当前位置:文档之家› 四川大学自动控制原理实验报告完整版带数据

四川大学自动控制原理实验报告完整版带数据

四川大学自动控制原理实验报告完整版带数据
四川大学自动控制原理实验报告完整版带数据

目录

一.实验目的 (1)

二.实验设备及仪器 (1)

三.实验内容

1.惯性环节

(1)实验原理 (1)

(2)实验内容 (1)

(3)实验数据 (2)

(4)误差分析 (5)

2.震荡环节

(1)实验原理 (6)

(2)实验内容 (6)

(3)实验数据 (6)

(4)误差分析 (8)

3.二阶系统

(1)实验原理 (9)

(2)实验内容 (9)

(3)实验数据 (9)

(4)误差分析 (11)

4.三阶系统

(1)实验原理 (12)

(2)实验内容 (12)

(3)实验数据 (12)

(4)误差分析 (14)

四.思考题 (15)

五.心得体会 (15)

附:实验原始数据记录单 (16)

实验一. 典型环节的电模拟及阶跃响应分析

实验二. 二、三阶系统动态分析

一、实验目的:

1、学习典型环节、二阶三阶系统的电模拟方法及参数测试方法;

2、观察典型环节、二阶三阶系统的阶跃响应曲线,了解参数变化对动态特性的影响;

3、学习示波器的使用方法;

4、学习使用MATLAB中SIMULINK的使用,进行时域法分析。

二、实验设备及仪器:

1、模拟实验箱;

2、示波器;

3、计算机;

4、MATLAB仿真软件。

1

(1

(2

b.

(3

T=1s T=2s

K R2/kΩC/μF Tr/s K实测K R2/kΩC/μF Tr/s K实测

1 100 10 5.16 1 1 100 20 8.08 1.04

2 200 5 5.68 2 2 200 10 10.7 1.96

①K=1,T=1s 时

实验仿真图及波形如下:

②K=2,T=1s 时

实验仿真图及波形如下:

仿真波形实验波形

仿真波形实验波形

K=1,T=2s 时

实验仿真图及波形如下:

仿真波形实验波形

④K=2,T=2s 时

实验仿真图及波形如下:

仿真波形实验波形

T=1s时的波形图T=2s时的波形图(4)误差分析

由理论公式,

(1)1

0.020.05

1

t

T

K e-

∣--∣

≤≤,可将数据整理如下表所示:

K T/s t s(实际

值)/(s)t s(理论

值)/(s)

t s(模拟

值)/(s)

K T/s t s(实际值)/

(s)

t s(理论

值)/(s)

t s(模拟

值)/(s)

1 1 5.16 2.996~3.9

12 2.9473 1 2 8.08 5.992~7.8

24

5.8946

2 1 5.68 3.219~3.6

892.9473 2 2 10.7 6.438~7.3

78

5.8946

仿真波形实验波形

仿真波形实验波形

仿真波形实验波形

我们还在MATLAB中做了仿真,得到了如下曲线方便比较:

(4)误差分析

ξ取值σ%实测值σ%模拟值Ts/s(实测值)Ts/s(模拟值)Tp/s(模拟值)

0.1 0.9790.721625 4.14 2.85880.3142

0.5 0.1700.158324 0.720.51580.3592

1 00 0.80.4600-

我们的实验数据与通过程序模拟出来的结果有一定的差别,出现这种差别的可能原因有以下几点:(1)实测值是通过示波器读出来的数据,因此存在一定的人为误差;(2)仪器本身的误差,即仪器误差;(3)ξ是通过电阻、电容等元件算得的,实际中选取的电阻和理论电阻有一定的差别(比如500Ω的电阻,我们用的是510Ω的电阻)。

仿真波形实验波形

仿真波形实验波形

我们还在MATLAB中做了仿真,得到了如下曲线方便比较:

(4)误差分析

根据实测数据、模拟数据可以对比如下:

K σ%实测值σ%模拟值Ts/s(实测值)Ts/s(模拟值)Tp/s(模拟值)1 0.106 0.045152 0.8 0.2026 0.3132

5 0.213 0.249137 0.408 0.2993 0.1428

10 0.340 0.363269 0.228 0.2395 0.1013

我们的实验数据与通过程序模拟出来的结果有一定的差别,出现这种差别的可能原因有以下几点:(1)实测值是通过示波器读出来的数据,因此存在一定的人为误差;(2)仪器本身的误差,即仪器误差;(3)实验中所用的电阻、电容等元件是通过给定的K值计算得到的,

实际中选取的电阻和理论电阻有一定的差别(比如500Ω的电阻,我们用的是510Ω的电阻),所以实际的K值并不是给定的1、5、10。

总结:(1)当ξ=0时,输出响应为等幅振荡。

(2)当0<ξ<1时,输出响应为衰减振荡曲线,且y(∞)=1,ξ的变化影响动态性能指标。随着ξ增大,上升时间增大,超调量变大,调节时间变短,峰值时间变大。

4、三阶系统

(1)实验原理

K=1时

仿真波形实验波形

仿真波形实验波形

仿真波形实验波形

我们还在MATLAB中做了仿真,得到了如下曲线方便比较:

K σ%实测值σ%模拟值Ts/s(实测值)Ts/s(模拟值)Tp/s(模拟值)1 0.255 0.19950010.2 5.2696 3.6164

5 0.660 0.67454215 11.8058 1.5837

10 0.809 0.91960049.8 76.9365 1.1421

这里实验波形和仿真波形有一定差距,比如过调峰值,可能是由于实验采样、实验器材存在一定误差造成的,而且震荡次数,仿真出来的波形显然的可以看到2次,但实验得到的波形有明显有3次,应该是线路元件误差导致阻尼下降带来的。

随着放大倍数的增加,已经可以看到过调峰值接近相同了,但与K值较小的时候不同的是,

示波器出来的波形没有仿真的那么幅度明显了,甚至在示波器看到的波形只能观察到3个周期的振荡。

四.思考题

1.根据实验结果,分析一阶系统Ts与T、K之间的关系。

答:对于一阶系统来说,其单位脉冲响应曲线为单调下降的指数曲线,时间常数Ts越大,响应曲线下降越慢,表明系统受到脉冲输入信号后,恢复到初始状态的时间越长。因此有如下结论:(Ts为时间常数)

时间常数越大,恢复到初始状态的时间越长,即Ts越大,T越大;

开环放大系数越大,时间常数越小,即K越大,Ts越小。

2.认真思考一般环节的电路摸拟图构成,并找出规律,学会设计简单的环节摸拟图。

答:构成电路模拟图的基本原理是:采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络来模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。再将输入信号加到模拟系统的输入端,并利用测量仪器,来测量系统的输出,就可得到系统的动态响应曲线及性能指标。若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

比如:(1)比例环节——可由电阻和运算放大器构成;(2)惯性环节——可由电阻、运算放大器、电容构成;(3)积分环节——可由电阻、运算放大器、电容构成;(4)微分环节——可由电阻、运算放大器、电容构成;(5)比例+积分环节——可由电阻、运算放大器、电容构成;(6)比例+微分环节——可由电阻、运算放大器、电容构成。

自动控制系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析是十分有益的。根据资料和实验可以发现:(1)比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化;(2)积分环节的输出量与其输入量对时间的积分成正比。

五.实验心得体会

典型系统的电路模拟和二阶、三阶系统动态分析实验是我们本学期自动控制课的第一次实验,我们在老师的指导下和同组成员的相互合作中顺利完成,并在实验后,认真高效地完成了实验报告。整个过程中,我们不仅动手认真操作实验,还动脑思考实验,运用所学的软件呈现出实验的数据和结果,比如用MATLAB软件来处理数据,用Multisim软件来进行仿真,用excel表格、word文档来作报告等,可以说,整个过程都在充分地学习,学习如何实验,学习如何联系理论与实验,学习如何在实验中思考,学习相关数学工具,学习如何准确地呈现结果,所以说,这次实验对我们来说,是一次极大的收获,同时提升了我们的能力。

下面我就实验中我们遇到的问题来做一下总结:

实验过程面临的问题:实验过程中的确遇到了不少的麻烦,比如部分放大器不能使用等问题,但经过老师维修后,能够进行正常的实验。开始做一阶系统实验的时候,由于不太清楚如何使用示波器观察暂态过程,浪费了很长时间,但经过老师的解答,我们便掌握了并能够熟练地测量出清晰的波形。在进行三阶系统动态分析实验时,线路布置也花费了较长的时间。实验报告撰写时遇到的问题:由于实验时没有仪表测量各电压值,导致在写报告处理数据是时通过读示波器得到的,产生的误差较大,所以我们在写报告时实验数据参照对比了仿真值。特别感谢实验室老师在实验过程的指导和独特理念的传授,让我们受益匪浅。

附:实验数据记录单

自控原理选择题

1.反馈控制系统又称为(B ) A.开环控制系统 B .闭环控制系统 B.扰动顺馈补尝 D .输入顺馈补偿 2.位置随动系统的主反馈环节是(A ) A .电压负反馈 B .电流负反馈 C .转速负反馈 D .位置负反馈 3.如果典型二阶系统的单位阶跃响应为减幅振荡(又称阻尼振荡),则其阻尼比(C ) Aξ<0 Bξ=0 C0<ξ<1 D ξ≥1 4.G(s)= 1/[(S+1)(S+2)(S+3)(S+4)]环 节的对数相频特性的高频渐近线斜率为(D ) A -20d B B-40dB C-60dB D-80dB 5.某自控系统的开环传递函数G(s)= 1/[(S+1)(S+2)] ,则此系统为( A ) A .稳定系统 B .不稳定系统 C .稳 定边界系统 D .条件稳定系统 6.若一系统的特征方程式为(s+1)2(s -2)2+3=0,则此系统是(C ) A 稳定的 B 临界稳定的 C 不稳定 D .条件稳定的 7.下列性能指标中的(D )为系统的稳态指标。 A.σP B.t s C.N D.e ss 8.下列系统中属于开环控制的为( C) A.自动跟踪雷达 B.数控加工中心 C.普通车床 D.家用空调器 9.RLC 串联电路的系统应为(D)环节。 A 比例 B.惯性 C.积分 D.振荡 10.输出信号与输入信号的相位差随频率变化的关系是(B )。 A.幅频特性 B.相频特性 C.传递函数 D.频率响应函数 1.奈奎斯特图分析闭环控制系统的 (A )A.稳态性能 B.动态性能 C.稳态和动态性能 D.抗扰性能 2.有一线性系统,其输入分别为u 1(t)和u 2(t)时,输出分别为y 1(t)和y 2(t)。 当输入为a 1u 1(t)+a 2u 2(t)时(a 1,a 2为常 数),输出应为(B ) A.a 1y 1(t)+y 2(t) B.a 1y 1(t)+a 2y 2(t) C.a 1y 1(t)-a 2y 2(t) D.y 1(t)+a 2y 2(t) 3.某串联校正装置的传递函数为 G c (S)=K S S T 1T 1+β+(0<β<1),则该装置 是( A ) A.超前校正装置 B.滞后校正装置 C.滞后超前 D.超前滞后校正装置 4.1型系统开环对数幅频渐近特性的 低频段斜率为( B ) A.-40(dB/dec) B.-20(dB/dec) C.0(dB/dec) D.+20(dB/dec) 5.开环传递函数G(s)H(s)=) p s )(p s () z s (K 211+++,其中p 2>z 1>p 1>0,则实轴上的根轨迹(A ) A.(-∞,-p 2],[-z 1,-p 1] B.(- ∞,-p 2] C.[-p 1,+ ∞] D.[-z 1,-p 1] 6.设系统的传递函数为 G(s)=1 s 5s 2512 ++,则系统的阻尼比为 C. 21 7.设单位负反馈控制系统的开环传递函数G o (s)=) a s (s K +,其中K>0,a>0,则闭环控制系统的稳定性与( D ) A.K 值的大小有关 B .a 值的大小有关 C.a 和K 值的有关 D.a 和K 值的无关 8. 在伯德图中反映系统动态特性的是 B. 中频段 9. 设开环系统的频率特性G(j ω)=2 ) j 1(1 ω+,当ω=1rad/s 时,其频率特性幅值G(1)=(D ) A. 1 B. 2 C.21 D. 41 10. 开环传递函数为G(s)H(s)=) 3s (s K 3+,则实轴上的根轨迹为( D )。 A.[-3,∞] B. [0,∞] C. (-∞,-3) D. [-3,0] 1.实验中可以从( D )获取频率特性。A.稳定的线性和非线性系统 B. 不稳定的线性和非线性系统 C.不 稳定的线性系统 D. 稳定的线性系统2.传递函数的概念适用于(D )系统。 A .线性、非线性 B. 线性 非时变 C .非线性定常 D. 线性定常 3.系统的动态性能包括( B )。 A 稳定性平稳性 B.平稳性快速性 C 快速性稳定性 D.稳定性准确性 4. 确定系统根轨迹的充要条件是C A 根轨迹的模方程B.根轨迹的相方程 C 根轨迹增益 D 根轨迹方程的阶次 5 .正弦信号作用于线性系统所产生的频率响应是( A ) A .输出响应的稳态分量 B. 输出响应的暂态分 量 C .输出响应的零输入分量 D. 输出响应的零状态分量 6.系统的传递函数完全决定于系统 的 ( C )。A .输入信号 B.输出信号C.结构和参数D.扰动信号7.控制系统的相位稳定裕量反咉 了系统的 ( B )。A .稳定性 B.稳态性能C.快速性 D.动态性能8.一般来说,系统增加积分环节,系统的稳定性将( B )。 A .变好 B.变坏 C.不变 D.可能9.系统开环对数幅频特性L(ω)中频段主要参数的大小对系统的 ( D )性能无影响。A.动态 B. 稳态 C. 相对稳定性 D. 响应的快速性10.反馈控制系统又称为( B ) A .开环控制系统 B .闭环控制系统 C 扰动顺馈补偿 D 输入顺馈补偿 1.单位斜坡函数f(t)=t 的拉氏变换式F(s)=( D ) A.s B.1 C .S 2 D . 1/S 2 2.单位抛物线输入函数r(t)的数学表达式是r(t)=(D ) A .at 2 B .1/2 Rt 2 C .t 2 3.当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比C A ζ<0 B ζ=0 C0<ζ<1 D ζ≥1 4.已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为B .I 型系统 5.设某环节的传递函数为G(s)=1 21 +s ,当ω=0.5rad /s 时,其频率特性相位移θ(0.5)=(A) A .- 4π B .-6π C .6π D 4 π 6超前校正装置的最大超前相角趋D .90°

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

四川大学近代化学基础模拟试卷(八)

四川大学近代化学基础模拟试卷(八)近代化学基础模拟试卷(八) 一、是非题,判断下列说法是否正确,正确的在括号中写上“?”,错误的写 上“×”。(共10分) 1. 单电子原子的能量只与主量子数有关,多电子原子的能量与主量子数和角 量子数都有关。( ) 2. 螯合剂(配体)都是多齿配体。 ( ) 2++3. Ca的极化力比K强,故CaCl的熔点比KCl低。 ( ) 2 324. 凡八面体构型的配合物,中心离子或原子均采用spd杂化轨道成键。 ( ) 55. 高自旋d金属离子配合物的晶体场稳定化能为零,因此极不稳定,很难存在。 ( ) 6. He的键级为零,故不存在这种分子,的键级为,故氦的分子离子能存在, 但不够稳定。 2 ) ( 7. 凡分子中含有N,且N上联有氢的,分子间必有氢键。 ( ) 8. 由鲍林规则,HPO是弱酸,HPO是弱酸。 ( ) 3433 9. 凡分子中含单电子的物质具顺磁性,分子中不含单电子的物质一般呈抗磁 性。 ( ) 10. 对有机分子而言,多数固态时是分子晶体,分子越大,分子间力越强,熔 沸点越高。( ) 二、填空题(40分) 1. 1 mol的苯甲酸(s)在25?于刚性容器中完全燃烧,放热3227kJ,则反应: ,12CHCOOH(s)+15O(g),14CO(g)+6HO(l)的= kJ?mol,(298.15)= 65222

,1kJ?mol。 ,12. 已知HO(l)的(298.15K)=,285.84kJ?mol,则H的(298.15K)= kJ?mol22 ,1。 3. 某系统进行不可逆循环后,系统的ΔS 0,环境的ΔS 0。 ,14. 反应CH(g)+HO(l),CHOH(ag)的(298.15K)=12.34kJ?mol,若在平衡条件进行反应,则24225 ,1= kJ?mol。 5. 放热化学反应的(298.15K)>0,则25?时此反应为 1。 6. 在绝热体积恒定的容器中发生一化学反应,使容器中温度压力都增加,则该过程的ΔU 0,ΔH 0,ΔS 0, ,517. 某化学反应的与温度的关系如下:ln=1.00×10/T,8.0,则该反应的= kJ?mol。 8. 某元素的原子序数小于36,其原子失去三个价电子后,量子数l=2的亚层刚好半满,该元素是。 9. AB型离子晶体的晶格能随离子电荷的而 ;随离子半径的而。 ,2+410. [Fe(HO)]与[Fe(CN)]两种配离子的磁矩前者为4.9B.M.,后者为零,则前者空间构型266 为,后者的空间构型为,由价键理论,前者中心离子价电子轨道的杂化类型是,后者是 ;由晶体场理论,前者的d电子排布为,后者为 ;前者的晶体场稳定化能 为,后者为。因此,稳定性前者后者。 ,键级为,键型11. 由分子轨道理论,的电子排布为 为、、,分子呈磁性。 12. K的第一电离能 Ca的第一电离能;Ca的第二电离能 K的第二电离能。

测控技术与仪器专业简介

测控技术与仪器专业 业务培养目标: 本专业培养具备精密仪器设计制造以及测量与控制方面基础知识与应用能力,能在国民经济各部门从事测量与控制领域内有关技术、仪器与系统的设计制造、科技开发、应用研究、运行管理等方面的高级工程技术人才。 修业年限:四年 授予学位:工学学士 业务培养要求: 本专业学生主要学习精密仪器的光学、机械与电子学基础理论,测量与控制理论和有关测控仪器的设计方法,受到现代测控技术和仪器应用的训练,具有本专业测控技术及仪器系统的应用及设计开发能力。 专业方向介绍 测控技术及仪器专业是仪器科学与技术和控制科学与技术交叉融合而形成的综合性学科。 设2个专业方向。 方向一:检测技术与自动化装置方向; 方向二:测试计量技术及仪器方向。 方向一以集电子技术、先进控制理论、计算机控制技术、自动检测技术、光电技术以及网络技术于一体为特色,以生产过程的机电装备运行状态及其信息为研究对象。本方向旨在培养基础理论扎实、实践能力强、知识面广,外语综合能力和计算机应用能力较强,人文社会科学综合素质较高,具有开拓创性意识,能够从事工业过程控制理论与装备、计算机辅助测试系统、信息处理与状态识别等领域的研究开发、设计制造和运行管理的复合型高级工程技术人才。 方向二以光—机—电—仪器—计算机技术一体化为特色,以传感器技术、信息获取与处理技术、自动化精密机械以及智能仪器仪表为主要研究对象。本方向旨在培养基础理论扎实、实践能力强、知识面广,外语综合能力和计算机应用能力较强,人文社会科学综合素质较高,具有开拓创性意识,能够从事测控仪器、信息技术以及测试计量技术等方面的研究开发、设计制造和运行管理方面的复合型高级工程技术人才。 业务能力 方向一的毕业生应具有较扎实的自然科学基础,较好的人文和社会科学基础及较强的英语与计算机应用能力以及较强的创新意识;系统地掌握检测技术与自动化装置专业方向的基本理论与技术,主要包括电工电子技术、自动检测技术、工程光学、测控仪器电路、工业过程控制、微机控制技术等基本理论基础;掌握光、机、电、计算机控制相结合的现代测控技术和实验研究技能;具备综合运用专业知识解决生产实际问题的初步能力。 方向二的毕业生应具有较扎实的自然科学基础,较好的人文和社会科学基础以及较强的英语和计算机应用能力、较强的创新意识;系统地掌握本专业所需的基本理论和基础知识,主要包括电子技术、工程光学、精密机械学、传感器技术、控制工程等基础知识;掌握光、机、电、计算机相结合的现代测控技术和实验技能,综合运用专业知识解决生产实际问题的初步能力。

浙江大学845自动控制原理考研真题试卷

紧急通知 本资料由浙江大学控制科学与工程学院16届专业课129分学长,也就是我本人亲自整理编排而成。大家可以叫我学长,年龄比我大的辞职考的可以叫我小弟。资料不同于市面上那些看起来非常诱人实则是粗制烂造的资料,而是以一个考过845自控的过来人的经验,完全从学生的体验出发,做到资料最全,资料最好,资料最精致。全套资料包括葵花宝典一到葵花宝典九共九本资料,每本资料都是我精心编辑整理的,并做了精美的封面,一共650页完美打印发给大家,大家把这650从头到尾肯透了,再做下我推荐的几本资料书(16年有一道15分的大题就是上面的类似题,第三问很多高手都没做出来,注意不是周春晖那本哈),可以说完全没问题了。这是其它卖家不可能做到的。同时赠送845自控全套电子资料。葵花宝典一完全由我本人原创,里面包含了考浙大845自动控制原理的全部问题,比如考多少分比较保险,怎么复习,有哪些好的资料书,最近几年考题变化及应对策略,浙大常考题型,招生名额,复试资料,导师联系,公共课复习用书及方法以及845近年命题风格分析等一系列问题,全是我的心得和经验,方法,技巧等,说句心里话,我自己都觉得这些资料非常宝贵,能帮助学弟学妹们少走很多弯路。 注意:前面是一些关于我的故事,有些地方可能对你有用,如果不感兴趣,可以直接拉到后面去看,资料清单和图片都在后面。 学长自我介绍 学长姓邓,名某某,男,本科于14年毕业于四川大学电气信息学院自动化专业,考浙大控制考了3次,14年大三时第一次考浙大控制总分没过线。当时我们学校有三个同学征战浙大控制科学与工程,结果全军覆没,只有我一人过了300分,由此可见考浙大控制还是很有难度的,其中一个难点就是专业课的信息和专业课的命题走向的获取,当时我们都不是很清楚,蒙着头自己学,去图书馆借了很多自动控制原理的资料书来看,我自我感觉学得还不错,当时我一个同学考电子科大的自动化,经常跑来问我自控的问题,我基本都能给他解答出来,他说我好牛逼,觉对没有问题,然而最后的结果是他考电子科大自动控制原理137,而我只考了96分。后面我分析了一下,为什么会出现这样的情况?最重要的就是我们对浙大的出题风格不是很了解,不知道它的命题方向和爱考的地方,方向都错了,怎么可能得高分?虽然我把11年以前的真题都做了,但是浙大12年以后的命题风格和以前有所不同,所以还是无济于事。因此即使你的自控基础知识扎实,也未必能够得到高分,这里面有很多方法和技巧,都是我从后面的考试中慢慢总结出来的。 由于不甘心就这么与浙大失之交臂,所以决定二战,但是又不想向家里要钱了,因为学长家在贵州农村,经济条件不是很好。于是我选择平时晚上去给别人做家教,周末去给培训机构上课。这样的好处是我有大把的白天用来复习,只是晚上出去干干活。这个事就说到这里,不是主题。15年专业课考了113,一个中等的分数,本来可以考130,但是为什么没有考到,这些原因我都在葵花宝典一中给大家分析了,希望大家能我的身上汲取经验,别步我的后尘。但是15年死在英语不过线上,差3分,这是我怎么也没有想到的,学长英语虽然不能说特别好,但是最起码四六级大一就过了,高考英语还是我们小县城的单科第一名(山中无老虎),第一年也考了65分。这是我怎么也没有想到的,所以有的时候感觉

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

(完整word版)川大版高分子近代分析方法重点

第一章紫外光谱 波粒二象性:是指某物质同时具备波的特质及粒子的特质(无论何种电磁波都具有该性质)。生色基:在紫外-可见光谱中,具有双键结构的基团对紫外—可见光区能产生特征吸收的基团统称生色基。可为c=c,c=o,c=s,-N=N-双键及共轭双键,芳环,-NO2,-NO3,-COOH,-CONH2等基团,总之,可产生π→π*和n→π*跃迁的基团都是生色基。 助色基:与生色基相连时,通过非键电子的分配,扩展了生色基的共轭效应,从而影响生色基的吸收波长,增大其吸收系数,这些基团称为助色基。如-NH2,-NR2,-SH,-SR,-OH,-OR,-cl,-Br,-I,等,这些助色基都具有孤对电子~n电子,它们与生色基的π电子发生共轭。 蓝移:因环境或结构的变化,使生色基的λmax向低波长方向移动的现象。 红移:使生色基的最大吸收波长(λmax)向高波长方向移动的现象。 光谱分析法类型:吸收光谱分析,发射光谱分析和散射光谱分析三种类型。 光谱分析的特点:1.灵敏度高2.特征性强3.样品用量少4.操作简便5.不需标样。 紫外吸收带的类型及特征: R吸收带:含C=O,-N=O,-NO2,-N=N-基的有机物可产生这类谱带,它是n→π*跃迁形成的吸收带,ε很小,吸收谱带较弱,易被强吸收谱带掩盖,易受溶剂极性的影响而发生偏移。 K吸收带:共轭烯烃,取代芳香化合物可产生这类谱带,它是π→π*跃迁形成的吸收带,εmax>10000,吸收谱带较强。 B吸收带:是芳香化合物及杂芳香化合物的特征谱带,εmax=200,特征是峰形有精细结构,(溶剂的极性,酸碱性对精细结构的影响较大),这是由于振动次能级对电子跃迁的影响。E吸收带:也是芳香族聚合物的特征谱带之一,也属π→π*跃迁。 ①E1带:εmax >100000,是由苯环内双键上的π电子被激发所致。 ②E2带:εmax的2000-14000,是由苯环的共轭双键所引起。 紫外吸收带的影响因素:①生色基和助色基②蓝移和红移③溶剂和介质④溶剂的酸碱性。 紫外吸收光谱在高分子中的应用: 1.定量分析①丁苯橡胶中共聚物组成的分析②高分子单体纯度的测定 2.定性分析:将不具备生色基的高分子区别开来 3.聚合反应动力学:苯胺光引发机理的研究 4.其他:①互变异构体的确定②分子量的测定。 光谱分析的原理:任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态,通过对光谱学规律的研究,可以揭示物质的组成,结构及内部运动规律,获得物质定性与定量的信息。 紫外光谱的基本原理:是利用某些物质的分子吸收200-800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁。 紫外光谱中电子的跃迁类型及特征:①n→σ*跃迁:是指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁,凡含有卤素等杂原子的饱和烃及衍生物可发生此类跃迁。特征:所需能量较大,吸收峰的吸收系数ε较低,ε<300.②n→π*跃迁:指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。凡含有孤对电子的杂原子和π键的有机化合物会发生此类跃迁。特征:所需能量小,ε很小,在10-100之间。③π→π*跃迁:指不饱和键中的π电子吸收光波能量后向π*反键轨道的跃迁,凡含有不饱和烃,共轭烯烃和芳香烃类的有机化合物可发生此类跃迁,特征:所需能量小,ε很高,一般ε>10000。④d-d跃迁:在过渡金属络合物溶液中易产生的跃迁。⑤电荷转移跃迁:条件是同时具备电子给予体和电子接受体,其吸收谱带的强度大,吸收系数ε>10000.

四川大学电分实验报告

四川大学电气信息学院 实验报告书课程名称:电力系统分析 实验项目:单机—无穷大系统稳态运行实验与电力系统暂态稳定实验专业班级:电气工程及其自动化专业09303015 班级实验时间:2011年12月12日星期一 评阅老师: 成绩评定: 报告撰写人:张骏安学号:0943031056 电气信息学院专业中心实验室

单机—无穷大系统稳态运行实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验电路图 四、实验项目和方法 (1)单回路稳态对称运行实验 ①合上EAL-02 上的状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下; ②按照实验十进行启机、建压、并网; ③通过调速器中的“加速”“减速”按钮改变原动机功率,通过励磁调节器中“增磁”、

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

四川大学化学工程学院硕士研究生复试工作安排及复试科目

2012年硕士研究生复试工作安排及复试科目 一、复试工作时间安排及具体要求 1.化工学院2012年硕士研究生复试工作统一安排在2012年3月30日至31日进行,其中: 3月30日上午:专业笔试 3月30日下午至31日:外语及综合素质面试 2.复试成绩总分为200分,分为专业笔试、综合面试、外语听说三部分,其中:专业笔试:100分,考核专业综合知识,答卷时间3小时,采用密封试卷; 综合面试:60分,考核综合素质与能力,含实验操作或科研实践能力; 外语能力:40分,外语自述、现场阅读翻译、外语提问与回答方式等; 复试成绩低于120分者视为复试不合格,不予录取。 3.同等学力考生复试期间除必须参加上述复试内容外,还须参加2门本科阶段该专业主干课程的加试(笔试),加试科目不得与初试和复试考试科目相同,加试每科时间为3小时、总分100分,其中任何一门加试科目成绩低于60分,视为不合格,不予录取。 4.拟录取考生名单根据招生名额和录取排序总分从高到低依次确定。 录取排序总分S总计算:S总=(初试总分/5)×0.5 + (复试总分/2)×0.5 5.参加复试的同学务必提前一天到四川大学化工学院办公室办理复试手续,具体如下:3月29日(星期四)9:00—11:00到化工学院二楼会议室(241室)办理复试手续。复试时必须携带准考证、有效身份证件(身份证、军官证等);往届生带本科毕业证书、学位证书;应届生携带本科学生证和本科成绩单,所有考生同时提供以上所有有效证件复印件一份存档备查。另带2张1寸彩色免冠证件照(体检表粘贴照片使用)。3月29日下午16:00在化工学院309室召开全体复试考生告知大会。 专业代码报考专业复试科目参考书目 080603 有色金属冶金冶金物化、 科技英语 《有色冶金原理》 080706 化工过程机械 化工机械综合基础1.《过程设备设计》郑津洋主编,(或王志文主编《化工容器设计》),化学工业出版社2001。 2.《过程流体机械》姜培正主编,化学工业出版社2001。 3.《工程流体力学》黄卫星主编,化学工业出版社2001。 4.《工程材料》闫康平主编,化学工业出版社2001。 5.《化工原理》朱家骅主编,科学出版社2001。 081721 化工安全工程与技术 085206 动力工程

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

四川大学化工原理实验报告

竭诚为您提供优质文档/双击可除四川大学化工原理实验报告 篇一:xxxx学院化工原理实验报告 贵州理工学院化工原理实验报告 学院:化学工程学院专业:化工职教班级:化职131 篇二:化工原理实验报告张 资源与环境工程学院 精馏分离实训报告 姓名:张x 学号:xxxxxxxxx 专业:应用化工 班级:xxx 指导教师:张xx 20XX年12月 日24 目录 1.精馏实验 1.1精馏的原理

1.1.1精馏的分类 1.1.2精馏的计算方法 1.1. 2.1概述 1.1.3理论塔板数的计算方法 1.1.3.1图算法 1.1.3.2捷算法 1.1.3.3严格计算法 1.2实验目的 1.3实验原理 1.4实验材料 1.5实验过程 1.6实验结果 2.总结 1.精馏实验 精馏是一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。 1.1精馏的原理双组分混合液的分离是最简单的精馏操作。典型的精馏设备是连续精馏装置,包括精馏塔、再沸器、冷凝器等。精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔底,其余馏出液是塔顶产品。位于塔底的再沸器使液体部分

汽化,蒸气沿塔上升,余下的液体作为塔底产品。进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。当使n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。 精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。 1.1.1精馏的分类精馏操作按不同方法进行分类。根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数,可分为二元精馏和多元精馏;根据是否在混合物中加入

基于SPI Flash的Sharc系列DSP程序加载

技术创新 DSP 开发与应用 您的论文得到两院院士关注 基于SPI Flash 的Sharc 系列DSP 程序加载 The Procedures-load of Sharc Series of DSP Based on SPI Flash (四川大学) 雷春梅周群刘谋云应俊 LEI Chun-mei ZHOU Qun LIU Mou-yun YING Jun 摘要:DSP 是针对数字信号处理需要而设计的一种具有特殊结构的微处理器。它需要通过程序加载来进行信号处理,本文通过具体实例介绍了sharc 系列的DSP 通过其SPI 口的程序加载,同时也介绍了相关系统的硬件设计和软件的调试。该技术可靠性高,使用灵活方便,具有很强的实用性。关键词:程序加载;SPI 接口;数字信号处理;调试中图分类号:TP319文献标识码:B Abstract:DSP is designed to meet the need of Digital Signal Processing as a specific structuralized microprocessor,in which the signal processes through the procedures-load.In this paper,we introduce the course of loading the procedures via SPI port of DSP,which belongs to the sharc line,and also the relevant system ’s design of hardware and the debugging of software is introduced.With flexible and convenient,this method is of high reliability and highly practical.Key words:Procedures-load;SPI port;Digital Signal Processing;degug 文章编号:1008-0570(2010)04-2-0115-02 1引言 DSP 芯片主要用于数字信号处理。当前占据市场大部分份额的DSP 生产厂商是美国的德州仪器与模拟器件两家公司。在国内,尤以德州仪器生产的芯片使用更加广泛。 使用DSP 进行信号处理,就涉及到程序加载问题,不同厂家 生产的不同系列DSP 的程序加载方式也大同小异。 现在应用得比较广泛的是从flash 中加载程序。因为flash 是一种可在线编程的存储器,而且具有掉电后数据不丢失、功耗低、容量大、读取快、价格低、操作简单等优点。Flash 存储器芯片又分为并口 flash 和串口flash 。 对于并口flash,操作更为简单,数据并行传输,但占用较多的外围接口资源,因此这种程序加载方式比较适合芯片接口资源比较丰富的系统设计;而串口flash,虽然对其进行编程等操作相对复杂一些,但在接口资源比较紧张时却具有其他编程方式无可比拟的优势。 对flash 芯片的烧写,一般有两种方法:编程器烧写和在线编程。编程器烧写,即是通过硬件编程器,将工程文件经过编译链接后得到的输出文件写入flash 芯片中,这种程序烧写方式实现起来比较简单,但需要额外的硬件编程器,因而一定程度上提高了开发成本。另一方面,表贴式封装的flash 芯片不可能使用编程器烧写,只能采用在线编程。本文将通过一个AD 公司生产的sharc 系列DSP 通过其SPI 口的程序加载的具体实例来详细介绍。后面将通过硬件设计和软件架构来介绍其硬件和软件结构并总结了一些调试经验。 2硬件设计 2.1flash 芯片M25P20-VMN6简介 m25p20是美国ST 公司生产的一款flash 存储器芯片。该芯片具有与工业标准SPI 接口兼容的外部引脚。该芯片具有 2Mbit 的存储空间,即256Kbytes 。存储空间被分成四段,每段56Kbytes,并且每段存储空间由256页组成,每页大小为 256Bytes 。 对该芯片进行编程,一次性连续写入最多256Bytes 。该芯片具有一个状态寄存器,通过对其编程,可以实现芯片存储空间的保护,以及芯片写使能等操作。另外,状态寄存器中也具有 BUSY 标志位,通过该标志位,可以查询芯片当前状态。 除了读写状态寄存器以外,该存储器芯片还具有读、写、整片擦除、段擦除等命令。其器件编程的指令时序见参考文献[2]。 2.2flash 芯片与DSP 芯片的硬件连接 使用的flash M25P20芯片具有与工业标准SPI 接口兼容的外部引脚,我们使用的Sharc 系列DSP 芯片也具有同样的SPI 接口,因此,只需要将两个芯片SPI 接口的引脚对应连接即可。这就大大的节省了DSP 芯片的外部接口资源。由于Sharc 系列DSP 芯片的外设接口资源相当的丰富,而外部引脚数却极其的有限,因此,该系列DSP 芯片的引脚复用情况相当严重。 图1 Sharc 系列DSP 的外设接口分为两个部分:DAI 与DPI 。每个部分都含有各种类型的外设接口,比如,DAI 中有PCG(精确时钟产生器),DPI 中包括Timer(定时器)、UART(串口)等。 我们使用的SPI 接口就包含在DPI 中。DPI,即数字外设接口,其占有的14个外部引脚可以使用SRU 宏分配给它包括的任意一个外设接口。Sharc 系列DSP 包含两个SPI 接口,分别是DPI 中的SPI 和DAI 中的SPI B 。在我们的硬件设计中,使用DPI 中的SPI 。SPI 通信具有主从两种工作模式,在实例中,DSP 的SPI 接口工作于主模式,flash 芯片工作于从模式。对于sharc 系列DSP,根据 雷春梅:硕士研究生

四川大学电力系统自动装置实验报告

电力系统自动装置实验报告 学院: 电气信息学院 专业: 电气工程及其自动化 班级: 102班 学号: 1143031233 姓名: 杨宁 老师:肖先勇

同步发电机并车实验 一、实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、熟悉同步发电机准同期并列过程; 3、观察、分析有关波形。 二、原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。 三、实验项目、方法及过程 (一)机组启动与建压 1、检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0 位置; 2、合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯 熄。调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在 并网后显示控制量(左)和功率角(右)。调速器上“并网”灯和“微机故障” 灯均为熄灭状态,“输出零”灯亮;

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

相关主题
文本预览
相关文档 最新文档