当前位置:文档之家› 介观尺度复杂流体能量守恒耗散粒子动力学研究

介观尺度复杂流体能量守恒耗散粒子动力学研究

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

初中物理力学经典例题(带解析)

初中物理力学经典例题(带解析) 一、单选题(共11题;共22分) 1.如右图用同样的滑轮组分别提起质量相等的一个物体和两个物体,比较甲、乙两图,正确表示机械效率关系的是( ) A. η甲=η乙 B. η甲<η乙 C. η甲>η乙 D. 无法比较 2.甲物体放在光滑的水平面上,乙物体放在粗糙的水平面上,它们分别在相等的水平力F作用下移动相等的距离s,那么,力F对两物体所做的功( ) A. 甲较多 B. 乙较多 C. 相等 D. 无法确定 3.下列生活实例中,对图片描述正确的有( ) A. 甲图:不计阻力及能量损耗,网球从刚击球拍到球拍形变最大过程中,网球机械能守恒 B. 乙图:铁锁来回摆动最终停下,在铁锁下降过程中,重力势能全部转化为动能 C. 丙图:人造地球卫星由于不受空气阻力,只有动能和势能的转化 D. 丁图:运动员从高处落下,动能转化为重力势能 4.如图所示,轻质杠杆AB可绕O点转动,当物体C浸没在水中时杠杆恰好水平静止,A、B两端的绳子均不可伸长且处于张紧状态。已知C是体积为1dm3、重为80N的实心物体,D是边长为20cm、质量为20kg 的正方体,OA:OB=2:1,圆柱形容器的底面积为400cm2(g=10N/kg),则下列结果不正确的是() A. 物体C的密度为8×103kg/m3 B. 杠杆A端受到细线的拉力为70N C. 物体D对地面的压强为1.5×103Pa D. 物体C浸没在水中前后,水对容器底的压强增大了2×103Pa

5.汽车在平直公路上以速度v匀速行驶,发动机功率为P,牵引力为F0 ,t1时刻开始,司机减小了油门,使汽车保持恒定功率所行驶,到t2时刻,汽车又开始做匀速直线运动,速度为v.已知运动过程中汽车所受阻力f恒定不变,汽车牵引力F随时间t变化的图像如图所示,则() v0 A. t1至t2时间内,汽车做加速运动 B. F0=2f C. t1时刻之后,汽车将保持功率P0行驶 D. v= 1 2 6.质量相同的甲、乙两实心金属球密度之比为3:2,将甲球浸没在液体A中,乙球浸没在液体B中,A、B 两种液体的密度之比为5:4,则此时甲、乙两球所受浮力之比为() A. 6:5 B. 5:6 C. 8:15 D. 15:8 7.小华同学利用如图所示的装置提起水中的物块,下列判断正确的() A. 装置中的滑轮是定滑轮 B. 装置中的AOB是省力杠杆 C. 物块在上表面露出水面前,所受浮力不断减小 D. 该滑轮的机械效率可以达到100% 8.实心正方体木块(不吸水)漂浮在水上,如图所示,此时浸入水中的体积为6×10﹣4m3,然后在其上表面放置一个重4N的铝块,静止后木块上表面刚好与水面相平(g取10N/kg,ρ水=1.0×103kg/m3)则该木块() A. 未放置铝块前,木块受到的浮力是10N B. 放置铝块后,木块排开水的体积是1×10﹣3m3 C. 木块的密度是0.7×103kg/m3 D. 放置铝块后,木块下表面受到水的压强增大了600Pa 9.下列涉及压强知识说法不正确的是()

力学经典例题(3道难题)

力学经典难题 1..如图22所示装置,杠杆OB 可绕O 点在竖直平面内转动,OA ∶AB =1∶2。当在杠杆A 点挂一质量为300kg 的物体甲时,小明通过细绳对动滑轮施加竖直向下的拉力为F 1,杠杆B 端受到竖直向上的拉力为T 1时,杠杆在水平位置平衡,小明对地面的压力为N 1;在物体甲下方加挂质量为60kg 的物体乙时,小明通过细绳对动滑轮施加竖直向下的拉力为F 2,杠杆B 点受到竖直向上的拉力为T 2时,杠杆在水平位置平衡,小明对地面的压力为N 2。已知N 1∶N 2=3∶1,小明受到的重力为600N ,杠杆OB 及细绳的质量均忽略不计,滑轮轴间摩擦忽略不计,g 取10N/kg 。求: (1)拉力T 1; (2)动滑轮的重力G 。 2.如图24所示,质量为60kg 的工人在水平地面上,用滑轮组把货物运到高处。第一次运送货物时,货物质量为130kg,工人用力F 1匀速拉绳,地面对工人的支持力为N 1,滑轮组的机械效率为η1;第二次运送货物时,货物质量为90 kg,工人用力F 2匀速拉绳的功率为P 2,货箱以0.1m/s 的速度匀速上升,地面对人的支持力为N 2, N 1与 N 2之比为2:3。(不计绳重及滑轮摩擦, g 取10N/kg) 求:(1)动滑轮重和力F 1的大小; (2)机械效率η1; (3) 功率P 2。 图 22 B A O 甲 图24

3、图 26是一个上肢力量健身器示意图。配重A 受到的重力为1600N ,配重A 上方连有一根弹簧测力计D ,可以显示所受的拉力大小,但当它所受拉力在0~2500N 范围内时,其形变可以忽略不计。B 是动滑轮,C 是定滑轮;杠杆EH 可绕O 点在竖直平面内转动,OE:OH=1:6.小阳受到的重力为700N ,他通过细绳在H 点施加竖直向下的拉力为T 1时,杠杆在水平位置平衡,小阳对地面的压力为F 1,配重A 受到绳子的拉力为1A F ,配重A 上方的弹簧测力计D 显示受到的拉力1D F 为2.1×103N ;小阳通过细绳在H 点施加竖直向下的拉力为T 2时,杠杆仍在水平位置平衡,小阳对地面的压力为F 2,配重A 受到绳子的拉力为2A F ,配重A 上方的弹簧测力计D 显示受到的拉力2D F 为2.4×103N.已知9:11:21 F F 。(杠杆EH 、弹簧D 和细绳的质量均忽略不计,不计绳和轴之间摩擦)。求: (1)配重A 受到绳子的拉力为1A F ; (2动滑轮B 受到的重力G B ; (3)拉力为T 2. 图

耗散粒子动力学的简单介绍和应用前景.

耗散粒子动力学的简单介绍和应用前景 mg0424112 徐源 一.耗散粒子动力学的发展 耗散粒子动力学(dissipative particle dynamics)是一种新欣的计算机模拟和描述流体的方法,是对分子动力学(MD)和LGA 模拟的继承和发展。分子动力学描述的精度较高,但是计算的代价较高,到目前为止,只能用来成功地处理一些简单的流体。另外,分子动力学应用条件比较苛刻,只能处理两维问题。 LGA (lattice-gas automata)是1986 年Frisch, Hasslacher, Pomeau,Wolfram 提出的描述流体行为的模拟方法,随后Rothman 和Keller 发展这个方法,使它能描绘不能互融的流体行为。但是LGA模拟有一个不足:模拟中,LGA引入一个重要的概念:格子(lattice), 格子的存在导致伽利略不变性的消失,因此,在描述压缩流体和多相流体时,误差较大。 耗散粒子动力学,集合了以上两种方法的优点:排除了虚拟格子的概念,从而避免了LGA方法的精度的麻烦,另一方面,保留了分离时间步骤的概念,简化了模型,加快了计算的过程。更重要的是,与前面两者相比较,耗散粒子动力学更容易和精确的模拟了三维状态下流体的行为,因此,具有更重要的意义。 在耗散粒子动力学中,基本颗粒是“格子”,它表示流体材料的一个小区域,相当于MD模拟中我们所熟悉的原子和分子。假设所有小于一个格子半径的自由度被调整出去只保留格子间粗粒状的相互作用。在格子之间存在三种力,使得每个格子对保持格子数和线性动量都守恒:简谐守恒相互作用(保守力),表示运动的格子之间的粘滞阻力(耗散力)和为保持不扩散对系统的能量输入(随机力)。所有这些力都是短程力并具有一个固定的截止半径。通过选择适当这些力的大小,可得到一个相应于gibbs-cano系统的稳定态。对于格子运动方程积分可以产生一条通过系统相空间轨迹线,由它可以计算得到所有的热力学可观测量(如密度场,序参量,相关函数,拉伸张量等)。

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

空气动力学期末复习试题

第一章 一:绪论;1.1大气的重要物理参数 1、最早的飞行器是什么?——风筝 2、绝对温度、摄氏温度和华氏温度之间的关系。——9 5)32(?-T =T F C 15.273+T =T C K 6、摄氏温度、华氏温度和绝对温度的单位分别是什么?——C F K 二:1.1大气的重要物理参数 1、海平面温度为15C 时的大气压力为多少?——29.92inHg 、760mmHg 、 1013.25hPa 。 3、下列不是影响空气粘性的因素是(A) A 、空气的流动位置 B 、气流的流速 C 、空气的粘性系数 D 、与空气的接触面积 4、假设其他条件不变,空气湿度大(B) A 、空气密度大,起飞滑跑距离长 B 、空气密度小,起飞滑跑距离长 C 、空气密度大,起飞滑跑距离短 D 、空气密度小,起飞滑跑距离短 5、对于音速.如下说法正确的是: (C) A 、只要空气密度大,音速就大 B 、只要空气压力大,音速就大 C 、只要空气温度高.音速就大 D 、只要空气密度小.音速就大 6、大气相对湿度达到(100%)时的温度称为露点温度。 三:1.2 大气层的构造;1.3 国际标准大气 1、大气层由内向外依次分为哪几层?——对流层、平流层、中间层、电离层和散逸层。 2、对流层的高度.在地球中纬度地区约为(D) A 、8公里。 B 、16公里。 C 、10公里。 D 、11公里 3、现代民航客机一般巡航的大气层是(对流层顶层和平流层底层)。 4、云、雨、雪、霜等天气现象集中出现于(对流层)。 5、国际标准大气指定的依据是什么?——国际民航组织以北半球中纬度地区大气物理性质的平均值修正建立的。 6、国际标准大气规定海平面的大气参数是(B) A 、P=1013 psi T=15℃ ρ=1、225kg /m3 B 、P=1013 hPA 、T=15℃ ρ=1、225 kg /m3

耗散粒子动力计算方法简介及应用

耗散粒子动力计算方法简介及应用,附有计算机仿真出的相图 1楼大中小发表于2006-11-6 02:10 只看该作者 [转帖]耗散粒子动力计算方法简介及应用,附有计算机仿真出的相图 请注意: 如果想要引用此帖的任何内容,请一定要在文章里加着原作者与发表的期刊刊名以及此帖后面所注明的reference,如有违者必须自行负上有关智慧财产权法的全部责任及法律责任。 作者: 邱佑宗 出处: 工业材料杂志213 期93 年9 月 内容: 前言 传统之分子动力计算(Molecular Dynamics; MD)(1),长度尺度约在数奈米(Nanometer)至数十奈米左右,而每一时间步骤(Time Step)约在0.5~1 飞秒(Fentosecond)。以现今计算机之计算速度与记忆容量,合理的仿真步数,约在百万(106)至千万(108),故其所计算问题之模拟时间,约在奈秒(Nanosecond)左右。然而,许多材料制程中个别事件发生所涉及之空间尺度及所需之时间,常不仅止于此。以胶体、悬浮微粒于流体中之运动等现象为例,单一尺寸颗粒即在10 奈米至1 微米之间,故以分子动力计算方法,搭配现今之计算机计算,尚无法仿真类似过程;在另一方面来说,连体力学(Continuum Mechanics)亦不适用于此类问题。故发展介于奈米尺度与微米尺度间之模拟方法,已成为近十年来的热门课题之一。 介观尺度计算方法的相关研究者众(2),比较常用的有直接模拟蒙地卡罗(Direct Simulation Monte Carlo; DSMC)、平滑粒子水动力学(Smoothed Particle Hydrodynamics;SPH)、网格波兹曼法(Lattice BoltzmanMethod; LBM),以及耗散粒子动力学(Dissipative Particle Dynamics; DPD)等。上述方法之源起与适用领域各有所不同,直接模拟蒙地卡罗适于描述稀薄气体(Rare Gas);平滑粒子水动力学多用于天文学之星系模拟;网格波兹曼法则特别适于计算具复杂边界形状之流体行为。至于耗散粒子动力学,则多被用来模拟流体相分离(Phase Separation)、界面活性剂(Surfactant)等高分子于水中运动等现象。 耗散粒子动力计算(3)为一介观尺度之水动力学计算方法,适合模拟奈米至微米尺度之复杂流体,例如:胶体、悬浮微粒于流体中之运动等现象。此外,耗散粒子动力计算属粗粒化方法(Coarse Grained Method),其以单一粒子代表一个至数百甚至数千的原子,用以模拟不发生化学反应的复杂流体系统极为合适。本文即简介耗散粒子动力计算方法之原理,以及相分离、两性分子自聚集(Self Aggregation)等应用实例。 原理

高分子材料力学性能

高分子材料力学性能 姓名:程小林学号:5701109004 班级:高分子091 学院:材料学院 研究背景:在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势, 將是21世纪最活跃的材料支柱.高分子材料在我们身边随处可见。在我们的认识中,高分子材料是以高分子化合物为基础的材料。高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。今天,我想就高分子材料为主线,简单研究一下高分子材料所具有的一些方面的力学性能。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分

子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶 研究理论:高分子材料的使用性能包括物理、化学、力学等性能。对于用于工程中作为构件和零件的结构高分子材料,人们最关心的是它的力学性能。力学性能也称为机械性能。任何材料受力后都要产生变形,变形到一定程度即发生断裂。这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。同时, 环境如温度、介质和加载速率对于高分子材料的力学行为有很大的影响。因此高分子材料的力学行为是外加载荷与环境因素共同作用的结果。聚合物材料力学性能是材料抵抗外加载荷引起的变形和断裂的能力。 在力学性能方面,它的高弹性、粘弹性和其力学性能对时间与温度强烈的依赖关系,是这类材料与金属材料显著的差别。高分子材料可以分为工程塑料、橡胶和合成纤维三大类,其中工程塑料可作为工程结构材料使用。工程塑料是热塑性材料和热固性材料总称。按力学性能可分为两类,一类是塑性很好,延伸率可达几十~几百%,一部分热塑性材料属于这种情况;一类是比较脆,其拉伸过程简单,拉伸曲线与铸铁类似,热固性材料都属于这种情况。 高分子材料拉伸试件一般为矩形截面的板状试件。试件形状和尺寸的设计可参考金属材料。 聚合物材料的力学性能通过材料的强度、刚度、硬度、塑性、韧

节能车车身空气动力学分析

节能车车身空气动力学分析 节能车是为节能环保而生的专业机动车辆。通过优化燃油经济性能、车身的空气阻力、车身表面及车后流场,可对车辆正常行驶状态下节油性能的提升有较大的帮助。为此,使用先进的网格划分软件hypermesh及流体有限元分析软件Fluent,完成对车身的空气动力学分析,得出车辆最优离地间隙的所在范围,为后续节能车辆车身的设计提供参考。 标签:节能车;车架;有限元;强度分析 doi:10.19311/https://www.doczj.com/doc/a616480353.html,ki.16723198.2017.02.099 0 引言 随着汽车产业的发展,全球能源危机日益凸显。电动汽车虽被看作是未来首选的代步工具,但存在着行程短、基础设施成本高、制造成本高、制造环境因素复杂等因素而远未被广泛接受,因此开发低排量、节能环保、美观实用的车辆成为未来发展趋势之一。在此背景下,Honda于广州国际赛车场举办了每年一届的Honda节能竞技大赛。为达到降低油耗的目的,大赛规定参赛团队设计制作的节能车需在規定时间内(不超过25分钟)、规定赛程路线下(国际赛车场),行驶要求距离(于指定时间内绕赛场行驶3圈),并由所得结果换算出该节能车每升油能够行驶的公里数。质量轻、强度高、风阻小且美观的车身是节能车辆(出油耗低、实用性高)优胜的关键模块之一。中国节能车大赛迎合了时代节能的主题,为各个参赛队提供了一个自我展示的平台的同时,尽可能地激发创新理念并提升创新能力,展现“一升汽油”的无限潜能。在设计制作者体会到理论与实践相结合重要性的同时,更为未来汽车节能领域的实际运用带来无限的未知性和可能性。 根据节能车竞技大赛赛方要求,参赛车辆必须搭载由本田公司提供的125cc 小排量四冲程单缸发动机(发动机结构可自行改装)。因此在同等发动机和赛场条件下,对车辆发动机的改装将对降低油耗有巨大意义,如提高发动机活塞压缩比、更改进气出气阀和化油器、更换气缸套及切割发动机部分散热用筋板以降低发动机自身重量等等。但对发动机机壳过多的切割及改造势必会带来其所能承载最大载荷的减小,甚至造成结构失效。类比上述发动机,车身设计也面临着同样的问题,即车身过多的减重将会对车辆稳定性和安全性造成很大的影响。因而车身在设计前需考虑车身的使用材料,但也需首先考虑车架、发动机以及转向等模块的总布置影响,并参考其他车身造型数据确定该车的主要参数,通过计算确定整车车身外形的选型和其他可调整模块的布置。 1 车身侧截面设计 节能车燃油组与普通汽车具有相同的主体构架组分,包括转向、刹车、发动机、车架、传动、车身等。其中,车身由于在设计上多采用曲面设计,因而需采用合适的设计工程软件,例如CATIA、UG、CATIA、ProE和Rhino等,各类软

物理力学试题经典及解析

物理力学试题经典及解析 一、力学 1.游泳运动员用手、脚向后推水,于是人就前进,下列说法正确的是 A.运动员是施力物体,不是受力物体 B.运动员是施力物体,同时也是受力物体 C.水是施力物体,不是受力物体 D.水不是施力物体,而是受力物体 【答案】B 【解析】 A、B、物体间力的作用是相互的,运动员是施力物体,也是受力物体,选项A错误;选项B正确; C、D、水是施力物体,也是受力物体.两选项均错误. 故选B. 2.用橡皮筋、回形针、棉线、小瓶盖、牙膏盒、铁丝、钩码和刻度尺等,做一个如图所示的橡皮筋测力计.下列说法中错误的是() A. 刻度可以标在牙膏盒上 B. 可以把回形针上端当作指针 C. 可以利用钩码拉伸橡皮筋标注刻度 D. 不同橡皮筋做的测力计量程都相同 【答案】 D 【解析】【解答】A、牙膏盒相当于弹簧测力计的外壳,A不符合题意; B、回形针相当于弹簧测力计的指针,B不符合题意; C、钩码的质量已知,当挂在橡皮筋上时对橡皮筋的拉力等于钩码的重力,可以利用钩码拉伸橡皮筋标注刻度; D、不同橡皮筋在相等的拉力作用下伸长的长度不同,即不同橡皮筋做的测力计量程不相同,D符合题意。 故答案为:D。 【分析】根据弹簧测力计的构造和此装置对比分析得出答案。 3.某弹簧的一端受到100N的拉力作用,另一端也受到100N的拉力的作用,那么该弹簧测力计的读数是() A. 200N B. 100N C. 0N D. 无法确定 【答案】 B 【解析】【解答】弹簧测力计两端沿水平方向各施加100N的拉力,两个拉力在一条直线上且方向相反,所以是一对平衡力。弹簧测力计的示数应以弹簧测力计挂钩一端所受的拉力(100N)为准,所以,其示数是100N。 故答案为:B 【分析】由于力的作用是相互的,弹簧测力计的示数是作用在弹簧测力计挂钩上的力。

高分子材料力学性能

高分子材料的力学性能及表征方法 用途 聚合物的力学性能是高分子聚合物在作为高分子材料使用时所要考虑的最主要性能。它牵涉到高分子新材料的材料设计,产品设计以及高分子新材料的使用条件。因此了解聚合物的力学性能数据,是我们掌握高分子材料的必要前提。聚合物力学性能数据主要是模量(E),强度(σ),极限形变(ε)及疲劳性能(包括疲劳极限和疲劳寿命)。由于高分子材料在应用中的受力方式不同,聚合物的力学性能表征又按不同受力方式定出了拉伸(张力)、压缩、弯曲、剪切、冲击、硬度、摩擦损耗等不同受力方式下的表征方法及相应的各种模量、强度、形变等可以代表聚合物受力不同的各种数据。由于高分子材料类型的不同,实际应用及受力情况有很大的差变,因此对不同类型的高分子材料,又有各自的特殊表征方法、例纤维、橡胶的力学性能表征。 表征方法及原理 (1)拉伸性能的表征 用万能材料试验机,换上拉伸实验的样品夹具,在恒定的温度、湿度和拉伸速度下,对按一定标准制备的聚合物试样进行拉伸,直至试样被拉断。仪器可自动记录被测样品在不同拉伸时间样品的形变值和对应此形变值样品所受到的拉力(张力)值,同时自动画出应力-应变曲线。根据应力-应变曲线,我们可找出样品的屈服点及相应的屈服应力值,断裂点及相应的断裂应力值,样品的断裂伸长值。将屈服应力,断裂应力分别除以样品断裂处在初制样时样品截面积,即可分别求出该聚合物的屈服强度σ屈和拉伸强度(抗张强度)σ拉值。样品断裂伸长值除以样品原长度,即是聚合物的断裂伸长率ε。应力-应变曲线中,对应小形变的曲线中(即曲线中直线部分)的斜率,即是聚合物的拉伸模量(也称抗张模量)E值。聚合物试样拉伸断裂时,试样断面单维尺寸(厚或宽的尺寸)的变化值除以试样的断裂伸长率ε值,即为聚合物样品的“泊松比”(μ)的数值。 (2)压缩性能、弯曲性能、剪切性的表征。 用万能材料试验机,分别用压缩试验,弯曲试验,剪切试验的样品夹具,在恒定的温度、湿度及应变速度下进行不同方式的力学试验。并根据不同的计算公式,求出聚合物的压缩模量、压缩强度、弯曲模量、弯曲强度、剪切模量、剪切强度等数据。 (3)冲击性能的表征。

基于光滑粒子流体动力学方法的空间液桥实验实时模拟

文章编号:1001-9081(2015)S2-0208-04 基于光滑粒子流体动力学方法的空间液桥实验实时模拟 王萌1,2?,郭丽丽1,于歌1 (1.中国科学院空间应用工程与技术中心,北京100094; 2.中国科学院大学,北京100190) (?通信作者电子邮箱wangmeng07100701@163.com) 摘要:针对微重力环境下流体动态模拟的逼真度和效率问题,提出一种基于光滑粒子流体动力学(SPH)方法的空间液桥实验实时模拟方法三首先,借助计算机图形学和计算几何学的理论基础,结合空间液桥实验装置的三维模型,渲染了虚拟液桥实验的三维场景;其次,基于SPH方法建立液桥无网格的粒子模型,分析粒子在微重力条件下受力的特殊性,结合实验液体的密度二粘滞度等物理特性以及在微重力条件下的动态特性,模拟了空间中随实验操作的液桥形态变化过程;最后,仿真结果表明,该方法实现了微重力条件下液桥实验的实时动态模拟,并可应用于其他空间流体的动态仿真三 关键词:场景渲染;光滑粒子流体动力学;流体仿真;微重力;液桥实验 中图分类号:TP391.9 文献标志码:A Real-timesimulationforspaceexperimentsin liquidbridgebasedonsmoothedparticlehydrohynamicsmethod WANGMeng1,2?,GUOLili1,YU Ge1 (1.Technology and Engineer Center for Space Utilization,Chinese Academy of Sciences,Beijing100094,China; 2.University of Chinese Academy of Sciences,Beijing100190,China) Abstract:Since the inefficiency and low fidelity of simulation about dynamic fluid in the microgravity environment,a method based on Smoothed ParticleHydrodynamics(SPH)was proposed to simulate microgravity experiments on the thermocapillary convection in liquid bridge in real-time.Firstly,with the theoretical basis of computer graphics and computational geometry,this method rendered the virtual3D experimental scene,combining with the3D model file of experimental device.Secondly,the mesh-free particle model was established,and the specificity of the force for fluid was analyzed.Considering the physical properties of the fluid,such as the density and viscosity,and dynamic characteristics in microgravity condition,the shape of liquid bridge changing with space operation was simulated.Finally,the result of simulation has demonstrated that the proposed method has successfully modeled the process of microgravity experiments and it can be used in other space experiments about fluids. Keywords:rendering scene;Smoothed ParticleHydrodynamics(SPH);fluid simulation;microgravity;liquid bridge experiment 0 引言 由于微重力流体力学的发展具有重要的学术意义和巨大的应用前景,美二俄二西欧和日本相继建立了地面研究基地,并利用微重力火箭二飞船和航天飞机进行了多次空间流体实验三其中,液桥热毛细对流实验(简称液桥实验)是研究在微重力条件下热毛细对流的液桥高径比对临界过程的影响以及液桥的体积效应,是多次布置在国际空间站开展的一项空间实验三2010年,日本在国际空间站的KIBO上,进行了20cSt硅油的液桥实验,用以确定振荡流开始的临界温度差,明确体积比二加热速度二迟滞以及冷却盘温度对实验结果的影响[1]三科学家通过CCD相机拍摄的图像进行远程观察和分析,如图1[1]所示,三个俯视CCD进行三维粒子跟踪测速,侧置CCD用以观察液桥形状和整体流动模式,红外CCD用于测量液桥表面温度,观察振荡现象三利用这样的支持系统,科学家只能通过下传的二维黑白图像从一个固定角度观察实验,无法实现多角度观察和对一些细节区域的重点跟踪,从而严重影响对实验过程的分析和判断三 基于以上不足,本文在空间科学实验的地面支持系统中 建立虚拟液桥实验的三维场景,导入液桥实验装置各部件的 三维模型文件,确定各部件在三维场景中的相对位姿以及实 验过程中的移动情况,并通过投影变换和光照渲染等进行可 视化仿真,从而支持全方位二多角度地观察实验进度三空间液 桥实验的流体是硅油,在25?下,其密度为0.975kg/m3,粘滞度为10cSt三硅油固有的粘滞性二不可压缩性,使其在微重 力环境下,随着拉桥电机和注液电机的控制操作,液桥高度和 注液体积发生变化,液柱形状也在动态地改变,本文的难点在 于如何逼真地实现微重力条件下液柱形态的动态仿真三 在计算机图形学领域,基于物理的流体模拟方法大致可以 分为两类:基于网格的欧拉法[2]和基于粒子的拉格朗日法[3]三欧拉法将流体所占据的空间离散成固定的网格,分析网格上每一固定点的流体速度二压强和密度等参数随时间的变化三拉格朗日法通过研究流体中每一粒子的相应物理参数随时间的运动变化,来描述整个流体的运动三在流体的实时模拟方面, Journal of Computer Applications 计算机应用,2015,35(S2):208-211ISSN1001-9081 CODEN JYIIDU 2015-12-15 http://www.joca.cn 收稿日期:2015-03-01;修回日期:2015-03-24三基金项目:国家科技重大专项(Y2140411SN)三 作者简介:王萌(1987-),女,河南洛阳人,硕士研究生,主要研究方向:虚拟现实二流体仿真; 郭丽丽(1973-),女,甘肃庆阳人,研究员,硕士,主要研究方向:复杂任务智能运控; 于歌(1982-),女,黑龙江齐齐哈尔人,助理研究员,博士,主要研究方向:虚拟现实与人机交互三

空气动力学

空气动力学 崔尔杰* (中国航天科技集团第701研究所) 本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。 一、空气动力学与航空航天飞行器发展 空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。 1.空气动力学推动20世纪航空航天事业的发展 1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。 20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。 1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。航空方面的研究重点则放在了发展高性能作战飞机、超音速客机、垂直短距起落飞机和变后掠翼飞机。这一时期,空气动力研究方面的另一项重要成就是“超临界机殿”新概念的提出,它可以显著提高机翼的临界马赫数。20世纪70年代后,脱体涡流型和非线性涡升力的发现和利用,是空气动力学的又一重要成果。它直接导致了第三代高机动性战斗机的产生,如美国的F-15、F-16,苏联苏-27、米格-29和法国的“幻影2000”。

纳米流体液滴的耗散粒子动力学方法模拟

Copyright ? 2014 版权所有 中国力学学会 地址: 北京市北四环西路15号 邮政编码:100190 Address: No.15 Beisihuanxi Road, Beijing 100190 第八届全国流体力学学术会议 2014年9月18~21日 甘肃兰州 文章编号: CSTAM2014-B01-0333 标题:纳米流体液滴的耗散粒子动力学方法模 拟 作者:沈世元,周哲玮 单位:上海市应用数学与力学研究所 上海大学

第八届全国流体力学学术会议 2014年9月18-21日 甘肃 兰州 CSTAM2014-A26-BS10029 纳米流体液滴的耗散粒子动力学方法模拟 沈世元1,2,周哲玮1,2 (1上海市应用数学与力学研究所,上海闸北区 200070) (2上海大学,上海闸北区 200070) 摘要 纳米流体是指把直径范围从10nm —100nm 的金属或非金属纳米颗粒分散到水、醇、油等传统物质中形成的新型流体。纳米颗粒的尺寸和浓度会对纳米流体的表面张力、润湿性和导热性等产生很大的影响,是近年来材料、物理、化学、传热学等众领域的研究热点。DPD (耗散粒子动力学, Dissipative Particle Dynamics )是研究介观尺度下粒子运动的有力工具,其算法中的参数与物理系统的关系是研究热点之一。本文利用DPD 方法模拟介观尺度的纳米液滴,根据纳米液滴的接触角确定DPD 方法中的参数,研究了固壁、液体和纳米颗粒之间的相互作用系数。由于各种参数可以根据实测的数据来确定,此方法适用于研究实际工程中的问题。 关键词 纳米流体;耗散粒子动力学;接触角;相互作用系数 1.引言 1995年,美国Argonne 国家实验室的Choi 3等人提出了一个崭新的概念—— 纳米流体。随着纳米技术日益深入人心,相关研究逐渐成为一个热点,并在许多工业领域中得到拓展,比如含有表面活性剂的纳米流体可用来增加石油开采量,改良油污后的土壤;由于其易于浸入固体表面的特性,还常被用于对材料进行优化和改良。此外,纳米流体的有效导热系数高于相应纯流体,这使其传热性明显增强,因而多用于芯片散热的液冷系统中。通常,悬浮在流体中的纳米颗粒会受到诸如流动阻力、布朗运动、粒子间扩散及重力等内外因素的影响,其运动规律极其复杂。1 前人对于纳米流体性质的各个方面做了广泛的研究。1993年日本东北大学的Masuda 等人2在水中添加平均粒子直径为13nm 的32O Al 和27nm 的2O T i 粒子,制备了不同体积浓度的纳米颗粒胶体并测量了胶体的导热系数;1995年,美国Argonne 国家实验室的Choi 等人以一定的方式和比例在液体中添加纳米级金属或金属氧化物粒子,并称之为纳米流体。3 其中的氧化物粒子包括O C u 、2O S i 、32O Al 等,另外还有一些金属粒子和碳化物等4。 在1995年Choi 3之后,国内外的学者纷纷对纳米流体展开了深入的研究。在国 内方面,范庆梅等人5 对纳米流体的热导率和粘度进行了计算。李云翔等人6 为纳米流体的研究进展做了一个总结,包括:纳米流体稳定性的研究、纳米流体物性的研究、纳米流体传热特性的研究,其中既包括实验方面的研究进展也对纳米流体物性以及传热特性的理论研究进行了系统的总结。国外方面,B. Davidovitch 等人7研究了考虑了热扰动的粘性液滴在基板上的过程。杰出的研究人员如Kim 8-11、Vassallo 12、Truong 13等人也在纳米流体的性质研究方面做出了杰出的贡献,这里不再一一赘述。 分子动力学模拟(Molecular Dynamics, MD )是一种在微观尺度下模拟原子和简单分子运动的方法。但由于超出这个尺度的时候,MD 方法不适用,我们需要采用另外的方法。对于介于宏观和微观之间的尺度上的流体动力学行为的研究是目前学术界的热点问题。这个中间的尺度通常被称为介观尺度,通常指的是10-1000nm 和1ns-10ms 的尺度。本文所采用的介观尺度下模拟流体的动力学行为的方法是耗散粒子动力学方法(Dissipative Particle Dynamics ,简称DPD )14。此方法通过对模拟区域内的粒子进行粗粒化,以减少计算代价,在更短的计算时间内计算更大的

相关主题
文本预览
相关文档 最新文档