当前位置:文档之家› 中南大学自动控制原理实验报告

中南大学自动控制原理实验报告

中南大学自动控制原理实验报告
中南大学自动控制原理实验报告

信息科学与工程学院本科生实验报告

实验名称自动控制原理实验

预定时间

实验时间

姓名学号

授课教师

实验台号

专业班级

实验一 1.1典型环节的时域分析

实验目的:

1.熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。对比差异、分析原因。

3.了解参数变化对典型环节动态特性的影响。

实验设备:

PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。

模拟电路图如下:

实验结果:

当R0=200K;R1=100K。

输出电压约为输入电压的1/2,误差范围内满足理论波形,

当R0 = 200K;R1 = 200K。

积分环节

模拟电路图:

当R0=200K;C=1uF。

实验结果:

当R0 = 200K; C = 2uF。

比例积分环节(PI)

模拟电路图:

取R0 = R1 = 200K; C = 1uF。实验结果

取R0=R1=200K;C=2uF。

惯性环节(T)

模拟电路图:

取 R0=R1=200K; C=1uF。

取 R0=R1=200K; C=2uF。

比例微分环节(PD)

模拟电路图:

取R0 = R2 = 100K,R3 = 10K,C = 1uF;R1 = 100K。

取 R0=R2=100K, R3=10K, C=1uF; R1=200K。

比例积分微分环节(PID)

模拟电路图:

取R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 100K。

取R2 = R3 = 10K,R0 = 100K,C1 = C2 = 1uF;R1 = 200K。

实验步骤

1.按 1.1.3 节中所列举的比例环节的模拟电路图将线接好。检查无误后开启设备电源。

2. 将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均

设臵了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频

电位器,使得“OUT”端输出的方波幅值为 1V,周期为 10s 左右。

3. 将 2 中的方波信号加至环节的输入端 Ui,用示波器的“CH1”和“CH2”表笔分别监测

模拟电路的输入 Ui 端和输出 U0 端,观测输出端的实际响应曲线 U0(t),记录实验波形及结果。

4. 改变几组参数,重新观测结果。

5. 用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节和比例积分

微分环节的模拟电路图。观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

实验二1.2 典型系统的时域响应和稳定性分析

实验目的:

1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

实验设备:

PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。

模拟电路图:

实验步骤:

1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

2.典型二阶系统瞬态性能指标的测试。

(1)按模拟电路图接线,将1 中的方波信号接至输入端,取R = 10K。

(2)用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。

(3)分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。并将测量值和计算值进行比较(实验前必须按公式计算出)。将实验结果填入表1.2-1 中。表1.2-2 中已填入了一组参考测量值,供参照。

3.典型三阶系统的性能

(1)按图1.2-4 接线,将1 中的方波信号接至输入端,取R = 30K。

(2)观察系统的响应曲线,并记录波形。

(3)减小开环增益(R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。表1.2-4 中已填入了一组参考测量值,供参照。

实验现象分析

注意:在做实验前一定要进行对象整定,否则将会导致理论值和实际测量值相差较大。

首先调节电阻使系统处于临界稳定的状态

当R>160时系统处于过阻尼状态

当R>160时,由

可知道该系统的自然频率和阻尼比均与R值大小有关,当R处于160左右处于临界阻尼状态,则R>160时阻尼比增大,系统则应处于过阻尼状态,输出波形如上图所示。

同理当R的阻值减小时,系统应该趋于欠阻尼状态;如R=50时,系统处于欠阻尼状态,其输出波形如下图所示:

欠阻尼

欠阻尼状态,是我们所期望的一种状态,相比于过阻尼,系统响应时间比较短,相比于临界阻尼,系统的超调量比较小。工程上,也是希望系统能够快速平稳准确的追踪输入信号,因此欠阻尼相对比较理想。

三阶系统

三阶系统处于临界稳定时

三阶R>30K

R<30K

实验三 2.1 线性系统的根轨迹分析

实验目的

1.根据对象的开环传函,做出根轨迹图。

2.掌握用根轨迹法分析系统的稳定性。

3.通过实际实验,来验证根轨迹方法。

实验设备

PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。实验原理及内容

实验对象的结构框图:

模拟电路构成:如图 2.1-2 所示。

系统的开环增益为K=500KΩ/R,开环传递函数为:

绘制根轨迹

(1)由开环传递函数分母多项式S(S+1)(0.5S+1)中最高阶次n=3,故根轨迹分支数为3。开环有三个极点:p1=0,p2=-1,p3=-2。

(2)实轴上的根轨迹:

①起始于0、-1、-2,其中-2 终止于无穷远处。

②起始于0 和- 1 的两条根轨迹在实轴上相遇后分离,分离点为

显然S2 不在根轨迹上,所以S1 为系统的分离点,将S1=-0.422 代入特征方程S(S+1)(0.5S+1)+K 中,得K=0.193

(3)根轨迹与虚轴的交点

将S = j W 代入特征方程可得:

根据以上计算,将这些数值标注在S 平面上,并连成光滑的粗实线,如下图所示。图上的粗实线就称为该系统的根轨迹。其箭头表示随着K 值的增加,根轨迹的变化趋势,而标注的数值则代表与特征根位臵相应的开环增益K 的数值。

根据根轨迹图分析系统的稳定性

根据图 2.1 -3 所示根轨迹图,当开环增益K 由零变化到无穷大时,可以获得系统的下述性能:R=500/K

(1)当K=3;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡,临界稳定。

(2)当K > 3;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。

(3)当0 < K < 3;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。

上述分析表明,根轨迹与系统性能之间有密切的联系。利用根轨迹不仅能够分析闭环系统的动态性能以及参数变化对系统动态性能的影响,而且还可以根据对系统暂态特性的要求确定可变参数和调整开环零、极点位臵以及改变它们的个数。这就是说,根轨迹法可用来解决线性系统的分析和综合问题。由于它是一种图解求根的方法,比较直观,避免了求解高阶系统特征根的麻烦,所以,根轨迹在工程实践中获得了广泛的应用。

实验步骤

1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性

能做出理论上的判断。并确定各种状态下系统开环增益K 的取值及相应的电阻值R。

2.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个

运放单元均设臵了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,

分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。

3.按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定,详见附录一;将2中的方波信号加至输入端。

4.改变对象的开环增益,即改变电阻R 的值,用示波器的“CH1”和“CH2”表笔分别测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。

注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。

当R=166K

R=135K

R=50K

当电阻R<166K时,系统逐渐趋于不稳定,当R=50K,系统不稳定,包络线发散,于是波形不收敛,如上图所示。

R=220K时,系统趋于稳定

中南大学C++实验报告

《C++程序设计》上机实验报告 上机内容:C++程序的运行环境和运行一个C++程序的方法 数据类型和表达式 专业班级:电气信息类1203班 学号:0909120320 姓名:李湖 日期:2013年3月16日

目录 1.实验目的 2.实验内容 3.程序源码 4.调试结果 5.实验心得

程序设计实验(一) 1、实验目的 (1)了解所用的计算机系统的基本操作方法,学会独立使用该系统。 (2)了解在该系统上如何编辑、编译、连接和运行一个C程序 (3)通过运行简单的C++程序,初步了解C++源程序的结构和特点。 应学会在一种以上的编译环境下运行C++的程序,建议学习并 掌握Visual C++ 6.0和GCC(RHIDE和DJGPP)的使用方法。2、实验内容和步骤 (1)检查所用所用的计算机系统是否已安装了C++编译系统,并确定他所在的子目录。如果使用的是Windows操作系 统,可以按以下步骤进行: 如果想查找Visual C++ 6.0,可以单击Windows桌面上“开 始”按钮,在菜单中选择“查找”窗口,在“名称”栏中 输入文件名“Microsoft Visual C++ 6.0”,请注意搜索范围, 应当使“搜索”栏中的内容为“C:\”,表示从C盘根目录 开始寻找,即搜索整个C盘。单击“开始查找”按钮, 系统会自动在指定的范围内找寻所需的文件,如果找到, 就会显示出文件路径,如“C:\Windows 000\Start Mean\Program\Microsoft Visual Studio 6.0,表示在

C:\Windows 000\Start Mean\Program\Microsoft Visual Studio 6.0文件中有Visual C++ 6.0。也可以选择Windows 桌面上的“开始”—>“程序”命令,在其弹出的菜单中 选择“Microsoft Visual Studio 6.0”命令,再在其子菜单中 查有无“Microsoft Visual C++ 6.0”命令。如果在安装时采 用系统提供的默认方式安装,应该在这个位置找到 Microsoft Visual C++ 6.0。 如果想查找RHIDE和DJGPP,只须选择“开始”—>“查找(F)”—>“文件或文件夹(F)”命令,并指定RHIDE 和DJGPP即可。 (2)在Visual C++环境下编译和运行C++程序。 在第一次上机时,按以下步骤建立和运行C++程序: ①先进入Visual C++ 6.0环境。 ②按照第15章15.2节介绍的方法,在自己指定的子目录中 建立一个名为test.cpp的新文件(此事尚未向文件输入内 容)。 ③从键盘输入以下程序(第1章第8题): int main(); { int a,b; c=a+b; cout>>”a+b=”>>a+b;

中南大学通信原理实验报告(截图完整)

中南大学 《通信原理》实验报告 学生姓名 指导教师 学院 专业班级 完成时间

数字基带信号 1、实验名称 数字基带信号 2、实验目的 (1)了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 (2)掌握AMI、HDB 3 码的编码规则。 (3)掌握从HDB 3 码信号中提取位同步信号的方法。 (4)掌握集中插入帧同步码时分复用信号的帧结构特点。 (5)了解HDB 3 (AMI)编译码集成电路CD22103。 3、实验内容 (1)用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码 (HDB 3)、整流后的AMI码及整流后的HDB 3 码。 (2)用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 (3)用示波器观察HDB 3 、AMI译码输出波形。 4、基本原理(简写) 本实验使用数字信源模块和HDB 3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点(2个) ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ?并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

自动控制原理重要公式

A . 阶跃 函数 斜坡函数 抛物线函数 脉冲函数 正弦函数 B.典型环节的传递函数 比例环节 惯性环节(非周期环节 ) 积分环节 微分环节 二阶振荡环节(二阶惯性环节) 延迟环节 C.环节间的连接 串联 并联 反馈开环传递函数= 前向通道传递函数= 负反馈闭环传递函数 正反馈闭环传递函数 D.梅逊增益公式 E.劳斯判据 劳斯表中第一列所有元素均大于零 s n a 0a 2a 4a 6…… s n-1a 1a 3a 5a 7…… s n-2b 1b 2b 3b 4…… s n-3c 1c 2c 3c 4…… ……… s 2f 1f 2 s 1g 1 s 0h 1 劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0; 劳斯表中某一行的元素全为零。P(s)=2s 4+6s 2-8。 F.赫尔维茨判据 特征方程式的所有系数均大于零。 G. 误差传递函数 扰动信号的误差传递函数 I.二阶系统的时域响应: 其闭环传递函数为 或 系统的特征方程为0 2)(22=++=n n s s s D ωζω 特征根为1 ,221`-±-=ζωζωn n s 上升时间t r 其中 峰值时间t p 最大超调量M p 调整时间t s a.误差带范围为±5% b.误差带范围为±2% 振荡次数N J.频率特性: 还可表示为:G (jω)=p (ω)+jθ(ω) p (ω)——为G (jω)的实部,称为实频特性; θ(ω)——为G (jω)的虚部,称为虚频特性。 显然有: K.典型环节频率特性: 1.积分环节 ???? ???? ? =+===)()()()()()()(sin )()()(cos )()(2 2ωωθω?ωθωωω?ωωθω?ωωp arctg p A A A p s s G 1(=???≥<=000)(t A t t r K s R s C s G ==)()()(222 2)(n n n s s K s G ωζωω++=)()(1)()() ()(s H s G s G s R s C s -= =Φ22 22)() (n n n s s s R s C ωζωω++=1 21)()(22++= Ts s T s R s C ζ2 1ζωβ πωβπ--=-= n d r t n s t ζω3 =

中南大学数据结构实验报告(六)

实验六 1.需求分析 2.二分查找算法(设计性实验) 问题描述 从键盘读入一串整数和一个待查键,查找在该整数串中是否有这个待查键。如果有,就输出它在 整数串中的位置;如果没有,输出1。 基本要求 掌握二分查找算法。 测试数据 由读者依据软件工程的测试技术自己确定。注意测试边界数据,如单个结点。 实现提示 利用二分查找算法查找实现。 4.简单个人电话号码查询系统(综合性实验) 问题描述 人们在日常生活中经常要查找某个人或某个单位的电话号码,本实验将实现一个简单的个人电话 号码查询系统,根据用户输入的信息(如姓名等)进行快速查询。 基本要求 (1) 在外存上,用文件保存电话号码信息。 (2) 在内存中,设计数据结构存储电话号码信息。 (3) 提供查询功能:根据姓名实现快速查询。 (4) 提供其他维护功能,如插入、删除、修改等。 测试数据 由读者依据软件工程的测试技术自己确定。注意测试边界数据,如单个结点。 实现提示 由于要管理的电话号码信息较多,而且要在程序运行结束后仍然保存电话号码信息,所以电话号码 信息采用文件的形式存放到外存中。在系统运行时,要将电话号码信息从文件调入内存来进行查找等操作。为了接收文件中的内容,要有一个数据结构与之对应,可以设计如下结构类型的数组来接收数据。const int max=10; struct TeleNumber { String name;// 姓名 String phoneNumber,// 固定电话号码 String mobileNumber,// 移动电话号码 String email;// 电子邮箱 }Tele[max]; 为了实现对电话号码的快速查询,可以将上述结构数组排序,以便应用二分查找,但是,在数组 中实现插入和删除操作的代价较高。如果记录需频繁进行插入或删除操作,可以考虑采用二叉排序树组织电话号码信息,这样查找和维护都能获得较高的时间性能。更复杂地,需考虑该二叉排序树是否平衡,如何使之达到平衡。

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

操作系统实验报告-中南大学

操作系统原理试验报告 班级: 学号: 姓名:

实验一:CPU调度 一、实验内容 选择一个调度算法,实现处理机调度。 二、实验目的 多道系统中,当就绪进程数大于处理机数时,须按照某种策略决定哪些进程优先占用处理机。本实验模拟实现处理机调度,以加深了解处理机调度的工作。 三、实验题目 1、设计一个按优先权调度算法实现处理机调度的程序; 2、设计按时间片轮转实现处理机调度的程序。 四、实验要求 PCB内容: 进程名/PID; 要求运行时间(单位时间); 优先权; 状态: PCB指针; 1、可随机输入若干进程,并按优先权排序; 2、从就绪队首选进程运行:优先权-1/要求运行时间-1 要求运行时间=0时,撤销该进程 3、重新排序,进行下轮调度 4、最好采用图形界面; 5、可随时增加进程; 6、规定道数,设置后备队列和挂起状态。若内存中进程少于规定道数,可自动从后备 队列调度一作业进入。被挂起进程入挂起队列,设置解挂功能用于将指定挂起进程解挂入就绪队列。 7、每次调度后,显示各进程状态。 实验二:内存管理 一、实验内容 主存储器空间的分配和回收 二、实验目的 帮助了解在不同的存储管理方式下,应怎样实现主存空间的分配和回收。 三、实验题目 在可变分区管理方式下,采用最先适应算法实现主存空间的分配和回收。

四、实验要求 1、自行假设主存空间大小,预设操作系统所占大小并构造未分分区表; 表目内容:起址、长度、状态(未分/空表目) 2、结合实验一,PCB增加为: {PID,要求运行时间,优先权,状态,所需主存大小,主存起始位置,PCB指针} 3、采用最先适应算法分配主存空间; 4、进程完成后,回收主存,并与相邻空闲分区合并 .1、Vo类说明(数据存储结构) 进程控制块PCB的结构: Public class PCB{ //进程控制块PCB,代表一个进程 //进程名,作为进程的标识; private String name; //要求运行时间,假设进程运行的单位时间数; private int time; //赋予进程的优先权,调度时总是选取优先数小的进程先执行; private int priority; //状态,假设有“就绪”状态(ready)、“运行”状态(running)、 //“后备”状态(waiting)、“挂起”状态(handup) private String state; //进程存放在table中的位置 private int start; //进程的大小 private int length; //进程是否进入内存,1为进入,0为未进入 private int isIn; //进程在内存中的起始位置 private int base; //进程的大小 private int limit; //一些get和set方法以及构造器省略… };

中南大学机械基础实验报告机类

机械基础实验报告 (机械类) 中南大学机械基础实验教学中心 2011年8月 目录 训练一机构运动简图测绘 (1) 实验二动平衡实验 (3) 实验三速度波动调节实验 (4) 实验四机构创意组合实验 (5) 实验五平面机构创新设计及运动测试分析实验 (6) 实验六螺栓联接静动态实验 (7) 实验七螺旋传动效率实验 (8) 实验八带传动实验 (9) 实验九液体动压轴承实验 (10) 实验十机械传动性能综合测试实验 (12) 实验十一滚动轴承综合性能测试分析实验 (13) 实验十二机械传动设计及多轴搭接实验 (14) 实验十三减速器拆装实验 (15)

训练一机构运动简图测绘 专业班级第组姓名成绩 1.一个正确的“机构运动简图”应能说明哪些内容?绘制机构运动简图的基本步骤是什么? 2.机构自由度与原动件的数目各为多少?当机构自由度=原动件的数目,机构的

运动是否确定? 五.收获与建议

实验二动平衡实验 专业班级第组姓名成绩一、实验目的: 二?设备名称: 三?实验数据 实验转速: 四.思考题: 转子动平衡为什么要在左右两个平面上进行平衡?

实验三速度波动调节实验专业班级第组姓名成绩一?实验目的: 二?设备名称: 三?实验数据 1?当转速不变时,采用不同的飞轮,数据记录: 结论:当转速不变时,飞轮转动惯量越大,则机构的速度波动越二?当飞轮不变时,转速变化,数据记录: 结论:当飞轮不变时,转速越大,则机构的速度波动越

实验四机构创意组合实验 专业班级第组姓名成绩 一、机构运动简图(要求符号规范标注参数) 二、机构的设计方案图(复印件) 三、机构有____________个活动构件?有______个低副,其中转动副_______个, 移动副__________个,有____________复合铰链,在_________处?有________处?有__________个虚约束,在__________处? 四、机构自由度数目为F=3n-2PL-PH=3X-2X-0= 五、机构有_________个原动件 在___________处用__________驱动,在__________处用___________驱动? 六、针对原设计要求,按照实验结果简述机构的有关杆件是否运动到位?曲柄是 否存在?是否实现急回特性?最小传动角数值?是否有“卡住”现象?(原无要求的项目可以不作涉及) 七、指出在机构中自己有所创新之处? 八、指出机构的设计存在的不足之处,简述进一步改进的设想?

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

中南大学制造系统自动化技术实验报告整理

制造系统自动化技术 实验报告 学院:机电工程学院 班级:机制**** 姓名:张** 学号: *********** 指导教师:李** 时间: 2018-11-12 实验一柔性自动化制造系统运行实验 1.实验目的 (1)通过操作MES终端软件,实现对柔性制造系统的任务下达和控制加工,让学生

了解智能制造的特征及优势。 (2)通过创意性的实验让学生了解自动化系统总体方案的构思。 (3)通过总体方案的构思让学生了解该系统的工作原理,并学会绘制控制系统流程图,掌握物料流、信息流、能量流的流动路径。 (4)通过总体方案的构思让学生掌握各机械零部件、传感器、控制元器件的工作原理及性能。 (5)通过实验系统运行让学生了解运行的可靠性、安全性是采用何种元器件来实现的,促进学生进行深层次的思考和实践。 2.实验内容 (1)仔细观察柔性自动化制造系统的实现,了解柔性自动化制造系统的各个模块,熟悉各个模块的机械结构。 (2)了解各种典型传动机构的组装、工作原理、以及如何实现运动方向和速度的改变; (3)学习多种传感器的工作原理、性能和使用方法; (4)了解典型驱动装置的工作原理、驱动方式和性能; (5)理解柔性制造系统的工作原理,完成柔性制造系统的设计、组装; (6)实现对柔性制造系统的控制与检测,完成工件抓取、传输和加工。

3.实验步骤 (1)柔性制造系统的总体方案设计; (2)进行检测单元的设计; (3)进行控制系统的设计; (4)上下料机构的组装与检测控制; (5)物料传输机构的组装与实现; (6)柔性制造系统各组成模块的连接与控制; (7)柔性制造系统各组成单元的状态与工件状态位置的检测; (8)对机器人手动操作,实现对工件的抓取、传输。 4. 实验报告 ①该柔性自动化制造系统由哪几个主要的部分组成; 主要由:总控室工作站、AGV小车输送物料机构、安川机器人上下料工作站、法那科机器人上下料工作站、ABB机器人组装工作站、视觉检测及传送工作站、激光打标工作站、堆垛机及立体仓储工作站。 ②画出该柔性自动化制造系统的物料传输系统结构简图;

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

自动控制原理简答题要点

三.名词解释 47、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。 48、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。 49、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。 50、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。 51、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。 52、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。 53、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。 54、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。 55、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()() C z G z R z =。 56、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣ 57、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统。 58、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。 59、尼柯尔斯图(Nichocls 图):将对数幅频特性和对数相频特性画在一个图上,即以(度)为线性分度的横轴,以 l(ω)=20lgA(ω)(db )为线性分度的纵轴,以ω为参变量绘制的φ(ω) 曲线,称为对数幅相频率特性,或称作尼柯尔斯图(Nichols 图) 60、零阶保持器:零阶保持器是将离散信号恢复到相应的连续信号的环节,它把采样时刻的采样值恒定不变地保持(或外推)到下一采样时刻。 61、状态反馈设系统方程为,x Ax Bu y cx =+=&,若对状态方程的输入量u 取u r Kx =-,则称状态反馈控制。 四.简答题

中南大学机械制造工艺学实验报告

机械制造工艺学实验报告 班级机械1301 姓名黄佳清 学号 07

中南大学机电学院 《机械制造工艺学》课程实验报告 实验名称:加工误差的统计分析 姓名:黄佳清班级:机械1301 学号: 07 实验日期: 2015 年 10 月 18 日指导教师:成绩: 1. 实验目的 (1)掌握加工误差统计分析方法的基本原理和应用。 (2)掌握样本数据的采集与处理方法,要求:能正确地采集样本数据,并能通过对样本 数据的处理,正确绘制出加工误差的实验分布曲线和图。 (3)能对实验分布曲线和图进行正确地分析,对加工误差的性质、工序能力及工艺 稳定性做出准确的鉴别。 (4)培养对加工误差进行综合分析的能力。 2. 实验内容与实验步骤

1.按加工顺序测量工件的加工尺寸,记录测量结果。 2.绘制直方图和分布曲线 1)找出这批工件加工尺寸数据的最大值x max和最小值x min,按下式计算出极差R。 R=x max一x min 2)确定分组数K(K一般根据样本容量来选择,建议可选在8~11之间)。 3)按下式计算组距 d。 4)确定组界(测量单位:微米)。 5)做频数分布表。 6)计算x和 。 7)画直方图 以样本数据值为横坐标,标出各组组界;以各组频率密度为纵坐标,画出直方图。 8)画分布曲线 若工艺过程稳定,则误差分布曲线接近正态分布曲线;若工艺过程不稳定,则应根据实际情况确定其分布曲线。画出分布曲线,注意使分布曲线与直方图协调一致。 9)画公差带 在横轴下方画出公差带,以便与分布曲线相比较。 3.绘制图 1)确定样组容量,对样本进行分组

样组容量m 通常取4或5件。按样组容量和加工时间顺序,将样本划分成若干个样组。 2)计算各样组的平均值和极差 对于第i 个样组,其平均值和极差计算公式为: ∑==m j ij i x m x 1 1 式中 ——第i 个样组的平均值; ——第i 个样组的标准差; ——第i 个样组第j 个零件的测量值; ——第i 个样组数据的最大值; ——第i 个样组数据的最小值 3)计算图控制限(计算公式见实验原理) 4)绘制 图 以样组序号为横坐标,分别以各样组的平均值和极差R 为纵坐标,画出图,并在图上标出中心线和上、下控制限。 4. 按下式计算工序能力系数Cp 5. 判别工艺过程稳定性 可按下表所列标准进行判别。注意,同时满足表中左列3个条件,工艺过程稳定;表中右列条件之一不满足,即表示工艺过程不稳定。

中南大学 计算机体系结构实验报告

计算机体系结构课程设计 学院:信息科学与工程学院 专业班级: 指导老师: 学号: 姓名:

目录 实验1 对指令操作码进行霍夫曼编码 (3) 一、实验目的 (3) 二、实验内容 (3) 三、设计思路 (4) 四、关键代码 (4) 五、实验截图 (5) 六、源代码 (5) 实验2 使用LRU 方法更新Cache (8) 一、实验目的 (8) 二、实验内容 (8) 三、设计思路 (9) 四、程序截图 (9) 五、实验代码 (9) 实验总结 (16) 参考文献 (16)

实验1 对指令操作码进行霍夫曼编码一、实验目的 了解和掌握指令编码的基本要求和基本原理 二、实验内容 1. 使用编程工具编写一个程序,对一组指令进行霍夫曼编码,并输出最后的编码结果以及对指令码的长度进行评价。与扩展操作码和等长编码进行比较。 2. 问题描述以及问题分析 举例说明此问题,例如: 下表所示: 对此组指令进行 HUFFMAN 编码正如下图所示: 最后得到的HUFFMAN 编码如下表所示:

最短编码长度为: H=0.45*1+0.30*2+0.15*3+0.05*4+0.03*5+0.01*6+0.01*6=-1.95. 要对指令的操作码进行 HUFFMAN 编码,只要根据指令的各类操作码的出现概率构造HUFFMAN 树再进行 HUFFAM 编码。此过程的难点构造 HUFFMAN 树,进行 HUFFAM 编 码只要对你所生成的 HUFFMAN 树进行中序遍历即可完成编码工作。 三、设计思路 观察上图,不难看出构造 HUFFMAN 树所要做的工作:1、先对各指令操作码的出现概率进行排序,构造一个有序链表。2、再取出两个最小的概率节点相加,生成一个生的节点加入到链表中,同时从两表中删除此两个节点。3、在对链表进行排序,链表是否只有一个节点,是则 HUFFAN 树构造完毕,否则继续做 2 的操作。为此设计一个工作链表(链表的元素时类,此类的功能相当结构。)、HUFFMAN 树节点、HUFFMAN 编码表节点。 四、关键代码 哈夫曼树重点在于如何排列权值大小不同的结点的顺序 private int leafNum; //叶子结点个数 private HaffmanNode[] hnodes; //哈夫曼树的结点数组 public HaffManCode(double[] weight) //构造指定权值集合的哈夫曼树 { int n = weight.length; //n个叶子结点 this.leafNum = n; this.hnodes = new HaffmanNode[2*n-1]; //n个叶子结点的哈夫曼树共有2n-1个结点 for(int i=0; i

中南大学x射线实验报告参考

中南大学 X射线衍射实验报告 学院专业班级 姓名学号同组者 月日指导教师 实验 日期 评分分评阅人评阅日期 实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设臵,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 一、实验原理 1、X射线衍射仪 (1)X射线管 X射线管工作时阴极接负高压,阳极接地。灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。在阳极一端的金属管壁上一般开有四个射线出射窗口。转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,

阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的 (2)测角仪系统 测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X 射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X 射线发生器与探测器连动。 (3)衍射光路 2、物相定性分析 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF 文件 3) 从PDF 文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF 文件中检索出全部物相 3、物相定量分析 物相定量分析——绝热法 在一个含有N 个物相的多相体系中,每一个相的RIR 值(参比强度)均为已知的情况下,测量出每一个相的衍射强度,可计算出其中所有相的质量分数: 其中某相X 的质量分数可表示为: ∑ == N A i i A i X A X X K I K I W 式中A 表示N 个相中被选定为内标相的物相名称 式中A O Al X O Al X A K K K 3 232= 右边是两个物相X 和A 的RIR 值,可以通过实测、计算或查找PDF 卡片获得。 样品中只含有两相A 和B ,并选定A 为内标物相,则有:

自动控制原理实验报告73809

-150-100 -50 50 实验一 典型环节的模拟研究及阶跃响应分析 1、比例环节 可知比例环节的传递函数为一个常数: 当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。 2、 积分环节 积分环节传递函数为: (1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033 与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。 3、 惯性环节 i f i o R R U U -=TS 1 CS R 1Z Z U U i i f i 0-=-=-=15 20

惯性环节传递函数为: K = R f /R 1,T = R f C, (1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf , 0.1μf )时的输出波形。利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值 较为接近。 T=0.01时 t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3% 由于ts 较小,所以读数时误差较大。 K 理论值为1,实验值2.12/2.28, 相对误差为(2.28-2.12)/2.28=7%与理论值较为接近 (2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。 K=1时波形即为(1)中T0.1时波形 K=2时,利用matlab 仿真得到如下结果: t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3% 读数误差较大 K 理论值为2,实验值4.30/2.28, 1 TS K )s (R )s (C +-=

-自动控制原理知识点汇总

-自动控制原理知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变

中南大学微机实验报告

中南大学信息科学与工程学院 微机原理与接口技术实验报告 学生学院信息科学与工程学院 专业班级 学号 学生姓名____ 指导教师

目录 第一部分软件实验 (4) DEBUG 的使用 (4) 第二部分硬件实验 (8) 实验一使用ADC0809的A/D转换实验 (10) 实验二使用DAC0832的D/A转换实验(一) ................................. 错误!未定义书签。 实验三使用DAC0832的D/A转换实验(二) ................................. 错误!未定义书签。第三部分实验总结. (13)

第一部分软件实验 DEBUG 的命令及其操作 一、实验目的 1.熟练掌握debug的常用命令,学会用debug来调试程序。 2.深入了解数据在存储器中的存取方法及堆栈中数据的压入与弹出。 3.掌握各种寻址方法以及简单指令的执行过程。 二、实验内容 1.进入和退出DEBUG程序 2.本实验只要求在DEBUG调试状态下进行,包括汇编程序,调试程序,执行程序 3.掌握一些DEBUG的基本操作 三、实验环境 Windows系统下从进入命令行窗口。 四、实验的基本原理 a 汇编 d显示内存单元内容 e修改单元内存内容 g执行命令 t单步(或多步)调试 n指定文件路径文件名(含扩展名) u反汇编 r查看寄存器值及修改 l加载程序 w写盘命令 五、实验步骤 1.用DEBUG调试简单程序 例1 -A CS:0106 MOV AX,1234 MOV BX,2345 MOV CX,0 ADD AX,BX MOV CX,AX INT 20 运行程序

相关主题
文本预览
相关文档 最新文档