合成孔径声纳基阵、发射机、接收机、数据采集、传输和存储子系统、声纳信号处理机和显控台等组成;2)姿态与位移测量分系统,由姿态、位移测量系统和GPS等组成;3)拖曳分系统,由绞车、拖缆和拖体等组成。 合成孔径声纳可以用于水下军事目标的探测和识别,最直接的应用就是进行沉底水雷和掩埋水雷的高分辨探测和识别。在国民经济方面,可以用于海底测量、水下考古和搜寻水下失落物体等,尤其可以进行高分辨海底测绘,对数字地球研究具有重要意义。 综合声纳技术研究室"九五"期间在国家863项目支持下,研制出国内第一套合成孔径声纳湖试样机。 合成孔径声纳成像算法 合成孔径声纳成像算法分为聚焦处理和非聚焦处理算法。这里只要介绍聚焦算法。聚焦处理成像算法较多,主要包括数字波束形成算法、距离-多普勒(R-D)算法、波数域(w-k)算法和调频变换(Chirp-Scaling)算法等。 波束形成算法 这种方法是一种逐点计算像素值的方法。根据声纳拖体运动过程中发射信号和接收信号传播路径的几何关系,计算出运动轨迹上各个接收位置的时间延迟或相位差,通过延时补偿后迭加的方法得出各像素点的值,从而得到合成孔径声纳的图像。这是一种逐点算法,计算量很大,适用于宽带信号的情况。 距离-多普勒(R-D)算法 这种算法首先对时域匹配滤波后得到的原始数据进行空间波数域变换,得到距离-多普勒域的结果,然后在距离-多普勒域通过数据的重排补偿时延的变化,最后实施横向空间压缩,从而获得最终的合成孔径的图像。这是一种逐线处理算法。 波数域(w-k)算法 这种算法把脉冲压缩后原始数据的图像经过二维付氏变换得到频率-波数域的图像,对这个图像进行适当处理后,在进行一种称作Stolt映射的变换,就得到了直角坐标的纯波数域的像,最后再经过二维逆付氏变换,就得到了最终合成孔径的图像。这是一种数据成块处理的算法,因而效率很高,适用于宽带信号的情况。

路用探地雷达在公路病害探测中的应用

路用探地雷达在公路病害探测中的应用 路用探地雷达在公路病害探测中的应用路用探地雷达在公路病害探测中的应用 黄成1,王正2,俞先江2 (1.中国铁建港航局集团有限公司,广东珠海519020;2.中设设计集团股份有限公司,江苏南京210005) 摘要:在公路改扩建或常规性养护定期检测中,采取常规的手段比较难以发现路面 结构内部病害。文章结合数值模拟和理论分析,研究探地雷达在公路路面病害探测中的应用,分析了路面内部结构不同病害的典型频谱图和波形特征,并将研究成果应用于工程实 践中,取得了良好的效果。文章研究成果有助于更方便的应用探地雷达对路面病害进行探测,从而为公路的改扩建和常规养护提供参考和建议,同时对探地雷达在公路路面的广泛 应用也有一定的促进作用。 关键词:探地雷达;路面;病害;探测 探地雷达的发展伴随着高速公路的建设应运而生,探地雷达(Ground Penetrating Radar,简称GPR,又称地质雷达),是应用地球物理学的一个新的分支,从20世纪80年代后期开始应用于公路检测。探地雷达检测技术具有快速高效、无损、高精度、操作方便、检测内容丰富等优点,逐渐受到公路部门的重视,并在公路质量检测中得到越来越广泛的 应用。探地雷达除了常规的应用于路面结构层厚度检测外,还能够对路面内部结构的脱空、空洞、裂隙、沉陷和严重疏松等病害隐患进行探测,能够较全面的反映出路面内部结构技 术状况,具有实时连续、高精度、快速和无损等特点。 1 探地雷达检测原理 探地雷达是通过向地下发送一种高频宽带电磁波。电磁波在地下介质传播过程中,当 地下目标体的介质存在差异时,如脱空、空洞、富水、分界面,电磁波就会发生反射。在 对反射雷达波进行处理和解译的基础上,根据接收到的雷达波形、强度、介电常数、双程 走时等参数进而推断地下目标体的空间位置、结构及几何形态,进而对地下隐蔽目标物的 探测。 探地雷达由主机、天线、电缆以及打标器等组成,针对路面结构病害检测时,一般选 取400MHz、900MHz的天线,探测深度在1.5m以内,能够满足检测要求。 探地雷达探测示意图如图1所示。探地雷达进行地下目标体检测时,理论基础为反射 系数R,它依赖于介质波阻抗之间的差异性。 图1 探地雷达探测示意图

真实和合成孔径雷达

Real and Synthetic Aperture Radar
Real Aperture Radar (RAR) flight direction
azimuth Synthetic Aperture Radar (SAR) flight direction
azimuth
1

Spatial Resolution (1)
2

距离分辨率 与真实孔径雷达距离向分辨率相同。但由于真实孔径 机载雷达一般用短脉冲来实现距离向分辨率,而合成孔 径雷达通常用带宽(脉冲频率的变化范围)为B的线性调 频脉冲来实现作用距离向的良好分辨率。
δr =
1 c cτ = 2 2B
Spatial Resolution (2)
For Real Aperture Radar (Side-looking Radar)
razimuth ?
λR
l cτ 2 sin θ
rground ? range =
For Synthetic Aperture Radar (SAR)
razimuth ?
l 2 c 2 B sin θ
rground ?range =
3

Rr =
τc
2 cos γ
=
ground Range resolution
pulse length × speed of light 2 cos ( depression angle )
Range Resolution (2)
4

雷达技术概述

雷达技术的发展历程及其在现代战争下的发展趋势研究 摘要:文章简要介绍了雷达系统和技术的发展历程,分析了雷达系统与技术发展的特点,提出了现代战争下雷达技术发展展望。 关键词:雷达技术相控阵合成孔径发展历程发展趋势 引言 自从雷达诞生至今,在70 多年的发展历程中,随着科技的不断发展、需求的不断变化,出现了多种体制的新功能雷达,雷达的技术性能、体积和重量、可靠性、维修性、抗恶劣环境的生存能力等也发生了天翻地覆的变化。特别是其在现代战争中的广泛应用,使得对雷达技术的研究具有了重要的意义。 一、雷达系统与技术的发展历程 1.20 世纪30 年代及以前 19 世纪后期,物理学家麦克斯韦、法拉第和安培等人,预言并用数学公式描述了移动电流产生的电磁波的存在情况。1935 年英国和美国科学家第一次研制出能够探测空中飞机的实用米波雷达,至此宣告了雷达的诞生。1936 年美国海军研究实验室研制了T / R (收发)开关,可使雷达系统的接收和发射分系统共用一副天线,大大简化了雷达系统结构。1939 年英国科学家发明了大功率磁控管,克服了甚高频雷达波束和频带窄的缺点,使实用雷达步入了微波频段。 2.20 世纪40 年代 20 世纪40 年代美国辐射研究室把微波新技术应用于军用机载、陆基和舰载雷达取得成功,其代表产品是SCR -270 机载雷达、SCR -584 炮瞄雷达和AN / APQ-机载轰炸瞄准相控阵雷达。20 世纪40 年代主要的雷达技术有动目标显示技术、中继技术以及单脉冲跟踪技术理论的提出。动目标显示技术应用于各型对空警戒雷达,后来应用于着陆引导、岸防等型雷达,其优势是能有效抑制地海杂波,抑制大山、建筑物、风雨雪等静止和慢动目标的干扰能将机载情报传送到地面观测站,能有效加强地空之间的信息联系。 3.20 世纪50 年代 20 世纪50 年代是雷达理论发展的鼎盛时期,雷达设计从基于工程经验阶段,进人了以理论为基础,结合实践经验的高级阶段。50 年代产生的主要理论有匹配滤波器概念、统计检测理论、模糊图理论和动目标显示理论等。各种新技术的应用,出现了诸如脉冲多普勒雷达、合成孔径雷达等新休制雷达。 4.20世纪60年代 20 世纪60 年代雷达系统发展的主要标志是数字处理技术革命和相控阵雷达的应运而生。为了探测洲际弹道导弹,为防空系统提供预测情报,产生了相控阵雷达体制。新一代雷达发展方向是全固态电扫相控阵多功能雷达。雷达信号和数据处理的数字化革命、半导体元件、大规模和超大规模集成电路的应用,使雷达技术的发展日臻完善并达到比较高的水平。

合成孔径雷达(SAR)

合成孔径雷达(SAR) 合成孔径雷达(SAR)数据拥有独特的技术魅力和优势,渐成为国际上的研究热点之一,其应用领域越来越广泛。SAR数据可以全天候对研究区域进行量测、分析以及获取目标信息。高级雷达图像处理工具SARscape,能让您轻松将原始SAR数据进行处理和分析,输出SAR 图像产品、数字高程模型(DEM)和地表形变图等信息,应用永久散射体PS、短基线处理SBAS等方法快速准确地获取大范围形变信息,并可以将提取的信息与光学遥感数据、地理信息集成在一起,全面提升SAR数据应用价值。 基本概念 合成孔径雷达就是利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达,也称综合孔径雷达。合成孔径雷达的特点是分辨率高,能全天候工作,能有效地识别伪装和穿透掩盖物。所得到的高方位分辨力相当于一个大孔径天线所能提供的方位分辨力。 分类 合成孔径雷达可分为聚焦型和非聚焦型两类。用在飞机上或空间飞行器上可有几种不同的工作模式,最常见的是正侧视模式,称为合成孔径侧视雷达;此外还有斜视模式、多普勒波束锐化模式和定点照射模式等。如果雷达保持相对静止,使目标运动成像,则成为逆合成孔径雷达,也称距离-多普勒成像系统。合成孔径雷达在军事侦察、测

绘、火控、制导,以及环境遥感和资源勘探等方面有广泛用途。 发展概况 合成孔径的概念始于50年代初期。当时,美国有些科学家想突破经典分辨力的限制,提出了一些新的设想:利用目标与雷达的相对运动所产生的多普勒频移现象来提高分辨力;用线阵天线概念证明运动着的小天线可获得高分辨力。50年代末,美国研制成第一批可供军事侦察用的机载高分辨力合成孔径雷达。60年代中期,随着遥感技术的发展,军用合成孔径雷达技术推广到民用方面,成为环境遥感的有力工具。70年代后期,卫星载合成孔径雷达和数字成像技术取得进展。美国于1978年发射的“海洋卫星”A号和80年代初发射的航天飞机都试验了合成孔径雷达的效果,证明了雷达图像的优越性。空中SAR概况 1. 1951年, Carl Wiley 首次提出利用频率分析方法改善雷达的角分辨率. 2. 1953年, 伊利诺依大学采用非聚焦方法使角度分辨率由4.13度提高到0.4度,并获得第一张SAR图像. 3. 1957年, 密西根大学采用光学处理方式, 获得了第一张全聚焦SAR图像. 4. 1978年, 美国发射了第一颗星载Seasat-1. 5. 1991年, 欧洲空间局发射了ERS-1. 6. 1995年, 加拿大发射了Radarsat-1.

【科普】考古作业过程及探地雷达的应用需求

考古作业过程及探地雷达的应用需求 我公司专业从事文物考古勘探工作,最终目的,在于确定文物局指定的考古勘探现场地下,是否存有文物古迹,是否具有挖掘价值,提供可靠依据,目前主要采取洛阳铲进行考古勘探,我们打算下一步在使用洛阳铲的同时,采用雷达考古勘探技术,并希望贵公司设计制作雷达考古勘探技术的相关软件。使我们在使用该技术时,对于雷达探测的数据进行技术分析,达到考古价值的确认。  现将洛阳铲的工作原理和用法提供如下,以便贵方制作相应软件时参考。  洛阳铲由两个部分组成,U型的金属铲身和一个长柄。铲身一般5至20厘米,长20至40厘米,铲柄的长度则根据使用者的需要而制造。据说制作洛阳铲有制坯、煅烧、热处理、成型、磨刃等20多道工序,因为如果弧度不对,铲进土中无法带出土来。  其实洛阳铲并没有使用非常复杂的科技,利用U型管插入取物也并非新鲜的事情。南方米行查验米粮品质常用的工具就是一个U型或者圆形钢管,插入米袋之后可以带出米袋内的米粒,用以抽检米粮的品质。这无非是利用颗粒受压进入U型管之后相互挤压的张力,使之固定在管内无法移动。  好的洛阳铲要求刃口锋利硬度高,即便铲中石块等物体也不卷刃缺口。铲身要具有一定的韧性,这样才不容易折断。好的洛阳铲插入土内吃土锐利,拔出后褪土快捷。并且能够打穿并提取断砖厚瓦。过去要制作这样的

洛阳铲,都是靠纯手工制造。除了需要使用好的钢材锻造之外,对刃口部分还要特别进行热处理以增加硬度。    洛阳铲局部  对于盗墓贼而言,洛阳铲的主要作用是探孔定位,一个有经验的盗墓贼可以通过洛阳铲中带出的土壤分析出地下是否有墓穴。在一片区域中打上若干个孔,就能了解墓穴大概的位置和面积,从而知道墓穴里宝物的规模和价值。经验丰富的盗墓贼甚至凭洛阳铲碰撞地下发出的声音和手感,便可判断地下的情况,夯实的墙壁和中空的墓室、墓道的感觉是不一样的,探孔经验老到的盗墓贼就能够精确判断出墓穴的结构,并且确定到底从那个位置挖掘进入墓穴最快捷省事。  在盗墓时,贼会先观看地势,如果怀疑该地区有墓穴就会用洛阳铲探路,左右各挖一个孔下探,一般下探3-5米后如感觉坚硬就继续挖,若松软就说明不是墓穴,换个地方再挖。一般挖5米的探洞需要20分钟左右。有经验的盗墓贼会避开墓道,而不断利用探洞寻找墓穴——因为墓道里边

合成孔径雷达

合成孔径雷达(SAR) 合成孔径雷达产生的过程 为了形成一幅真实的图像增加两个关键参数:分辨率、识别能力。 合成孔径打开了无限分辨能力的道路 相干成像特性:以幅度和相位的形式收集信号的能力 相干成像的特性可以用来进行孔径合成 民用卫星接收系统SEASA T、SIR-A、SIR-B 美国军用卫星(LACROSSE) 欧洲民用卫星(ERS系列) 合成孔径雷达(SAR)是利用雷达与目标的相对运动将较小的真实天线孔径用数据处理的方法合成一个较大孔径的等效天线孔径的雷达。 特点:全天候、全天时、远距离、和高分辨率成像并且可以在不同频段不同极化下得到目标的高分辨率图像 SAR高分辨率成像的距离高分辨率和方位高分辨率 距离分辨率取决于信号带宽 方位高分辨率取决于载机与固定目标相对运动时产生的具有线性调频性质的多普勒信号带宽 相干斑噪声 机载合成孔径雷达是合成孔径雷达的一种 极化:当一个平面将空间划分为各向同性和半无限的两个均匀介质,我们就可以定义一个电磁波的入射平面,用波矢量K来表征:该平面包含矢量K以及划分这两种介质的平面法线垂直极化(V):无线电波的振动方向是垂直方向与水平极化(H):无线电波的振动方向是水平方向 TE波:电场E与入射面垂直

TH波:电场E属于入射平面 合成孔径雷达的应用 军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应用、水资源、农业和林业 合成孔径雷达在军事领域的应用:战略应用、战术应用、特种应用。 SAR系统的几个发展趋势:多波段、多极化、多视角、多模式、多平台、高分辨率成像、实时成像。 SAR图像相干斑抑制的研究现状 分类:成像时进行多视处理、成像后进行滤波 多视处理就是对同一目标生成多幅独立的像,然后进行平均。 这是最早提出的相干斑噪声去除的方法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制 成像后的滤波技术成为SAR图像相干噪声抑制技术发展的主流 均值滤波、中值滤波、维纳滤波用来滤去相干斑噪声,这种滤波方法能够在一定程度上减小相干斑噪声的方差 合成孔径雷达理论概述 合成孔径雷达是一种高分辨率成像雷达,高分辨率包含两个方面的含义:方位向的高分辨率和距离向高分辨率。它通过采用合成孔径原理提高雷达的方位分辨率,并依靠脉冲压缩技术提高距离分辨率 由于SAR雷达发射信号(距离向信号)和合成孔径信号(方位信号)均具有线性调频性质,SAR成像的实质就是通过匹配滤波器对距离向和方位向具有线性调频信号的信号进行二维脉冲压缩的过程,也就是依靠脉冲压缩技术提高距离分辨率,通过合成孔径原理提高雷达的方位分辨率的过程 SAR成像处理是先利用距离向匹配滤波器,进行距离脉压,实现距离向高分辨率后,再通过方位向德匹配滤波,最终得到原始目标的高分辨图像。

合成孔径雷达干涉测量概述

合成孔径雷达干涉测量(InSAR)简述 摘要:本文主要介绍了合成孔径雷达干涉测量技术的发展简史、基本原理、及其3种基本模式,并且对其数据处理的基本步骤进行了概述。最后,还讲述合成孔径雷达干涉测量的主要应用,并对其未来发展进行了展望。 关键字:合成孔径雷达合成孔径雷达干涉测量微波遥感影像 1.发展简史 合成孔径雷达(Synthetic Aperture Radar,SAR)是一种高分辨率的二维成像雷达。它作为一种全新的对地观测技术,近20年来获得了巨大的发展,现已逐渐成为一种不可缺少的遥感手段。与传统的可见光、红外遥感技术相比,SAR 具有许多优越性,它属于微波遥感的范畴,可以穿透云层和甚至在一定程度上穿透雨区,而且具有不依赖于太阳作为照射源的特点,使其具有全天候、全天时的观测能力,这是其它任何遥感手段所不能比拟的;微波遥感还能在一定程度上穿透植被,可以提供可见光、红外遥感所得不到的某些新信息。随着SAR 遥感技术的不断发展与完善,它已经被成功应用于地质、水文、海洋、测绘、环境监测、农业、林业、气象、军事等领域。 L. C. Graham 于1974 年最先提出了合成孔径雷达干涉测量(InSAR )三维成像的概念,并用于金星测量和月球观察。后来Zebker、G. Fornaro及A. Pepe 等做出了进一步的研究,以解决InSAR 处理系统中有关基线估计、SAR 图像配准、相位解缠及DEM 生成等方面的问题。自1991 年7 月欧空局发射载有C 波段SAR 的卫星ERS- 1 以来,极大地促进了有关星载SAR 的InSAR 技术研究与应用。由于有了优质易得的InSAR 数据源,大批欧洲研究者加入到这个领域,亚洲(主要是日本)的一些研究者也开展了这方面的研究。日本于1992 年2 月发射了JERS- 1,加拿大于1995 年初发射了RADARSAT,特别是1995 年ERS- 2 发射后,ERS- 1 和ERS- 2 的串联运行极大地扩展了利用星载SAR 干涉的机会,为InSAR 技术的研究提供了数据保证。目前用于InSAR 技术研究的数据来源主要有:ERS- 1/2、SIR- C/X SAR、RADARSAT、JERS- 1、TOPSAR 和SEASAT 等。 1979年9月,我国自行研制的第一台合成孔径雷达原理样机在实验室完成,并在试飞中获得我国第一批SAR影像。1989年起国家科委设立了“合成孔径雷达遥感应用实验研究项目”,拉开了大规模雷达遥感研究的帷幕。目前国内外许多部门和科研机构正积极从事着InSAR 技术机理及其应用的研究,已经取得了许多成果,InSAR 技术的前景日益看好。 2.InSAR的基本原理 InSAR 技术是一门根据复雷达图像的相位数据来提取地面目标三维空间信息的技术。其基本思想是:利用两副天线同时成像或一副天线相隔一定时间重复成像,获取同一区域的复雷达图像对,由于两副天线与地面某一目标之间的距离

探地雷达的发展与现状

探地雷达的发展与现状 探地雷达的历史最早可追溯到20世纪初。1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。1910年,Leimback和L?wy以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。探地雷达在矿井(1960,、冰层厚度(1963,、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有:石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,、工程地质探测(1976,和、煤矿井探测(1975,、泥炭调查(1982,、放射性废弃物处理调查(1982,、以及地面和井中雷达用于地质构造填图(1997, )、水文地质调查(1996, ;1997,Chieh-Hou Yang )、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。自70年代以来、许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国Geophysical Survey System Inc公司的SIR系统、Microwave Associates 的MK系列,加拿大Sensor & Software的Pulse Ekko系列,瑞典地质公司(SGAB)的RAMAC/GPR系列,日本应用地质株式会社OYO公司的GEORADAR系列及一些国内产品(电子工业部LTD系列,北京爱迪尔公司CR-20、CBS-900等)。这些雷达仪器的基本原理大同小异,主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,多态雷达系统,层析成像雷达系统等。国内探地雷达的研究始于70年代初。当时,地矿部物探所、煤炭部煤科院,以及一些高校和其他研究部门均做过探地雷达设备研制和野外试验工作,但由于种种原因,这些研究未能正式用于实际。90年代以来,由于大量国外仪器的引进,探地雷达得到了广泛的应用与研究。1990-1993年,中国地质大学(武汉)在国家自然科学基金

合成孔径雷达技术及其应用

Electronic Technology ? 电子技术Electronic Technology & Software Engineering 电子技术与软件工程? 87【关键词】合成孔径雷达 系统组成 典型应用 合成孔径雷达(SAR )是一种利用微波成像技术进行地海面目标探测的遥感系统。自20世纪50年代美国提出并研制成功以来,SAR 雷达发展迅速且有成效,具有全天时、全天候、高精度、大范围、远距离的特点。在世界各国的农业、林业灾害防治,遥感测绘导航、地质勘探、环境海洋监测及军事等方面得到广泛应用。装载平台遍及各类飞机、导弹、卫星和车辆等。本文从SAR 雷达技术入手,对其应用进行了阐述,并探讨其发展趋势。1 SAR雷达技术 SAR 雷达通过发射大带宽线性调频信号,实现目标距离向高分辨。在雷达平台与目标之间的相对运动过程中,通过相干积累及运动补偿,以时间换空间的方式实现天线长度的延展,实现方位向高分辨。 1.1 系统组成 典型SAR 系统由天线、发射机、接收机、频率源、信号处理机、惯导、数据记录仪、控制与显示等组成。天线发射宽带信号、接收目标回波;发射机完成宽带信号的产生、调制和放大;接收机用于对回波的变频、放大和采集;频率源产生全机所需时钟及本振信号;信号处理机实现全机时序同步、参数控制和雷达信号处理;惯导是SAR 雷达重要组成,实时测量天线姿态并传输给信号处理机用于运动补偿计算;数据记录仪可记录信号回波和图像数据;控制与显示实现全机控制及图像显示。如图1所示。 1.2 主要参数 SAR 的主要参数含使用参数、内部参数和图像参数。 使用参数直接面向用户,含分辨率、作用距离、测绘带宽和定位精度等。分辨率指距离分辨率和方位分辨率,距离分辨率与信号带宽成反比,方位分辨率与天线长度成反比;作合成孔径雷达技术及其应用 文/翁元龙 用距离是指图像场景中心到平台的斜距;测绘带宽是指SAR 雷达的成像宽度;定位精度用于描述图像中目标与真实地理坐标之间的相对关系。内部参数含工作频段、信号带宽、波门起始、采样深度、脉冲宽度和重复频率等,这些内部参数与使用参数有一定的对应关系。如波门起始描述的是图像的起始距离,采样深度则对应图像的测绘宽度。图像参数含信噪比、积分旁瓣比和峰值旁瓣比等,用于表征SAR 图像的清晰度、对比度和模糊度等。2 SAR雷达应用SAR 系统主要用于军事侦察监视和民用各领域。军事方面,美军SAR 雷达装载于无人机(全球鹰、捕食者)、有人机(E8C 联合对地监视飞机)、导弹(战斧巡航导弹)、卫星(长曲棍球)等。美军利用机载SAR 雷达技术实现ISR (情报、侦察和监视)系统,在海湾战争、阿富汗战争和反恐战场已大量应用。弹载SAR 利用景象匹配技术,实现导弹的远程战略打击。星载SAR 实现全球大范围地区的快速高效情报获取。民用方面,SAR 雷达技术广泛用于城市勘测、农业普查、林业应用、海洋监测和立体测绘,无人车的防撞预警等。对城区建筑物、桥梁、道路等大范围成像,获取其结构、分布和变化,为城市规划者提供数据支撑。精确测量各类农作物的病虫害情况,利用极化信息掌握农作物种植情况,提高农业普查效率。在森林资源调查、森林分类、自然灾害监测和森林蓄积量等方面也有大量应用。海洋环境监测包括对海洋灾害、海面溢油、海上船舶、沿海滩涂的监测。立体测绘方面,利用SAR 雷达的干涉模式,采用多天线单次干涉或单天线重轨 干涉实现三维高程测量,对丘陵、山区、平原等区域实现立体测绘。全天时全天候探测的无人车SAR 雷达与激光、光学系统共同实现防撞预警。3 结束语SAR 雷达受平台重量、体积、功耗约束,分辨率、探测距离和精度、出图速度等仍有不足。面向未来,随着微波、电子计算机及人工智能等技术发展,SAR 雷达将朝着多极化、多频段,高分辨、高定位精度,轻小型化、图像视频化、任务智能化的方向发展,将在更多领域得到应用和发展。参考文献[1]保铮,邢孟道,王彤. 雷达成像技术[M].北京:电子工业出版社,2005,4:90-108.[2]孙龙,邬伯才,沈明星,江凯,鲁加国.机载UWB 数字阵列SAR 系统技术研究[J].雷达科学与技术,2017.[3]王岩飞,刘畅,詹学立,韩松.无人机载合成孔径雷达系统技术与应用[J].雷达学报,2016.[4]肖虹雁,岳彩荣,合成孔径雷达技术在林业中的应用综述[J].林业调查规划,2014.作者简介翁元龙(1988-),男,安徽省六安市人。硕士研究生。中国电子科技集团公司第三十八研 究所,工程师。研究方向为sar 总体设计及信号处理技术。作者单位中国电子科技集团公司第三十八研究所 安徽省合肥市 230031图1:典型SAR 系统

合成孔径雷达概述

合成孔径雷达概述 蔡 Beautyhappy521@https://www.doczj.com/doc/a71212514.html, 二OO八年三月二十三

1合成孔径雷达简介 (3) 1.1 合成孔径雷达的概念 (3) 1.2 合成孔径雷达的分类 (4) 1.3 合成孔径雷达(SAR)的特点 (5) 2合成孔径雷达的发展历史 (6) 2.1 国外合成孔径雷达的发展历程及现状 (6) 2.1.1 合成孔径雷达发展历程表 (7) 2.1.2 世界各国的SAR系统 (10) 2.2 我国的发展概况 (12) 2.2.1 我国SAR研究历程表 (12) 2.2.2 国内各单位的研究现状 (13) 2.2.2.1 电子科技大学 (13) 2.2.2.2 中科院电子所 (13) 2.2.2.3 国防科技大学 (14) 2.2.2.4 西安电子科技大学 (14) 3 合成孔径雷达的应用 (14) 4 合成孔径雷达的发展趋势 (15) 4.1 多参数SAR系统 (16) 4.2 聚束SAR (16) 4.3极化干涉SAR(POLINSAR) (17) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (17) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (18) 4.6 性能技术指标不断提高 (18) 4.7 多功能、多模式是未来星载SAR的主要特征 (19) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (19) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (19) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (20) 4.11 军用和民用卫星的界线越来越不明显 (20) 5 与SAR相关技术的研究动态 (21) 5.1 国内外SAR图像相干斑抑制的研究现状 (21) 5.2 合成孔径雷达干扰技术的现状和发展 (21) 5.3 SAR图像目标检测与识别 (23) 5.4 恒虚警技术的研究现状与发展动向 (26) 5.5 SAR图像变化检测方法 (28) 5.6 干涉合成孔径雷达 (32) 5.7 机载合成孔径雷达技术发展动态 (34) 5.8 SAR图像地理编码技术的发展状况 (36) 5.9 星载SAR天线方向图在轨测试的发展状况 (38) 5.10 逆合成孔径雷达的发展动态 (39) 5.11 干涉合成孔径雷达的发展简史与应用 (39)

相关主题
文本预览
相关文档 最新文档