当前位置:文档之家› 开关电源及其软开关技术复习提纲-2013

开关电源及其软开关技术复习提纲-2013

开关电源及其软开关技术复习提纲-2013
开关电源及其软开关技术复习提纲-2013

复习提纲

综合成绩=平时成绩(30%)+期末考试(70%)

考试题型:1.单项选择题:20%,共10小题;2.简述题:约40%,共7小题;3.问答题:约40%,共3小题

考试时间:16周星期二上午

考试地点:A5-107,A5-107,A1-104,A5-101,A1-105,A5-101

第一章

1. 高频开关电源由哪几部分组成?(画出原理方框图加以说明)P3

第二章

1. 串联型线性调整型稳压电源的工作原理、开关型稳压电源的工作原理(包括原理图、电压方程等),以及两种电源的特点(优缺点)比较。P5、P8~ P10

2.TRC控制的方式和特点。P6

3.PWM和PFM型开关电源的基本稳压原理,两种控制方式在控制回路中的区别。P8 4.PWM型稳压电源的优缺点。P8~ P10

第三章

1. 推挽、全桥、半桥功率转换电路的结构,工作过程,各自的特点(比较三种功率转换电路的主要优缺点)。P11~P14

2.单端反激变换器的电路结构,工作过程,电路波形。P14~P16

3.单端正激变换器的电路结构,工作过程,电路波形。P16~P17

4.合闸浪涌电流的起因,危害,限制合闸浪涌电流的方法。P28

第四章

1.输入滤波电路的作用,三种电容输入滤波电路的工作原理,画出能够抑制常态干扰和共模干扰的电容组合型输入滤波电路。P36

2.共模扼流线圈的工作原理,画出能够抑制常态干扰和共模干扰的电感电容组合型输入滤波电路。P37

4. 噪声干扰的种类,产生的原理。P39

5. 各种防止辐射干扰的方法、措施。P40~42

第五章

1.控制电路的主要功能。P43

2.脉宽调制集成芯片的基本功能电路以及各功能电路的原理:PWM信号产生的原理以及波形。P45~ P47

3.SG1525/ SG1527集成PWM控制器的主要构成。P47~ P49

4.电压控制型和电流控制型PWM芯片的区别。P50

5.由UC3842构成的反激电源各部分的原理。P52~ P55

6.软启动电路的分类。P59

7.过流保护电路的形式、工作原理,特点。P61

8.过压保护电路的工作原理。P62~P63

第六章

1.驱动电路的主要作用。P66

2.恒流驱动电路的缺点以及该缺点在比例电流驱动电路如何改善。P67

3.反向驱动电路的工作原理,特点:1)无偏驱动电路;2)电容储能式驱动电路。P70、P71 4. 电压型驱动电路的分类以及各自的工作原理或特点。P75~ P77

软开关部分

第二章、第三章

1.硬开关的工作原理,存在的问题;软开关的优点。P261

2.软开关的种类以及各自的原理。P262

3. 零电流谐振开关的工作原理、零电压谐振开关的工作原理。P270~P271

4. 零电流开关准谐振变换器(半波模式、全波模式)的工作过程,每个阶段的特点、等效电路。P272~P276

5. 零电压开关准谐振变换器(半波模式、全波模式)的工作过程,每个阶段的特点、等效电路。P282~P285

开关电源之软开关技术在开关电源中的应用阐述

开关电源之软开关技术在开关电源中的应用阐述 开关电源中的硬开关和软开关是针对开关晶体管而言的。硬开关是不管 开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造 成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交 越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 ?若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高, 关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 ?若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体 管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式 全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的 过热损坏。 ?另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反 向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然 频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 ?最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。 随着频率的提高和电路中的di/dt和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 ?上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的 提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢

开关电源测试规范

开关电源测试规范 By ZGQ 一、概述 本文主要阐述了开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。下面是开关电源一些测试项目: 1.功能(Functions)测试: ·电压调整率测试(Line Regulation Test) ·负载调整率测试(Load Regulation Test) ·输出纹波及噪声测试(Output Ripple & Noise Test) ·功率因数和效率测试(Power Faction & Efficiency Test) ·能效测试(Energy Efficiency Test) ·上升时间测试(Rise Time Test) ·下降时间测试(Fall Time Test) ·开机延迟时间测试(Turn On Delay Time Test) ·关机保持时间测试(Hold Up Time Test) ·输出过冲幅度测试(Output Overshoot Test) ·输出暂态响应测试(Output Transient Response Test) 2.保护动作(Protections)测试: ·过电压保护(OVP, Over Voltage Protection) ·短路保护(Short Circuit Protection) ·过电流保护(OCP, Over Current Protection) 3.安全(Safety)规格测试: ·输入电流、漏电电流等 ·耐压绝缘: 电源输入对地,电源输出对地;电路板线路须有安全间距。 ·温度抗燃:零组件需具备抗燃之安全规格,工作温度须於安全规格内。 ·机壳接地:需於0.1欧姆以下,以避免漏电触电之危险。 ·变压输出特性:开路、短路及最大伏安(VA)输出 ·异常测试:散热风扇停转、电压选择开关设定错误 4.电磁兼容(Electromagnetic Compliance)测试: 5.可靠性(Reliability)测试: 6.其他测试: 二、电气特性(Electrical Specifications)测试

一种基于软开关三电平DCDC开关电源的研制.pdf

目前,开关电源正朝着高频、高效、环保等方向发展。与传统拓扑结构相比,三电平变换器由于具有开关管电压应力为输入直流电压的一半,适合输入电压较高的场合,输出电压谐波小等优点,从而备受关注。此外,伴随着高频化发展,出现了软开关技术,并结合三电平产生了不同拓扑的DC/DC变换器。传统ZVS半桥三电平DC/DC变换器轻载时滞后管难以实现ZVS,且开通损耗严重。ZVZCS变换器消除了ZVS三电平变换器零状态时变压器初级环流,减小了初级通态损耗,同时改善了占空比丢失问题,近年来得到了广泛研究。 这里提出一种新型ZVZCS半桥三电平DC/DC变换器,其次级采用了一个简单的无源筘位网络,通过这个无源箝位网络实现了超前桥臂在一定负载范围内的ZVS和滞后桥臂的ZCS。 2 主电路工作原理 图1为新型半桥三电平DC/DC变换器拓扑。 由图1可见,次级采用的无源箝位网络主要由箝位电容CA和二极管VDA1,VDA2,VDA3构成。变压器次级中心抽头通过VDA1连接到CA,将次级电压箝位在一个较低的水平。Cs1,Cs2为等值的输入分压电容,VDc1,VDc2为箝位二极管,Css为飞跨电容,Llk为变压器漏感,n为变比,VDR1~VDR4为整流二极管,Lf,Cf分别为滤波电感、电容,Uin,Uo 为输入、输出直流电压。采用移相PWM控制策略,工作波形如图2所示。 为简化分析,作如下假设:电路各器件均为理想元件;Lf足够大,其电流不变;将Cf看作

恒压源。变换器在半个稳态开关周期内有9个工作模态,分析如下: 新周期开始前超前管VS1导通,负载电流通过整流二极管续流,a,b间电压、次级电压、初级电流分别为uab,urec,ip,此时uab=urec= 0,ip=0. 模态1(t1~t2) t1时刻,滞后管VS2导通,新周期开始。由于ip=0,VS2此时ZCS开通。uab=Uin/2,ip线性增加。由于ip仍小于负载电流Io折算到初级的值Io/n,VDR1~VDR4全部导通,urec为零,说明该模态中次级存在占空比丢失现象。 模态2(t2~t3) t2时刻,ip达到Io/n,VDR1,VDR4关断,初级开始向负载传递能量。由于CA上电压为零,VDR1,VDR4为ZVS关断。同时VDA1导通,输入部分能量通过Ilk,VDA1向CA充电。记Uins(m2)为此模态中初级折算到次级的等效电压,Llk(m2)为折算到次级的等效漏感,则CA的电流iCA电压uCA,ip及urec分别为: 由于CA通过变压器次级中心抽头充电,urec=2uCA.t3时刻,uCA=Uo,VDA3导通,urec 被箝位为2Uo.记UrecP为次级电压峰值,则UrecP= 2Uo. 模态3(t3~t4)记uCA电压峰值为UCAM,UCAM=Uo保持不变,Llk中的谐振电流经过VDA3流向Cf,iCA迅速减小为零,urec保持2Uo不变。t4时刻Llk电流谐振到零,VDA1,VDA3 ZCS关断。 模态4(t4~t5) uCA仍保持UCAM不变,由于该模态下urec>Uo,VDA2不会导通,有ip(t)=Io/n,urec(t)=Uin/(2n)。 模态5(t5~t6) t5时刻,VS1 ZVS关断,记电容C1,C4电压分别为uC1,uC4,则UC1(t5)=0,UC4(t5)=Uin/2,ip向C1充电,C4放电,次级电压和整流二极管电压迅速减小,则有: 模态6(t6~t7)随着urec的减小,整流二极管两端电压迅速下降,在t6时刻被箝位为UCAM,此时VDA2 ZVS导通,CA开始放电,ip下降。则有:

开关电源 安规要求

安规知识解读 以下如未特别说明,安规要求均指GB4943-2001 1、基本绝缘:对防电击提供基本保护的绝缘。 2、加强绝缘:除基本绝缘外施加的独立的绝缘,用于确保基本绝缘一旦失效时仍 能防止电击。 3、电气间隙(clearance):两个导电零部件之间的最短空间距离。 4、爬电距离(creepage distance):沿绝缘表面测得的两个导电零部件之间的最短 路径。 5、Y1电容可以认为具有加强绝缘的功能。 初—次级跨接的电容用Y1 初—地之间可用Y2电容(1.5.7.1) ?工程师设计时常见错误: 没有Y1和Y2电容的使用概念,以致初---次级之间也“不知不觉”地用了Y2电容。 6、设备的防电击保护类别: Ⅰ类设备:采用基本绝缘,而且有保护接地导体; Ⅱ类设备:采用双重绝缘,这类设备既不依靠保护接地,也不依靠安装条件的保护措施; Ⅲ类设备:SELV供电,且不会产生危险电压; 7、电源上的铭牌标示 i.电源额定值标志 1)额定电压及电流 对具有额定电压范围的设备:

100V—240V; 2.8A 100V—240V; 2.8—1.1A 200V—240V; 1.4A 对多个额定电压: 120/ 220V ; 2.4/1.2A 2)电源的性质符号: 直流——交流~(GB8898-2001) ii.制造厂商名称或商标识别标记 iii.型号 iv.符号“回”,仅对Ⅱ类设备适用。

?工程师设计时常见错误: Ⅱ类设备大标贴没有“回”字符 没有LOGO或LOGO与认证证书不是同一公司 交流输入性质用“AC”表示,不用“~”表示 具有额定电压范围或多个额定电压的设备,电流标示本应是“100V—240V; 2.8—1.1A”或“120/ 220V ; 2.4/1.2A”,错写成“100V—240V; 1.1—2.8A” 或“120/ 220V ; 1.2/2.4A” 8、保护接地和等电位连接端子标示 预定要与保护接地导线相连的接线端子 应标示符号,该符号不能用于其它接地端子。 对保护连接导线的端子不要求标示,

开关电源软启动电路设计

开关电源软启动电路设计 1 简介 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流如图1所示,特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置的防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 2 常用软起动电路 2.1 采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。

2.2 采用SCR-R电路 该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1-VD4和限流电阻R对电容器C充电。当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。 2.3 具有断电检测的SCR-R电路 该电路如图4所示。它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选 取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。 2.4 继电器K1与电阻R构成的电路 该电路原理图如图5所示。电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助是电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻

软开关技术在开关电源中的应用

软开关技术在开关电源中的应用 开关电源中的硬开关和软开关是针对开关晶体管而言的。 硬开关是不管开关管上的电压或电流,强行接通或关断开关管。当开关管(漏极和源极之间,或者集电极和发射极之间)的电压及电流较大时,切换开关管,由于开关管状态间的切换(由导通到截止,或由截止到导通)需要一定的时间,这样就会造成在开关管状态切换的某一段时间内,电压和电流有一个交越区域,这个交越造成的开关管损耗(开关管的切换损耗)随开关频率的提高而急速增加。 开关管的切换损耗与开关管的负载特性有关: 若是感性负载,在开关晶体管关断时会感应出尖峰电压。开关频率越高,关断越快,该感应电压越高。此电压加在开关器件两端,容易造成器件击穿。 若是容性负载,在开关晶体管导通瞬间的尖峰电流大。因此,当开关晶体管在很高的电压下接通时,储存在开关晶体管结电容中的能量将以电流形式全部耗散在该器件内。频率越高,开通电流尖峰越大,从而会引起开关管的过热损坏。 另外,在次级高频整流回路中的二极管,在由导通变为截止时,有一个反向恢复期,开关晶体管在此期间内接通时,容易产生很大的冲击电流。显然频率越高,该冲击电流也越大,对开关晶体管的安全运行造成危害。 最后,做硬开关运用的开关电源中,开关晶体管会产生严重的电磁骚扰。随着频率的提高和电路中的di/dt 和du/dt增大,所产生的电磁骚扰也在增大,影响开关电源本身和周围电子设备的正常工作。 上述问题严重阻碍了开关器件(开关晶体管和高频整流二极管)工作频率的提高。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。和硬开关工作原理不同,理想的软关断过程是电流先降小到零,电压在缓慢上升到断态值,所以关断损耗近似为零。由于器件关断前电流已经下降到零,便解决了感性关断问题。理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压也为零,解决了容性开通问题。同时,开通时,二极管反向恢复过程已经结束,因此二极管反向恢复问题不存在。 软开关技术还有助于电磁骚扰水平的降低,其原因是开关晶体管在零电压的情况下导通和在零电流的情况下关断,同时快恢复二极管也是软关断的,这可以明显减小功率器件的di/dt和du/dt,从而可以减小电磁干扰的电平。 一般来说软开关的效率较高(因为没有切换损);操作频率较高,PFC或变压器体积可以减少,所以开关电源的体积可以做到更小。但成本也相对较高,设计较复杂

开关电源通用技术规范要求

省广电有线信息网络股份分公司传输中心机房工程大容量高频开关电源 技术规书 二○一七年六月

目录 1.概述 (1) 1.1.定义 (1) 1.2.必须满足的技术标准/规 (3) 2.主要技术要求 (3) 2.1.系统规格 (3) 2.2.环境条件 (4) 2.3.系统总体 (4) 2.4.交流配电 (9) 2.5.整流模块 (10) 2.6.直流配电屏(不含高阻配电屏) (11) 2.7.监控模块 (12) 2.8.外观与结构 (14) 2.9.补充要求 (15) 2.10.节能环保 (18) 3.技术服务要求 (20) 3.1.设备检验 (20) 3.1.1.工程技术协调会 (20) 3.1.2.出厂检验 (20) 3.1.3.供货 (21) 3.1.4.到货检验 (21) 3.1.5.到货抽检 (22) 3.2.工程服务 (23) 3.2.1.安装调测服务(交钥匙工程) (24) 3.2.2.督导调测服务 (25) 3.2.3.督导服务 (25) 3.3.设备验收 (26) 3.3.1初验 (26) 3.3.2.试运行 (26) 3.3.3.终验 (27) 3.4.保修 (28) 3.4.1.保修期 (28) 3.4.2.设备巡检服务 (28) 3.4.3故障件修理 (28) 3.4.4.故障响应及技术支持服务 (29) 3.4.5备件供应 (31) 3.4.6.技术文件 (32) 3.4.7.软件补丁 (32) 3.4.8.特殊情况下的服务 (32) 3.4.9.电子文档提供服务 (33) 3.4.10.资料共享 (33) 3.5.技术培训 (33)

UC3846构成的ZVZCS软开关电源的设计要领

设计要领 软开关电源的设计要领UC3846构成的ZVZCS软开关电源的 1.主电路 P0=3KW,U0=30V,fs=20KHz。 从功率容量和尽可能降低开关电源装置的损耗和制作成本考虑,主电路采用了主开关器件为IGBT的全桥PWM变换电路。电路如图2所示。 2.控制电路 PWM控制电路采用的是UC3846。其应用电路主要部分如图3(a)所示,脚1所接R1、R2,决定初级限流值,并决定当过电流时器件是闭锁还是重新运行。CS+和CS-两端接过流信号,实施过流、过压自动保护。EA+和EA-两端是内部误差放大器输入端,接受来自输出电压和输出电流的误差信号,以实行导通/短开时间的控制,达到PWM占空比控制的目的。脚16 ShutDown端是封锁输出脉冲的接线端,接收过流、过压封锁信号,脚8和脚9外接决定开关频率的电阻RT和电容CT。控制输出端Bout(14脚)和Aout(11脚)分别接D 触发器的置“1”端和置“0”端,通过触发器的延时翻转,在滞后桥臂上得到滞后超前臂开关信号一些时间的开关信号,通过主电路的软开关电路实现ZVS和ZCS。S1-S4是输出到IGBT 驱动电路的控制信号,如图3(b)所示是一个IGBT的驱动电路。

3.电路参数计算 对元件和参数作一个计算。开关频率及PWM控制脉冲宽度(占空比)是输出稳定性高低的关键,IGBT和高频整流快速恢复二极管是电源工作恢复高低的关键。 3.1 开关频率及占空比的计算 为了计算这两个参数,先设计高频变压器的匝比为10:1。因为电源输出电压U0为28V,所以高频变压器输入端的平均电压US’应为280V。由DC-DC变换原理可知:Us,/ Ud =D/T,而Ud=1.35UL,式中:UL---- 三相供电线有效值(380V),所以,D/T=280/513=0.545=0.55,由于是全桥式变换,所以每组开关的占空比Dp=D/2*T=0.2757T图4-a所示为一组开关的工 作波形示意图。 综合对电源可靠性要求高,对电源体积要求较高等因素,确定开关电源频率为20KHZ,容易算 出最小死区时间为760ns。 可见,有这样大的死区时间,可以保证在输入电压有较大波动情况下仍能使输出稳定不变。 3.2IGBT的选择 对IGBT的选择,主要考虑正常工作时流过IGBT的电流有效值、平均电流和反向电压Uces。因为象开关损耗发热、工作条件严酷等因素都不能忽略,所以选择时,其元件的参数应取2倍以上安全系数,。由于是全桥式电路,且高频变压器变比为10 : 1 ,次级输出电流为连续的100A电流,所以流过变压器初级电流平均值IL(av)应为10A,流过每个IGBT的稳定电 流波形如图4-b所示,其电流计算如下 因为 所以IGBT的稳态幅值电流为: IGBT电流的有效值为:

SIMetrix在“开关电源及其软开关技术”教学中的应用

SIMetrix 在“开关电源及其软开关技术”教学中的应用 为了完善专业的知识结构、配合学校培养应用型人才的办学思路,华南理工大学广州学院电气工程学院为本科生开设了“开关电源及其软开关技术”这门课程。该课程是“电力电子技术” 的后续课程,系统地介绍了开关电源电路的结构组成、工作原理、设计方法和开发过程,其综合性、工程性和实用性很强。目前,课程在教学中存在的主要问题:第一,虽然在课堂教学中使用了多媒体课件,但依然需要花费大量精力对电路工作原理及其波形进行描述和分析,学生仅凭听讲还是很难深入理解。第二,在本科生中开设该课程的高校较少,在市场上很难找到针对该课程的实验装置,学生学习的理论知识得不到很好的验证。第三,开关电源的硬件开发是一项知识面要求宽、难度大又危险的复杂技术工作,受时间、空间、物质条件等因素限制,在这方面不能做过多要求,因此学生动手能力得不到真正的锻炼。 为了弥补以上不足,本文提出在课程教学中引入SIMetrix 仿真工具。借助该仿真软件,学生更容易理解理论知识,还可以在课堂外对所学的知识加以验证以及进行一些设计应用,从而激发学习的兴趣并增强实践能力。 一、SIMetrix 仿真软件介绍 特点一:包含丰富的器件模型。模型库不仅包含了理想的电路元件,同时还提供了比较通用的、常见的半导体器件和各类应用广泛的

集成电路控制芯片,在此基础上足以构建完整的开关电源系统。 特点二:先进的测量功能。波形可通过选择检测器然后点击原理图生成,或在原理图上放入固定的检测器生成,可在仿真后甚至仿真时查看波形,非常方便。 特点三:强大的波形处理功能。为波形分析提供RMS、frequency、-3dB、FFT等40多种函数,选择这些函数可获得计算结果并显示在波形旁边。 特点四:具有多种分析功能。包括瞬态分析、交流分析、直流分析、噪声分析、传输函数分析等,每种分析功能下又提供多种扫描模式,如频率扫描、器件扫描、参数扫描、模型参数扫描、温度扫描、蒙特卡罗扫描等等。 此外,SIMetrix 仿真软件的仿真结果与实际非常接近,用户图形界面友好,仿真直观,使用者容易掌握。 二、基于UC3842的反激电路仿真实例分析 反激变换器具有高可靠性、高效率、电路拓扑简洁、输入输出电气隔离、升/ 降压范围宽、易于多路输出等优点,是小功率开关电源的理想电路拓扑。UC3842是SIMetrix仿真工具模型库 自带的集成芯片,其外围器件少、性能良好、价格低廉。综上所述,以UC3842空制的反激电源为仿真实例,电路简单且具有代表性,满足初学者的基本学习要求,具体的仿真电路如图1 所示 1. 仿真电路原理 (1)主电路原理。交流输入电压经D1-D4 组成的桥式整流

(完整版)开关电源的用途

开关电源的用途 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域 开关电源的主要类型和分类 开关电源的主要类型 现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC 转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

直流DC/DC转换器按输入与输出之间是否有电气隔离可以分为两类:一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器 隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter)和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。 非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种单管DC/DC 转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

17 他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践1115300605

他激ZVS-RCC式零电压软开关开关电源充电器的研究与实践关键词:自激振荡,无源、无辅助开关准谐振,零电压开关(ZVS),PWM自适应同步,分布电容电流尖刺消除。 一、小功率AC/DC开关电源的技术现状: 现有离线式小功率AC/DC开关电源从线路结构形式来分类大致有正激式、反激式、半桥式等等几种;按驱动结构分类大致有自激式、它激式;按控制结构分类大致有PWM 控制、PFM控制。 AC/DC开关电源从核心技术上讲主要是控制方式。PWM控制方式制作的开关电源是当今开关电源方式制作的主流。由于PWM控制方式控制特性好,控制电路较简单,控制频率固定,成本低,在小功率开关电源中应用广泛。 但随着对开关电源的高功率密度,高可靠性、低成本要求的市场需求,对硬开关PWM 控制电路提出了挑战。由于主开关器件结电容,变压器及线路板的分布电容的不可避免。硬开关PWM控制电路暴露出了主开关器件随功率增大、频率进一步提高损耗会明显增大的缺点,表现为主开关器件温升高,影响了开关电源的可靠性,且变换效率无法再进一步提高。 常规(非正向式)硬开关PWM控制线路的主开关电压、电流波形(图1)及功耗分析: 由以上V/I波形可以看到,两种电路的波形有一个共同的特点:在主开关开通(T on)时,都有一电流上冲尖刺,并且尖刺电流与主开关电压波形明显重叠。在主开关关断(T off)时,主开关电压和电流波形明显重叠。正是由于这种重叠的存在,使主开关的动态损耗在电流大及频率高时更加严重。

如果用一个MOSFET作主开关,这个MOSFET的C oss为300P,变压器及线路板的分布电容为100P,Cr总共为400P,假设频率f=100KHz。 由线路原理可知,MOSFET在开通时的电压(即Cr上的电压)为 V f=V in+V clam V clam=N·(V out+V d+V tsr), V f:MOSFET漏极上的回扫电压, V in:电源的DC输入电压, N:变压器初次级匝比, V out:输出DC电压, V d:输出整流二极管上的压降, V tsr:变压器次级绕组上内阻引起的压降, 得到:V f=V in+ N·(V out+V d+V tsr) 假设有一回扫线路 V f= V in+N·(V out+V d+V tsr)=310+10×(12+1+0.2)=442(V), V cr=V f=442V, MOSFET开通(Ton)时Cr电容的损耗可用下式计算: P cr=(C r·V cr2·f)/2 代入计算:P cr= (400×10-12×4422×100×103 )/2 =7.81456/2=3.90728(w)≈4W。 由以上计算可知,MOSFET主开关输出电容Coss,及变压器、线路板的分布电容全部等效为C r在MOSFET主开关内要消耗4W左右(不包括MOSFET主开关关断时的消耗,及MOSFET导通电阻所引起的消耗)。 由RCC式线路原理可知,自激RCC式电路也工作在初级电感能量释放完状态,MOSFET在开通时的电压(即Cr上的电压)因自激条件需要为恒定V f=V in。仍根据以上条件可计算出MOSFET开通时Cr电容的损耗为: P cr= (400×10-12×3102×100×103 )/2=1.922(w)。 回扫式及他激RCC式电路如果工作在初级电感能量释放完的状态,MOSFET在开通时的电压(即C r上的电压)在不同负载条件下是不同的,P cr损耗的大小由于负载的轻重不能确定而无法预知,所以不能保证低的P cr功耗。 有朋友在做充电器时,可能会遇到,在输出电压的某一段时感觉MOSFET的温升还可以、但在另一电压段时MOSFET的温升很高而无从着手。

开关电源的主要技术指标知识

开关电源的主要技术指标知识 开关电源以其低功耗、高效率、小体积等显著优点而深受人们的青睐,并被广泛应于 计算机设备、电子仪器、通信设备和家用电器中。开关电源的主要技术指标知识: 第一、输出电压的纹波:由于开关电源的稳压过程是一个不断取样反馈调节的过程,因此在输出的直流电压上会出现一个叠加的波动的纹波电压,即输出的纹波电压。这 个值越小,表示输出特性越好。纹波有两种表示方法:一是输出纹波电压有效值;二是输出纹波电压的峰峰值。一般开关电源的规格都要求小于输出直流电压的1%,其频 宽为20Hz-20MHz或者其他更高频率,如100MHz等。开关电源在恶劣环境下,其输 出直流电压加上杂讯纹波后的输出瞬时电压,应不超出输出高低电压界线(Min值和Max值),否则将可能会导致电源电压超过或者低于逻辑电路(如TTL电路)的工作电压而误动作,进一步造成死机现象。 第二、电压调整率:电压调整率也称为电压稳定度,是在输出电流不变(即负载不变化),而输入的交流工作电压变化时,输出电压的相对变化量。此项技术指标用来验证开关电源在最恶劣的电源电压环境下,输出电压的稳定度是否符合需求规格。 第三、输入电压范围:当开关电源的输入电压发生变化时,保持输出特性不变的输入 电压变化范围。这个范围越宽,表示电源适应外界的市电变化的能力越强,开关电源 的工作范围就越宽。它和开关电源内部的误差放大器、取样反馈调节电路的增益及占 空比调节范围有关。目前开关电源的输入电压变化范围已经做到90V-270V,可以省去 许多电器上的110V/220V转换开关。 第四、转换效率:电源输出功率与输入功率的比值。这个比值越高,表示变化效率高,开关电源的体积越小,可靠性也越高。目前开关电源的效率可达到90%以上。 第五、输出内阻:输出电压的变化量与输出电流的变化量的比值。这个比值越小,表示电源输出电压随负载大小的变化越小,稳压性能好。

开关电源的软启动电路

开关电源的软起动电路 1引言 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。 2常用软起动电路 (1)采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。 (2)采用SCR R  电路  和限流电阻R对电容器C充电。该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1VD4 当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。  电路 (3)具有断电检测的SCR R 该电路如图4所示。它是图3的改进型电路, 图1合闸瞬间滤波电容电流波形

开关电源芯片通用测试要求和步骤-antonychen

开关电源芯片通用测试要求和步骤 By Antony Chen 开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。 一、理论上的DCDC测试指标清单 1.描述输入电压影响输出电压的几个指标形式(line) 1.1绝对稳压系数:K=△Uo/△Ui 1.2相对稳压系数:S=△Uo/Uo / △Ui/Ui 1.3电网调整率(也称线性调整率): 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有 时也以绝对值表示。 line reg=△Uo/Uo*100%@ -10%

开关损耗及软开关技术

开关损耗及软开关技术 概述 本文简单介绍了开关电路的常见形式,讲述了开关电路开通和截止的过程以及开关损耗产生的原因。最后介绍了减少开关损耗的办法—软开关技术。 开关电路简介 开关是我们经常碰到的一种物品,如电灯的开关,电源的开关,电闸,继电器等。现代电子电路中也经常会使用到开关电路。只不过在电子电路中的开关与上面所提到的机械方式的开关不同,电子电路中的开关一般利用晶体管或场效应管的导通截止特性构成。 开关电路经常出现在电源,功率放大器,电机伺服,音视频切换等电路中。下面举两个例子 开关电源中的开关管(Q) D 类音频功率放大器中的开关管(M1,M2) 从上面两个例子可以看出在功率电子电路中是用的开关电路有以下两个特点 1、 开关管的负载都是感性负载(开关电源电路中的f L 和音频功放中的1L ) 2、 都有相应的续流二极管(如开关电源电路中的D) *在音频功放中的续流二极管实际上是功率场效应管的体二极管。 开关电路的开关过程及开关损耗 以开关电源电路中的开关电路为例介绍一下开关的过程。在这里假定电感f L 较大所以在开关过程中流过电感的电流可以近似认为没有变化。 开通过程 下图描述了开关管开通时电压电流的关系,其中CE V 指得是开关管Q 发射极和集电极之间的电压,对场效应管就是源极(S)和漏极(D)之间的电压。L I 是关断前电感流过的电流。

在0t 时刻开关管Q 开始流过电流,开关管逐渐开通。 在10~t t 时刻流过开关管Q 的电流逐渐增大,同时流过二极管D 的电流逐渐减小。在此时刻Q 一直工作在放大状态,即流过开关管的电流的大小是由流过基极的电流大小决定的。 在1t 时刻开关管Q 流过了所有的L I ,这时流过二极管的电流为零。但是由于二极管反向恢复时间的原因,二极管不会立即进入截止状态,而是要继续保持一段时间的导通。 在21~t t 时刻流过开关管的电流继续增大,Q 还是工作在放大状态。二极管处于反向恢复期流过反向的电流。 在2t 时刻二极管的反向电流开始减小。在此时刻流过开关管的电流已经不再由Q 基极电流的大小决定,所以在此时刻Q 工作在放大和饱和的临界状态。 在32~t t 时刻流过开关管的电流开始减小,同时开关管两端的电压也开始急剧下降,电压下降的速度主要取决于二极管的反向恢复过程。 在3t 时刻二极管完全截止。 在43~t t 时刻里开关管处于动态饱和区CE 端的压降受三极管本身的特性,积极驱动电流,和结温影响。这里不再讨论。 关断过程 关断过程可以分成两部分 10~t t 时刻开关管逐渐退出饱和状态两端电压不断上升。但是流过其中的电流大小没有明显变化。 21~t t 时刻开关管逐渐关断,而二极管逐渐导通。 在关断过程中开关管决定了电流和电压的变化率。

【精品】第六讲:开关电源新技术

第六讲:开关电源新技术 这里所说的新技术,是 指最近20年内发展起来的技 术内容,涉及开关电源的效 率、动态响应、功率因数等概 念. 1.1、软开关技术 开关管的损耗一直是开关变换器设计中的一个核心问题。要减小开关电源的体积,降低输出电压纹波,提高开关频率是最直接有效的方法,但开关管的损耗正是限制开关频率提高的最大原因,开关管在导通或关断状态下的损耗(称为通态损耗和断态损耗)是比较小的,但在导通和关断动作过程中的损耗(称为导通损耗和关断损耗,即开关损耗)非常大,因为在这时开关管要同时承受高电压和大电流。开关频率越高,开关损耗就越严重。要降低开关损耗就必须从控制开关管的开关过程着手,使开关管上不能同时出现高电压和大电流。传统的缓冲器(Snubber)电路(常用的电路,主要是保证开关管安全工作),能减小一些开关损耗,但程度非常有限而且又引入了缓冲电路的损耗.给出一个典型的缓冲电路的形式(图3),图中虚线框内部分为缓冲器电路。

谐振(Resonant)的方法是能够大幅度降低开关损耗的方法。谐振概念的产生比较早,广泛用于机械工业的中频感应加热炉其实就是一个利用负载产生谐振的例子。但谐振的方法用于直流变换器则是在上世纪80年代才有较大的发展,首先建立起了零电压开关ZVS(ZeroVoltageSwitch)和零电流开关ZCS(ZeroCurrentSwitch)的概念,其基本思路是使开关管的电压或电流与外部谐振回路产生谐振,从而使开关管可以在零电压状态导通或是在零电流状态下关断。这种方法的困难在于保证开关管的零压或零流条件(不同输电压和不同负载条件入),为解决这一问题发展了准谐振变换器QRC(QuasiResonantConverter)的技术,也有ZVS—QRC和ZCS-QRC两类。 谐振方式的变换器最突出的优点就是极大地降低了开关损耗,使变换器的工作频 率提高到了MHz量级的水平,适合 在一些对体积和重量要求极为严 格的场合(比如飞行器)中使用。 谐振技术另一个突出的应用是移 相全桥(PhaseShiftFull—Bridge) 的线路,该线路中,谐振概念与移相PWM控制的方法巧妙结合,消除了谐振方式固有的缺陷,因而在通信等中大功率场合被广泛采用.除此之外,谐振方式则因器件电压电流应力过大、难以保证零开关条件、难以与PWM方式配合等原因不能得到普遍应用。 上世纪90年代出现的零电压转换ZVT(ZeroVoltageTransition)和零电流转换

相关主题
文本预览
相关文档 最新文档