当前位置:文档之家› 第五章 边界条件

第五章 边界条件

第五章 边界条件
第五章 边界条件

5-边界条件类型汇总

边界条件类型 5.1 惯性边界条件 5.1.1 加速度 1.简介 加速度以长度比上时间的平方为单位作用在整个模型上。由于加速度施加到系统上,惯性将阻止加速度所产生的变化,因此惯性力的方向与所施加的加速度的方向相反。加速度可以通过定义部件或者矢量进行施加。该边界条件支持显示动力学分析,谐响应分析,刚体动力学分析,静态结构分析和瞬态结构动力学分析。该边界条件支持二维模型和三维模型,并且支持矢量和分量定义。 2.定义方法 在支持的求解环境中,右击求解类型,选择Insert>Acceleration,则在细窗口出现定义加速度设置面板,该面板包括两个选项:模型范围选择(Scope)和定义方法(Definition)。 (1)范围选择 对于该边界条件条件,程序会默认的选择所有模型,并且不能进行人工选择。 (2)定义方法 1)矢量定义 将Define By设置为Vector,则细节窗口出现如图5-1所示的定义加速度矢量设置面板,用户需要输入加速度的幅值(Magnitude)和指定加速度的方向(Direction),通过拾取模型的表面来定义方向。 图5-1 定义加速度矢量设置面板 2)分量定义 将Define By设置为Components,则细节窗口出现如图5-2所示的定义加速度分量设置面板,用户需要选择坐标系(Coordinate System)和输入三个方向的幅值。

https://www.doczj.com/doc/a69135766.html,简明教程 ? 2 ? 图5-2 定义加速度分量设置面板 5.1.2 标准的地球重力 1.简介 可以作为一个载荷施加。其值为9.80665 m/s2 (在国际单位制中),标准的地球重力载荷方向可以沿总体坐标轴的任何一个轴。不需要定义与其实际相反的方向得到重力的作用力。该边界条件适用于显示动力学,刚体动力学,静力学分析和瞬态结构动力学分析的二维或三维模型。 2.定义方法 在支持的求解环境中,右击求解类型,选择Insert>Standard Earth Gravity,则在细窗口出现如图5-3所示的定义重力加速度设置面板,该面板包括两个选项:模型范围选择(Scope)和定义方法(Definition)。 图5-3定义重力加速度设置面板 (1)范围选择 对于该边界条件条件,程序会默认的选择所有模型,并且不能进行人工选择。 (2)定义方法 如图5-3所示,在定义方法选项中用户只能修改三个选项:坐标系(Coordinate System),忽略(Suppressed)和重力加速度的方向(Direction)。坐标系可以使用默认的总体笛卡尔坐标系也可使用自定义的笛卡尔坐标系,但是不能使用柱坐标系,用户可以根据需要设置6个方向的重力加速度。

边界条件

边界条件 边界条件有什么作用? ?边界条件可以施加到模型的节点、边缘或表面。 边缘或表面边界条件会将节点边界条件施加到边缘或表面上的每个节点。 ?当进行模型分析时,会为每个节点的每个自由度生成一个方程。如果将边界条件施加到某个节点,那么,因为该节点不会经历平动或转动,所以不会为该节点生成方程。 ?如果想构建悬臂梁模型,那么您会希望同时约束固定端的平动或和转动。 ?如果想构建简支梁模型,那么您会希望仅约束固定端点的平动。这种连接将允许该梁自由转动。 此连接也通称为平动约束连接。 ?每种单元类型都支持确定的自由度。如果您将边界条件施加到某个单元上的自由度,而该单元并不支持此自由度,那么该边界条件将被忽略。例如,桁架单元用于构建平动约束连接的模型,因此,无法抗拒转动。如果您将固定边界条件放置到桁架单元的一端,那么三个转动约束将被忽略。 施加边界条件 如果您选择了节点、边缘或表面,可以右键单击显示区并选择“添加” 侧开菜单。 选择“节点边界条件...”、“边缘边界条件...”或“表面边界条件...”命令。只能将边缘边界条件施加到由 CAD 实体模型生成的模型。 按“预定义”部分中的其中一个按钮,或者,激活“约束自由度”部分中的适当复选框。 “固定”按钮将激活所有六个复选框。 “自由”按钮将取消激活所有六个复选框。 “平动约束”按钮将激活“Tx”、“Ty”和“Tz”复选框。 “无转动”按钮将激活“Rx”、“Ry”和“Rz”复选框。 剩余六个按钮将施加对称或反对称边界条件。 刚性边界单元 刚性边界单元有什么作用? ?刚性边界单元可以施加到模型的节点、边缘或表面。 边缘或表面弹性边界单元会将节点弹性边界单元施加到边缘或表面上的每个节点。 ?刚性边界单元会将刚度施加到节点,从而抗拒沿全局方向或绕全局方向进行平动或转动。模型上实际添加了一个新节点。此节点上限制了指定的自由度。在此节点与施加节点刚性边界的模型节点之间,创建了一个新节点。此单元位于施加刚性边界单元的全局轴上。根据边界单元的类型(平动或转动),此单元的作用就像平动弹簧或扭转弹簧。刚度值指该弹簧的刚度。模型上节点的平动量或转动量将取决于该刚度值。刚度值高将允许节点作非常小的移动,或者不允许节点移动。刚度值低将允许节点作相当大的移动。 ?在相同的对话框中,您可以固定所有三个全局方向上的平动或转动。当然,在每个方向上,会将一个独立的节点刚性边界施加到模型。例如,如果您创建了刚性平动边界并选中了“全约束” 部分中的 X 和 Y 复选框,那么将创建两个节点刚性边界。一个在 X 向上起作用,另一个在 Y 向上起作用。 ?节点刚性边界和节点边界条件之间的不同在于,当弹簧刚度限制节点运动时,您可以查看当前节点刚性边界单元中现有的力或力矩。在“结果”环境中,使用结果:单元力和力矩侧开菜单。

边界条件

网格化分: 机体网格划分采用四面体网格。上部采用6mm网格,下部采用8mm网格,与缸套接触部分采用2mm网格,共有382111个单元,网格模型如图3和图4所示。缸套网格划分主要采用六面体2mm网格,4个缸套共有309472个单元,网格模型如图5所示。缸盖螺栓网格划分采用六面体4mm网格,18个螺栓共有13896个单元,网格模型如图6所示。缸垫网格划分采用六面体4mm网格,共有4075个单元,网格模型如图7所示。等效缸盖网格划分采用四面体7mm网格,共有186582个单元,网格模型如图8所示。总体计算网格模型如图9所示,共有896136个单元。 边界条件: 1 位移边界条件 机体底部约束为零 2 力边界条件 气缸套受力主要有装配应力、燃气压力、热应力和活塞侧向力。 2.1螺栓预紧力 螺栓预紧力通过拧紧力矩获得。根据YN33柴油机的螺栓拧紧力矩和螺栓结构尺寸计算得到螺栓预紧力为62490N。 2.2活塞对缸套的侧向力 活塞对缸套侧向力采用曲轴转角81°时的工况。假定力边界条件为:载荷沿缸套轴线方向按二次抛物线规律分布;沿缸套圆周120°角范围内按余弦规律分布。 选择侧击力影响最大位置进行研究,经过分析,选定1缸曲轴转角24°(活塞位于最大爆发压力处)、81°(活塞位于行程中间位置)时的工况进行研究,此时活塞对缸套的侧向力和侧向压力幅值如表1所示。加载边界条件时取L=43.5,x=0的位置为活塞销的位置。 表1 气缸套壁面加载的活塞侧向力 注:正值表示活塞侧向力作用在主推力侧,负值表示活塞侧向力作用在次推力侧。 2.3 缸套壁面的气体作用力

表2 一缸气缸套壁面加载的气体压力 热应力由温度边界条件计算得到温度场后施加到机械应力分析中进行热力耦合计算。 3 接触边界条件 主要接触对有:气缸盖与气缸垫、气缸盖与气缸套、气缸垫与机体、气缸垫与缸套、气缸套与机体、气缸盖与预紧螺栓下端面、预紧螺栓螺纹与机体螺栓孔螺纹。 4 温度边界条件 常见的导热特征边界条件有:第1类边界条件——恒定温度;第2类边界条件——热流密度;第3类边界条件——对流。本文研究机型选用采用第三类边界条件。 4.1气缸套温度边界条件 表3 AB段加载的热边界条件 表4 其他段加载的热边界条件 缸盖温度边界条件 缸盖暴露于大气环境中,其表面与周围环境换热极为微弱,因此换热系数不大,本次计算取23 W/m2·℃,环境温度取25℃。 4.2机体温度边界条件

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

边界条件

Midas各种边界条件比较 Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。 1.定义一般弹性支承类型SDx-SDy 整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。在典型的建筑结构中,分析模型不包括桩基础。而是假定在基础底面或桩帽处存在弹性边界。下面的通用刚度给出了桩单元的实际刚度。对斜桩,用节点局部坐标轴计算斜向的刚度。 2.一般弹性支承 分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注:在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。实际分配给节点的刚度值为6 x 6阶刚度。 3.面弹性支承 输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。并可同时形成弹性连接的单元。该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。弹性连接长度:弹性连接单元的长度。该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。 4.弹性连接 形成或删除弹性连接。由用户定义弹性连接及其弹性连接的两个节点。SDxSDySDzSRxSRySRz。 5.一般连接特性值

最新marc中文基本手册3边界条件的定义

m a r c中文基本手册3边界条件的定义

第三章边界条件的定义(BOUNDRAY CONDITIONS) 本章要点 ●各类分析的边界条件 ●边界条件的内容 ●边界条件的施加 在MAIN菜单中检取BOUNDRAY CONDITION后,就可进行边界条件定义。边界条件定义包括边界条件内容及边界条件施加二部分。例如要定义3节点上的X方向位移为零这一边界条件,就可在MENTAT上设边界条件名称为“fix_x”,定义边界条件内容为X方向位移为零,最后,将这一边界条件施加于节点3上。

BOUNDRAY CONDITIONS的子菜单 在MAIN菜单中检取BOUNDRAY CONDITION后,可以见到由各种不同分析名组成的子菜单,用户可根据实际分析类型选择定义边界条件,不同类型的分析所需的边界条件不同,下面简单介绍一下各种分析所需的边界条件。 MECHANICAL 应力分析的边界条件定义。THERMAL 热传导分析边界条件的定义。 JOULE 耦合热-电分析边界条件的定义。

ACOUSTIC 声场分析边界条件的定义。 BEARING 轴承润滑分析边界条件的定义。ELECTROSTATIC 静电场分析边界条件的定义。MAGNETOSTATIC 静磁场分析边界条件的定义。 ID BOUNDRAY 将定义的所有边界条件以不同颜色区分显示出来。CONDS MECHANICAL 上面已提到在BOUNDRAY CONDITIONS菜单中检取MECHANICAL后,将对应于应力分析边界条件的定义,下面将 对这部分进行详细的介绍。MENTAT定义的边界条件以其边界 条件名来进行管理,一个边界条件名对应一种边界条件,不允许 有重名。在LOADCASE中将根据边界条件名来选择分析时到底 采用所定义的哪些边界条件。 边界条件名的定义 边界条件名的定义方法与以后要介绍的初始条件名、材料 特性名等的定义方法是一致的。

1.2 媒质分界面条件和边界条件

1.2 媒质分界面衔接条件和边界条件 1.2.1 媒质分界面衔接条件 在求解电磁场问题时,必然要用不同媒质分界面上场矢量的衔接条件,已学过的有 电场: ()012=-?E E n () σ=-?12D D n 磁场: () S J H H n =-?12 ( ) 012=-? B B n 电流场 (恒定电场): () 012=-?E E n ( ) 012=-?J J n 下面进一步分析媒质分界面上场矢量发生突变的一般情况。 1. 面散度场源可能引起场量法向分量的突变 在电场中,存在散度场源)(r b D ==??ρ。设电场中两种媒质之间存在一个过渡层,媒质电磁特性参数由1ε、1μ、1γ连续变化为2ε、2μ、2γ,厚度h 很小,取h 为一扁盒圆柱面的高,ρ为过渡层内体自由电荷密度。图示规定向。 由高斯通量定理 () ???=???=?-?=??+??=?V S s h dV D s D D n s D s D s d D ρ 121 122 h D D n ρ=-?)(12 讨论: (1) 若ρ为有限值,则当0→h ,即媒质参数 发生跃变时,扁盒内的电荷量q ?=0→h ρ () 012=-?D D n ? n n D D 12= (2) 若当0→h 时,q ?保持定值不变,即0→h ,ρ不断增大,使h ρ保持定值,定义它为面自由电荷密度 )(lim 0 h h ρσ→= 2ε 1ε

上面的边界条件式变为: )(lim )(lim )(0 12D h h D D n h h ??==-?→→ρ 即D 的法向分量突变,也可用标量电位表示为 ()σ?ε?ε-=?-??1122n 推广到一般矢量场F 中,成为一普遍性边界面衔接条件 () )(lim )(lim 0 012F h hb F F n h h ??==-?→→ 称上述极限突变值为面散度源,可知“矢量场的面散度源可能引起场的法向分量改变,无散场的法向分量一定连续(如果没有偶极矩)”。 2. 面旋度源可能引起场矢量切向分量的突变 设磁场中两种媒质间存在一过渡层,其厚h 很小。跨分界面作狭窄矩形闭合曲线l , 其长边为l ?,宽边为h ,且n 、 t 和n '呈右旋关系n n t ?'=。由斯托克斯定理 () s d r c s d F l d F l S S ?=???=????)( 有 1122d l H l H l H l ??+??=?? () l h n r c s r c s H l t H H S S ?'?=?= ???=??-=? ? ?? )()()(d d 12 h r c n H H n n H H n n H H t )()() ()()( ?'=-??'=-??'=-?121212 0])()([12=--??'h r c H H n n 因l 回路的任意性,上式成立,在h →0时,必有 )]([lim )] ([lim )]([lim )(00 012t D J h H h r c h H H n h h h ??+=??==-?→→→ 式中D 以及t D ?? 总是有限的,0→h , 0→??t D h 。以两种形式分析: (1) 若J 为有限值,0→J h 0)(12=-?H H n t t H H 21= (2) 若0→h 过程中,l 所围面积s ?中通过的电流总量不变,J h 趋于一定值,电流 ε n

传热学第二章思考题

第二章思考题 1、什么是傅里叶导热定律?它的意义是什么? 傅里叶定律:在任意时刻,各向同性连续介质内任意位置处的热流密度在数值上与该点的温度梯度的大小成正比,方向相反。 意义:它揭示了导热热流与局部温度梯度之间的内在关系,是试验定律。 2、傅里叶定律中并没有出现时间,能否用来计算非稳态导热过程中的导热量? 可以用来计算非稳态导热过程中的导热量 3、试举例说明影响导热系数的因素有哪些? 物性参数,与物质的几何形状,质量体积等因素无关 主要取决于物质的种类、结构、密度、温度、压力和含湿量等 有些材料,如木材、结构体、胶合板等还与方向有关(各向异性材料)有关 4、什么是保温材料?选择和安装保温材料是应注意哪些问题? 习惯上吧导热系数较小的材料称为保温材料(又称隔热材料或绝热材料)。 保温材料要注意防潮、防水。 5、推导导热微分方程式时依据的原理和定律是什么? 依据:能量守恒定律和导热定律 6、说明直角坐标系下的导热微分方程的适用条件。 某均质、各向同性物体内发生着导热过程,内部有强度为Φ的均匀内热源。 7.具体导热问题完整的数学描述应包括哪些内容? 答:(1)导热微分方程 () λ φ ρ τ ? + ? ? + ? ? + ? ? = ? ? 2 2 2 2 2 2 z t y t x t ct 【直角坐标系】 (2)单值性条件 8.何谓导热问题的单值性条件?它包括哪些内容? 答:(1)单值性条件:对问题予以描述的说明或限定性条件 (2)内容 ①几何条件:规定了导热物体的几何形状和尺寸。 ②物理条件:说明了导热物体的物理特征,如物体的热物性参数的大小及其 随其他参数(如温度)的变化规律,是否有内热源,其大小和分布情况。 ③初始条件:时间条件,给出了过程开始时刻物体内的分布状况。 ④边界条件:规定了物体在边界上与外界环境之间在换热上的联系或相互作 用。 9.试分别用数学语言及传热术语说明导热问题三种类型的边界条件。 答:(1)第一类边界条件。规定了导热物体在边界上的温度,

浅话边界条件与初始条件

浅话边界条件与初始条件 边界条件 在说边界条件之前,先谈谈初值问题和边值问题。 初值和边值问题: 对一般的微分方程,求其定解,必须引入条件,这个条件大概分两类---初始条件和边界条件,如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0 )=y0,y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题; 而在许多实际问题中,往往要求微分方程的解在在某个给定的区间a ≤ x≤b 的端点满足一定的条件,如y(a) = A , y(b) = B则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。 三类边界条件: 边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay+By'=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或洛平(Robin)条件。 总体来说, 第一类边界条件:给出未知函数在边界上的数值; 第二类边界条件:给出未知函数在边界外法线的方向导数; 第三类边界条件:给出未知函数在边界上的函数值和外法向导数的线性组合。 对应于comsol,只有两种边界条件: Dirichlet boundary(第一类边界条件)—在端点,待求变量的值被指定。

Neumann boundary(第二类边界条件)—待求变量边界外法线的方向导数被指定。 再补充点初始条件: 初始条件,是指过程发生的初始状态,也就是未知函数及其对时间的各阶偏导数在初始时刻t=0的值.在有限元中,好多初始条件要预先给定的。不同的场方程对应不同的初始条件。 总之,为了确定泛定方程的解,就必须提供足够的初始条件和边界条件.边界条件与初始条件是控制方程有确定解的前提。边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律。对于任何问题,都需要给定边界条件。初始条件是所研究对象在过程开始时刻各个求解变量的空间分布情况,对于瞬态问题,必须给定初始条件,稳态问题,则不用给定。 对于边界条件与初始条件的处理,直接影响计算结果的精度。 在CFD模拟时,基本边界条件有: 1流动进口边界 包括速度进口边界,压力进口边界,质量进口边界(可压流动)。 在使用流动进口边界时,需要涉及到某些流动参数,如绝对压力,湍动能及耗散率,这些参数要做特殊考虑。关于参考压力,在流场数值计算中,压力总是按相对值表示的,实际求解的压力并不是绝对值,而是相对于进口压力而言的。 在有些情况下,可以通过设定进口压力为0,求解其他点的压力。还有时,为了减小数字截断误差,往往故意抬高或降低参考压力场的值,可使其余各处的计算压力场与整体数值计算的量级相吻合。 2流动出口边界 一般选在离几何扰动足够远的地方来施加。在这样的位置,流动是充分发展的,沿流动方向没有变化。该边界只有在进入计算域的流动是以进口边界条件给定时才使用,而且在只有一个出口的计算域中使用。

FLUENT UDF应用实例:传热热问题第二第三类热边界条件转换成第一类边界条件

FLUENT UDF 应用实例:传热问题第二第三类热边界条件转 换成第一类边界条件 1 引言 传热问题的常见边界条件可归纳为三类,以稳态传热为例,三类边界条件的表达式如下。 恒温边界(第一类边界条件):const w T = (1-1) 恒热流密度边界(第二类边界条件):const w T n λ???-= ???? (1-2) 对流换热边界(第三类边界条件):()w f w T h T T n λ???-=- ???? (1-3) 2 问题分析 2.1 纯导热问题 以二维稳态无源纯导热问题为例,如图1所示,一个10×10m 2的方形平面空间,上下面以及左边为恒温壁面(21℃),右边第二类、第三类边界条件如图所示。为方便问题分析,内部介质的导热系数取1W/m ℃。模型水平垂直方向各划分40个网格单元,不计边界条件处壁厚。 图1 问题描述 采用FLUENT 软件自带边界条件直接进行计算,结果如图2所示。

(a )第二类边界条件 (b )第三类边界条件 图2 软件自带边界计算结果 参考数值传热学[3],对于第二类(式1-2)、第三类(式1-3)边界条件可通过补充边界点代数方程的方法进行处理,结果如下。 第二类边界条件:11M M q T T δ λ-=+ (2-1) 第三类边界条件:11/1M M f h h T T T δδλλ-????=++ ? ?? ??? (2-2) 其中,T M 为边界节点处的温度(所求值),T M-1为靠近边界第一层网格节点处的温度,δ为靠近边界第一层网格节点至边界的法向距离,q 为热流密度,h 为对流换热系数。 将以上两式通过UDF 编写成边界条件(DEFINE_PROFILE ),全部转换为第一类边界条件,计算结果如图3所示。

各类边界条件

定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

[整理]fluent边界条件.

壁面边界条件 壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。 在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。 壁面边界的输入 概述 壁面边界条件需要输入下列信息: ●热边界条件(对于热传导计算) ●速度边界条件(对于移动或旋转壁面) ●剪切(对于滑移壁面,此项可选可不选) ●壁面粗糙程度(对于湍流,此项可选可不选) ●组分边界条件(对于组分计算) ●化学反应边界条件(对于壁面反应) ●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) ●离散相边界条件(对于离散相计算) 在壁面处定义热边界条件 如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件: ●固定热流量 ●固定温度 ●对流热传导 ●外部辐射热传导 ●外部辐射热传导和对流热传导的结合 如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。详情请参阅在壁面处定义热边界条件。 下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。 热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。

定义边界条件

定义边界条件 在Boundary菜单中选择Boundary mode选项,则显示几何模型的边界。选定要裁减的线条后,使用Boundary菜单的Remove Subdomain Border命令对其进行裁减。如图5-7所示: 图5-7(a)地铁站台电场边界条件 图5-7(b)地铁站台磁场边界条件

电场边界条件:内边界是接触轨、走行轨表面,内外边界都设置为Drichlet 边界条件,接触轨电位为?为750V,走行轨电位?为0V,其余边界电位为0V。如图5-8(a),5-8(b)所示。 图5-8(a)求解电场时接触轨轨边界条件的设定 图5-8(b)求解电场时走行轨边界条件的设定 磁场边界条件:忽略站台外漏磁场影响整个模型外边界设置为Drichlet边界条件,A=0。如图5-8(c)所示。 图5-8(c)求解磁场时的边界条件 然后进入PDE模式,显示子区域编号如图5-9所示:

图5-9 电场、磁场几何模型 分析地铁站台电场时,静电场是介电常数ε和空间电荷密度ρ的函数。在求解域中空间内有0=ρ,而在0=ρ的情况下,介电常数ε取值不影响静电场分布情况。PDE 的参数设定如5-10所示。 图5-10 站台电场PDE 参数设定 分析地铁站台磁场时,静磁场是磁导率μ和电流密度J 的函数。其中 S I J = (5-1) 式中I 为钢轨电流的大小(A ),S 为钢轨横截面积(2m )。 P I H = (5-2) 式中I 为钢轨电流的大小(A ),P 为钢轨横截面周长(cm )。 由于相对磁导率能更方便地表征磁介质磁性,因此用r μ代替μ以简化求解过程。由实验得到的)(H r μ函数曲线即可确定相对磁导率[13],如图5-11所示。

浅谈边界条件

浅谈边界条件 对有限元计算,无论是ansys,abaqus,msc还是comsol等,归结为一句话就是解微分方程。而解方程要有定解,就一定要引入条件,这些附加条件称为定解条件。定解条件的形式很多,只讨论最常见的两种——初始条件和边界条件。 在说边界条件之前,先谈谈初值问题和边值问题。 初值和边值问题: 对一般的微分方程,求其定解,必须引入条件,这个条件大概分两类---初始条件和边界条件,如果方程要求未知量y(x)及其导数y′(x)在自变量的同一点x=x0取给定的值,即y(x0 )=y0,y′(x0)= y0′,则这种条件就称为初始条件,由方程和初始条件构成的问题就称为初值问题; 而在许多实际问题中,往往要求微分方程的解在在某个给定的区间a ≤ x ≤b的端点满足一定的条件,如y(a) = A , y(b) = B 则给出的在端点(边界点)的值的条件,称为边界条件,微分方程和边界条件构成数学模型就称为边值问题。 三类边界条件: 边值问题中的边界条件的形式多种多样,在端点处大体上可以写成这样的形式,Ay+By'=C,若B=0,A≠0,则称为第一类边界条件或狄里克莱(Dirichlet)条件;B≠0,A=0,称为第二类边界条件或诺依曼(Neumann)条件;A≠0,B≠0,则称为第三类边界条件或洛平(Robin)条件。 总体来说, 第一类边界条件:给出未知函数在边界上的数值; 第二类边界条件:给出未知函数在边界外法线的方向导数; 第三类边界条件:给出未知函数在边界上的函数值和外法向导数的线性组合。 对应于comsol,只有两种边界条件: Dirichlet boundary(第一类边界条件)—在端点,待求变量的值被指定。 Neumann boundary(第二类边界条件)—待求变量边界外法线的方向导数被指定。 再补充点初始条件: 初始条件,是指过程发生的初始状态,也就是未知函数及其对时间的各阶偏导数在初始时刻t=0的值.在有限元中,好多初始条件要预先给定的。不同的场方程对应不同的初始条件。 总之,为了确定泛定方程的解,就必须提供足够的初始条件和边界条件!

CFX边界条件的选择及组合

CFX边界条件的选择及组合 CFX中一共有5种边界类型:inlet,outlet,opening,wall,symmetry(对称性)。 1、官方推荐的边界组合: (1)最健壮的:速度/流量进口,静压出口。在这种组合情况下,进口的总压是求解结果的一部分。 (2)健壮的:进口静压,出口速度/流量。此种情况下,进口速度及出口总压是可以计算。 (3)初始值敏感的:进口采用总压,出口用静压。该组合对初始值的设置及其敏感,因为计算比较困难(还是可以计算),收敛速度严重依赖于初始值的好坏。 (4)不可信:进口用静压,出口也为静压。此种组合是不推荐的。由于速度值难以估计,所以极易出现非物理解。 (5)不可用(not possible):在出口位置设定总压。由于约束较弱,一般来说设定总压进口是不推荐使用的。 2、回流现象及人工壁面 有时候由于截取不恰当的边界位置,导致进口区域存在流体流出计算域,或者出口边界存在流体流入计算域,即所谓的回流现象。回流现象对于计算收敛是不利的。 在进口或出口边界设定速度条件,可以允许回流现象而不会开启人工墙,采用压力边界或流量边界都会导致人工墙的出现。

同样,可以设定边界类型为opening来允许回流的发生。 3、关于进口总压与outflow不兼容的问题 我们知道,outflow边界指定的是除压力外其他物理量沿边界法线方向梯度为0。指定了总压进口,在不可压缩忽略能量损失的计算中,流体进出口位置的总压值要保持平衡。而总压=静压+动压。由于outflow边界指定是物理量的梯度等于0,这样我们没办法计算出出口位置确切的速度值,同样也就无法计算静压和动压值,利用软件求解,很容易导致非物理界的产生。 E=Z+P+V^2/2g在这个式子不包括'焓'项,因为泵在B级精度以下试验,不需要考虑温升的变化,所以认为焓"i"项为零.Z表示位置引起流体能量的变化项,在泵实验中是测量水面到基准面的高度。.P压力,即通过压力表测量的压力也就是静压(静扬程)。V^2/2g,v^2是断面上流速的平方,2g则是2倍的重力加速度,这是指液流流动时所具有的动能即动压(动扬程)。E表示液流被指定截面上具有的能量。静压就是指液体的压力能(势能)对泵产品而言,压力能是扬程的绝大部分。而动能则很小,因为泵中的介质流速一般仅几米左右,再被重力加速度一除也就很小了。

三类边界条件推导

三类边界条件的推导 边界条件是弦在两个端点处的状态或受到的约束情况,一般有三种: 1. 第一类边界条件:已知未知函数在边界上的值()i g t ,即端点处弦的位移: 1(0,)()u t g t =,2(,)()u l t g t = 当()0i g t =时,表示在端点处弦是固定的。 2. 第二类边界条件:已知未知函数在边界上法向导数的值,即端点处弦所受到的垂直于弦的外力() f t : 对0x =,即弦的左端: 弦的张力在垂直方向的分量为:sin T α,根据牛顿第二定律,有: 000sin () x x u T T f t x α==?=-=? 对于x l =,即弦的右端: 同理可得: sin () x l l x l u T T f t x α==?==? 特别地,当()0i f t =时,表示弦在两端不受约束作用,即可以自由滑动,适应于自由端的情形。

3. 第三类边界条件:又称混合边界条件,它给出了未知函数和它的法线方向上的导数的线 性组合在边界上的值。 对弦的一维振动问题,即已知端点处弦的位移(引起弹性支撑的力)和所受的垂直于弦线的外力。 对0x =,即弦的左端: 弦对支撑外力的垂直分量为:u T x ??,由胡克定律知: 000(t)x x u T ku f x ==?=+? 设k T σ=,()()f t v t T =,可以得到,弹性支撑条件下,弦振动的边界条件为: 0()()x u u v t x σ=?-=? 对于x l =,即弦的右端: 弦对支撑外力的垂直分量为:u T x ?-?,由胡克定律知(t)x l x l l u T ku f x ==?-=+? 此时得到的弦振动的边界条件为: ()()x l u u v t x σ=?+=? 对于外力()0i f t =的特殊情况,即()0v t =,边界条件在弦的两端可统一简化为: ()0 (0,)x a u u a a l x σ=?===?

浅谈数理方程中线性边界条件的分类

浅谈数理方程中线性边界条件的分类 摘要: 数学物理方程中有定解离不开初始条件和边界条件,其反映了具体问题所处的 环境和背景。本文针对线性边界条件的分类进行归纳。 关键词: 数学物理方程 线性边界条件 分类 一、 引言 物理课程中所研究论述的物理规律是物理量在空间和时间中变化的规律。物理规律用数学表达是:物理量u 在各个地点和各个时刻所取值之间的联系。通过这种联系,我们就可以由边界条件和初始条件推算出物理量在任意地点和任意时刻的u(x,y,z,t)。同时它也是解决问题的依据。为了解算具体问题,应该考虑到所研究的区域所处的环境。边界条件和初始条件就是反映具体问题所处的环境和背景。 二、 线性边界条件的分类 物理规律反映的是物理量在时间和空间上的联系,与特定的周围环境和历史有关。物理中的联系总是要通过中介,周围环境的影响是通过边界传给其研究对象,所以,周围环境的影响体现于边界所处的物理状况,即边界条件。而不同的物理过程,因其具体的条件不同,结果也不一样。下面,将对线性边界条件进行简单的归纳。 1、第一类边界条件 这类边界条件直接规定了所研究的物理量在边界上的数值。 ()(),,,U x y z t 00000边界x ,y ,z 0,=f t,x ,y ,z ,又称狄利克雷()Dirichlet 边界条件。首先以弦振动为例:取一根长为L 的弦,把它的两端0X =和X L =固定起来,然后让它振动。边界条件0X =和X L =既然是固定的,那位移U 当然始终为零。 ()0,0 x U x t ==

()()() () ()000000,,000,,,,,,0,0 ,,,0 x x t x x a x l x y z x a U x t N U x t N f z t u x t u u f t x y z n kUn ρ?=========?=?=边界(),0x t U x t == 对于细杆导热问题,如果杆的某一端点x=a 的温度U 按已知的规律f (t)变化,则该点的边界条件是:() (),x a U x t f t == 特别是如果该端点恒温u 0 ,则边界条件成为()()0,x a U x t f u == 再如,半导体扩散工艺的“恒定表面浓度扩散”中,硅片周围环境是携带着充足杂质的氮气,杂质通过硅片表面向内部扩散,而硅片表面的杂质浓度保持一定。硅片的边界就是它的表面0X =和X L =,边界上的物理则是杂质浓度U 保持为常数N 0, ()() 000 ,,x x t U x t N U x t N ==== 例1:设有一半径为a 高为h 的圆柱体,其底面和侧面保持恒温u0,而顶端温度按已知规律(),,f t ρ?变化,试写出其导热问题的边界条件。 解:设杆的温度为(),,,f z t ρ?,则其边界条件为 ()0 00,,,,z z h a u u u t u u ρρ?====== 例2:考虑长为L 的均匀杆的导热问题 若(1)杆的两端温度保持零度 (2)杆的两端均绝热 (3)杆的一端为恒温零度,另一端绝热;试写出该导热问题在以上三种情况下的边界条件。 解:设杆的温度为(),U x t ,则 (1)0 0,0x x l u u ==== (2)因为当沿杆长方向有热量流动时,有

偏微分方程的三类边界条件-Read

偏微分方程的三类边界条件: 第一类边界条件(Drichlet 条件): 在边界上指定场函数的分布形式,即φφ =S 第二类边界条件(Neumann 条件): 在边界上指定场函数沿边界外法线方向的偏导数,即: q n S =??φ 或 q n z n y n x S z y x =??+??+??)( φφφ 其中x n 、y n 、z n 为边界外法向的方向余弦,q 为定义在边界上的已知函数。 第三类边界条件(Robbin 条件/混合边界条件): 在边界上指定场函数本身以及场函数沿边界外法线方向的偏导数的线性组合,即 f n k h S n =??+)(φ φ 其中02 2≠+n k h ,当h=0,n k q f =,为第二类边界条件;当0=n k 时,φh f =,为第一类边界条件。 有限元法主要用于求解偏微分方程。由于偏微分方程在实际应用中很难获得解析解(用一个算式来表示的解),因而通常使用其得数值解(某些离散节点上的解)代替 有限元分析的步骤:(详见《有限元方法概论》第三章) 1. 将给定求解域(在我们的应用中可以将其认为是个空间区域)离散为一个预先设计的有 限个单元(二维的单元通常为矩形或三角形,三维为立方体或四面体)的集合: 用有限元在给定域中划分有限元网格(网格由单元的顶点和边构成);将结点(顶点)与单元编号;形成解此问题所需的几何性质。 2. 推导网格中所有典型单元的单元方程式: 对典型单元建立给定微分方程的变分方程式;假定因变量u 具有以下形式: ∑==n i i i a u 1 ? , 并将其代入前面的变分方程式,获得如下单元方程式:[]{}{}e e e F u k =;推导单元插值 函数,并计算单元矩阵。其中单元近似函数的推导是先假设)()()(x c x u e i i i ? ∑=,然后 将此式代入单元边界条件中(假设场函数满足结点上的场函数/场函数梯度值),求出i c 用边界结点的场函数/场函数的梯度表示的表达式,再将i c 的表达式代回u(x)的表达式, 对节点上场函数的系数进行归并,获得以节点上场函数)(e i u /梯度值) (e i p 为未知系数, )(e i u 的系数为)(e i ? 的一个方程,此方程即为单元方程。 ) (e i ?为单元插值函数, ∑=M i e i e i u 1 ) ()(?

相关主题
文本预览
相关文档 最新文档