当前位置:文档之家› sec费米面和态密度

sec费米面和态密度

(完整版)费米能级理解

能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。 1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

2. 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valenc e band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 3. 费米能级(Fermi level)是绝对零度下电子的最高能级。根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 4. 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态,原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中,k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-k relationship)。能量色散决定了半导体

导带、价带、禁带、费米能级

(1)导带conduction band: 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带: 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

费米能级位置

什么是Fermi能级?为什么Fermi能级可以处于禁带中间?为什么本征半导体的Fermi能级位于禁带中央?为什么n型半导体的 Fermi能级位于导带底附近?Fermi能级随着温度和掺杂浓度的改变 而如何变化? Fermi能级(E F)是一个非常重要的物理概念,它在半导体电子学中起 着极其重要的作用。 (1) Fermi能级的概念: 在固体物理学中,Fermi能量(Fermi energy)是表示在无相互作用的Fermi粒子的体系中加入一个粒子所引起的基态能量的最小可能增量;也就是在绝对零度时,处于基态的Fermi粒子体系的化学势,或 者是处于基态的单个Fermi粒子所具有的最大能量------ Fermi粒子所 占据的最高能级的能量。 另一方面,按照Fermi-Dirac统计,在能量为E的单电子量子态 上的平均电子数为: 式中的T为绝对温度,k为玻尔兹曼常数,E F是该Fermi-Dirac 分布 函数的一个参量(称为化学势)。在绝对零度下,所有能量小于E F的量子 态都被电子占据,而所有能量大于E F的量子态都是空着 的,则作为化学势的参量E F就是电子所占据的最高量子态的能量,因此 这时系统的化学势也就与费米能量一致。从而,往往就形象地把费米能量

和化学势统称之为Fermi能级。虽然严格说来,费米能级是指无相互作用的Fermi粒子系统在趋于绝对零度时的化学势,但是在半导体物理电子学领域中,费米能级则经常被当做电子或空穴的化学势来使用,所以也就不再区分费米能级和化学势了。 在非绝对零度时,电子可以占据高于E F的若干能级,则这时Fermi 能级将是占据几率等于50%的能级。处于Fermi能级附近的电子(常称为传导电子)对固体的输运性质起着重要的作用。 (2)Fermi能级的含义: 作为Fermi-Dirac分布函数中一个重要参量的Fermi能级EF,具有决定整个系统能量以及载流子分布的重要作用。 ①在半导体中,由于Fermi能级(化学势)不是真正的能级,即不一定是允许的单电子能级(即不一定是公有化状态的能量),所以它可以像束缚状态的能级一样,可以处于能带的任何位置,当然也可以处于禁带之中。 对于金属,其中的自由电子在k空间中将填充成一个球体,称为Fermi球;Fermi能量也就是Fermi球面对应的能量,该能量可以采用Fermi球的半径Fermi半径k F来表示为 式中的h是Dirac常数,m是自由电子的质量。因此,金属中的

半导体费米能级推导

3.杂质半导体的能带 (1)N 型半导体 如果在四价的锗(Ge)或硅(Si)组成的晶体中掺入五价原子磷(P) 或砷(As),就可以构成N 型半导体。以硅掺磷为例,如图1-8(b)所示,五价的磷用四个价电子与周围的硅原子组成共价键,尚多余一个电子。这个电子受到的束缚力比共价键上的电子要小得多,很容易被磷原子释放,跃迁成为自由电子,该磷原子就成为正离子,这个易释放电子的原子称为施主(原子)。由于施主原子的存在,它会产生附加的束缚电子的能量状态。这种能量状态称为施主能级,用E a 表示,它位于禁带之中靠近导带底的附近。 施主能级表明,P 原子中的多余电子很容易从该能级(而不是价带)跃迁到导带而形成自由电子。因此,虽然只要掺入少量杂质,却可以明显地改变导带中的电子数目,从而显著地影响半导体的电导率。实际上,杂质半导体的导电性能完全由掺杂情况决定,掺杂百万分之一就可使杂质半导体的载流子浓度达到本征半导体的百万倍。 N 型半导体中,除杂质提供的自由电子外,原晶体本身也会产生少量的电子-空穴对,但由于施主能级的作用增加了许多额外的自由电子,使自由电子数远大于空穴数,如图1-8(b)所示。因此,N 型半导体将以自由电子导电为主,自由电子为多数载流子(简称多子),而空穴为少数载流子(简称少子)。 (2)P 型半导体 如果在四价锗或硅晶体中掺入三价原子硼(B),就可以构成P 型半导体。以硅掺硼为例,如图1-8(c)所示,硼原子的三个电子与周围硅原子要组成共价键,尚缺少一个电子。于是,它很容易从硅晶体中获取一个电子而形成稳定结构,这就使硼原子变成负离子而在锗晶体中出现空穴。这个容易获取电子的原子称为受主(原子)。由于受主原子的存在,也会产生附加的受主获取电子的能量状态。这种能量状态称为受主能级,用E d 表示,它位于禁带之中靠近价带顶附近。受主能级表明,B 原子很容易从Si 晶体中获取一个电子形成稳定结构,即电子很容易从价带跃迁到该能级(不是导带),或者说空穴跃迁到价带。 与N 型半导体的分析同理,图1-8(c)价带中的空穴数目远大于导带中的电子数目。P 型半导体将以空穴导电为主,空穴为多数载流子(简称多子),而自由电子为少数载流子(简称少子)。 二、热平衡状态下的载流子 一个不受外界影响的封闭系统,其状态参量(如温度、载流子浓度等)与时间无关的状态称为热平衡态。下面讨论热平衡态下载流子的浓度。 根据量子理论和泡利不相容原理,半导体中电子的能级分布服从费米统计分布规律。即,在热平衡条件下,能量为E 的能级被电子占据的概率为: n f 1()1exp f E E E kT =???+???? (1-18)式中,E f 为费米能级;k =1.38×10-23J/K 为玻耳兹曼常数;T 为绝对温度。 空穴的占据概率是不被电子占据的概率,它为

费米能级位置

什么就是Fermi能级?为什么Fermi能级可以处于禁带中间?为什么本征半导体的Fermi能级位于禁带中央?为什么n型半导体的Fermi能级位于导带底附近?Fermi能级随着温度与掺杂浓度的改变而如何变化? Fermi能级(E F)就是一个非常重要的物理概念,它在半导体电子学中起着极其重要的作用。 (1)Fermi能级的概念: 在固体物理学中,Fermi能量(Fermi energy)就是表示在无相互作用的Fermi粒子的体系中加入一个粒子所引起的基态能量的最小可能增量;也就就是在绝对零度时,处于基态的Fermi粒子体系的化学势,或者就是处于基态的单个Fermi粒子所具有的最大能量——Fermi粒子所占据的最高能级的能量。 另一方面,按照Fermi-Dirac统计,在能量为E的单电子量子态上的平均电子数为: 式中的T为绝对温度,k为玻尔兹曼常数,E F就是该Fermi-Dirac分布函数的一个参量(称为化学势)。在绝对零度下,所有能量小于E F的量子态都被电子占据,而所有能量大于E F的量子态都就是空着的,则作为化学势的参量E F就就是电子所占据的最高量子态的能量,因此这

时系统的化学势也就与费米能量一致。从而,往往就形象地把费米能量与化学势统称之为Fermi能级。虽然严格说来,费米能级就是指无相互作用的Fermi粒子系统在趋于绝对零度时的化学势,但就是在半导体物理电子学领域中,费米能级则经常被当做电子或空穴的化学势来使用,所以也就不再区分费米能级与化学势了。 在非绝对零度时,电子可以占据高于E F的若干能级,则这时Fermi 能级将就是占据几率等于50%的能级。处于Fermi能级附近的电子(常称为传导电子)对固体的输运性质起着重要的作用。 (2)Fermi能级的含义: 作为Fermi-Dirac分布函数中一个重要参量的Fermi能级EF,具有决定整个系统能量以及载流子分布的重要作用。 ①在半导体中,由于Fermi能级(化学势)不就是真正的能级,即不一定就是允许的单电子能级(即不一定就是公有化状态的能量),所以它可以像束缚状态的能级一样,可以处于能带的任何位置,当然也可以处于禁带之中。 对于金属,其中的自由电子在k空间中将填充成一个球体,称为Fermi球;Fermi能量也就就是Fermi球面对应的能量,该能量可以采用Fermi球的半径——Fermi半径k F来表示为

导带、价带、禁带.费米能级

【半导体】 (1)导带conduction band 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。 禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从0.1~2.0eV,π-π共轭聚合物的能带隙大致在1.4~4.2eV,绝缘体的禁带宽度大于4.5eV。 (3)导带与价带的关系: “电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。 注意:不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。

费米能级的相关知识

费米能级是绝对零度时电子的最高能级. 自由粒子的波函数是平面波,波动方程是f(r)=(1/V^0.5)*Exp(i k*r) k是平面波波矢,电子能量是E=(hk)^2/2m (这个h是除以2PI后的那个普朗克常数,原来表示此量的符号太不好找了) 可以看出,电子对于取不同的k时,可以处在不同能量状态. 下面引入k空间,尽量理解. 一般用周期性边界条件,f(x y z)=f(x+L y z)=f(x y+L z)=f(x y z+L )确定k的取值kx=(2PI/L)Nx ky=(2PI/L)Ny kz=(2PI/L)Nz Nx Ny Nz是整数,因此把k看作空间矢量,在k空间中,k只能取一个个分立的点.你可以想象以kx ky kz3个方向建立坐标系,因为Nx Ny Nz是整数,kx ky kz只能取到一个个点.就比如Nx是整数,永远不会有kx=(2PI/L)*0.4处被取到. 每个点代表一种k的取值,前面有说过,每个k都对应电子的不同能量状 态,E=(hk)^2/2m ,这些能量状态也因为k的分立取值而只能分立出现,就是能级. 把电子放在k空间的各个点上,代表电子处在那个k值的状态,也对应一个能量状态,即处在该能级上. 因为泡利不相容原理,每个态上只可以放2个电子,(自旋相反)不会有第3个跟他们在同一个状态(k空间的各个点)上. 现在有一个总共有N个电子的体系,各个电子都处于什么状态哪?粒子总是先占据能量小的能级,从kx=0ky=0kz=0开始(显然这时候能量最小,不过这个模型有点局限,你不必理了)kx=0ky=0kz=1.....kx=33 ky=34 kz=34.....反正越来越大,越来越往能量更大的高能级上添.最后第N个电子会处在最高能级上(能量最大),这个能级就是费米能级.(我的问题:这个意思也就是说一个原子最外层电子所在的能级就是费米能级?要是能级没有被填满呢? 注意: 1 不在绝对零度的话,电子填充能级不是仅仅由泡利不相容原理决定,因此费米能级是绝对零度时,电子的最高能级. 2 通常宏观体系的电子数N很大,电子填充能级时,在k空间的占据态,也就是可以处在的那N/2的点,会形成一个球形,称为费米球.这很好想象,粒子总是先占据能量小的能级,离(0 0 0)越近的能级(哪个点)先占据,最后被占据的点肯定不会有"支出去"的,而是程球形.这个球面叫费米面,有时也说费米面上的能级是费米能级.我前面说"第N个电子会处在最高能级上(能量最大),这个能级就是费米能级"是为了理解方便,实际上第N个电子,不见得比N-1的能级高了,简单的看 kx=0ky=0kz=1和kx=0ky=1kz=0和kx=1ky=0kz=0不是能量一样吗?当离(0 0 0)很远后,这种k不同但能量一样或近似一样的点会更多,形成一个近似的球面--费米面.一般就认为费米面上的能级就是最高能级--费米能级. 3 从费米分布函数角度解释也可以,费米分布函数给出了不在绝对0度的情况下各个能级被占据的几率,费米能级是本征态占据几率1/2的态对应能级在绝对0度的极限.你可以看黄昆先生的固体物理. 4 对于f(x y z)=f(x+L y z)=f(x y+L z)=f(x y z+L )确定k的取值,可以自己计算一下.波动方程只是为了得出能级概念,并不需要注意,解法可以去看量子力学.

费米能级与金属接触势差

费米能级设计及金属的接触势差 哈尔滨工业大学材料科学与工程学院(1091900416) 摘要:由量子电子理论,对Fermi-Dirac 分布函数推导出费米能级的计算公式,得出费米能级依赖于电子密度n ,进而对费米能级进行设计。接触电势差来源于两块金属的费米能级不一样高,应用公式推导从而得出金属接触势差与费米能级的关系。 关键词:费米能级;电子密度;金属接触势差 费米能级是指对于金属,绝对零度下,电子占据的最高能级就是费米能级;也可以理解为绝对零度时金属中电子的化学势。金属接触势差为两种不同的金属相互接触时在它们之间产生的电势差。 一、 费米能级及费米能级的设计 自由电子气服从Fermi-Dirac 统计分布规律,满足下式: (,)f E T = ()/1 1E kT e μ-+ 它表示温度在T 的热平衡石,能量处于E 的电子态被电子所占据的概率。K 为波尔兹曼常数,T 为热力学温度,μ为化学势,定义为: μ=,( )T V F N ?? 表示温度T 和压力V 一定是,体系自由能F 与电子数目N 的变化率。在分布函数中,μ是一个决定电子在各能级分布的函数,它与N 的关系满足: 1/2 3/2 2 2 ()/0 2(,)()( ) 21E kT V m E dE N f E T g E dE e μπ ∞∞-= = +? ? 当T=0K 时,体系处于基态,也就是体系能量的最低函数,分布函数为: 1,(0) 0,(0) (,){lim E E T f E T μμ<>→= μ(0)为T-=0体系的化学势。可见能量大于μ(0)的轨道是空的,而能量小于μ(0)的轨道被电子所填满。由于Pauli 不相容原理,每个轨道只能容纳自旋相反的两个电子,所以电子只能按照能量从低到高的规律填充在各轨道中。μ(0)为基态时电子能量最高的轨道。通常称为Fermi 面。由公式0 ()()N f E g E dE ∞ = ? ()F E N E dE = ? = 1 20 ()F E C E d E ?

标准正态分布的密度函数

正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算 幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这可以由 以下情形加以说明: ⑴正态分布是自然界及工程技术中最常见的分布 之一, 大量的随机现象都是服从或近似服从正态分布的. 可以证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标 一定服从或近似服从正态分布. 这些性质是其它 ⑵正态分布有许多良好的性质, 许多分布所不具备的. ⑶正态分布可以作为许多分布的近似分布. 幻灯片3 -标准正态分布 下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数 若连续型随机变量X的密度函数为 定义 则称X服从标准正态分布, 记为 标准正态分布是一种特别重要的 它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 (2)根据反常积分的运算有 可以推出 幻灯片5 标准正态分布的密度函数的性质

,X的密度函数为 则密度函数的性质为: 的图像称为标准正态(高斯)曲线。 幻灯片6 随机变量 由于 由图像可知,阴影面积为概率值。 对同一长度的区间 ,若这区间越靠近 其对应的曲边梯形面积越大。 标准正态分布的分布规律时“中间多,两头少”. 幻灯片7 二、标准正态分布的概率计算 1、分布函数 分布函数为 幻灯片8 2、标准正态分布表 书末附有标准正态分布函数数值表,有了它,可以解决标准正态分布的概率计算. 表中给的是x > 0时, Φ(x)的值. 幻灯片9 如果 由公式得 令 则 幻灯片10 例1 解 幻灯片11 由标准正态分布的查表计算可以求得, 当X~N(0,1)时, 这说明,X 的取值几乎全部集中在[-3,3]区间内,超出这个范围的可能性仅占不到0.3%. 幻灯片12 三、一般正态分布的密度函数 如果连续型随机变量X的密度函数为 (其中 为参数) 的正态分布,记为 则随机变量X服从参数为 所确定的曲线叫 作正态(高斯)曲线. 幻灯片13

固体物理习题3(5-7)章

固体物理习题 一、 固体电子论基础 1. 已知金属铯的E F =1.55eV ,求每立方厘米的铯晶体中所含的平均电子数。 2. 证明:在T=0K 时,费米能级0 F E 处的能态密度为:0023)(F F E N E N =,式中N 为金属中的自由电子数。 3. 已知绝对零度时银的费米能为5.5eV ,试问在什么温度下,银的电子摩尔比热和晶格摩尔比热相等?(银的德拜温度是210K )。 4. 如果具有bcc 结构的Li 晶体的晶格常数为:5.3=a ?,计算其费 米能(0F E )、费米温度及每个价电子的平均动能。 5. 已知某种具有面心立方结构的金属中自由电子气的费米球半径为:a K F 3120)12(π= ,其中a 为晶格参数,每个原子的原子量为63.5,晶体的质量密度为33/1094.8m kg D ?=,试求:(1)该金属的原 子价?=η(2)eV E F ?0= 6. 写出三维波矢空间自由电子的量子态密度表达式。 7. 费米能随着温度的变化趋势是什么? 8.电子的比热系数、费米能附近电子的能态密度以及电子的有效质量之间的关系是什么? 9.不同的导体之间接触电势差产生的根本原因是什么? 二、 金属的电导理论 1. 已知金属铜的费米能,12.7eV E F =在273K 温度下电阻率cm ?Ω?=-81058.1ρ,求(1)铜中电子的费米速度,(2)平均自由时间τ和平均自由程Λ。 2. 证明对于具有球形费米面的金属,其电导率可以表示为: ()F F F E g v e τσ223 1= 式中e 为电子电量;F v 、F τ为费米面上电子的速度和驰豫时间(或平均自由时间);)(F E g 为费米面附近单位晶体体积的能态密度,因此

费米能级

费米能级就一个由费米子组成的微观体系而言,每个费米子都处在各自的量子能态上。现在假想把所有的费米子从这些量子态上移开。之后再把这些费米子按照一定的规则(例如泡利原理等)填充在各个可供占据的量子能态上,并且这种填充过程中每个费米子都占据最低的可供占据的量子态。最后一个费米子占据着的量子态即可粗略理解为费米能级。虽然严格来说,费米能等于费米子系统在趋于绝对零度时的化学势;但是在半导体物理和电子学领域中,费米能级则经常被当做电子或空穴化学势的代名词。一般来说,“费米能级"这个术语所代表的含义可以从上下语境中判断。费米子可以是电子、质子、中子(自旋为半整数的粒子)对于金属,绝对零度下,电子占据的最高能级就是费米能级。费米能级的物理意义是,该能级上的一个状态被电子占据的几率是1/2。费米能级在半导体物理中是个很重要的物理参数,只要知道了他的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。它和温度,半导体材料的导电类型,杂质的含量以及能量零点的选取有关。将半导体中大量电子的集体看成一个热力学系统,可以证明处于热平衡状态下的电子系统有统一的费米能级。 1. 费米能级不是一个真正存在的能级。它只是用于衡量一个系统的能级水平。 2. 对于一个系统来说,处处的费米能级相同。对于两个系统合并成为一个系统,则费米能级也会趋于处处相同(会有净电荷的流动)。- 3. 费米能级描述了各个能级上电子分布的概率。 4. 费米能级随着温度和掺杂浓度而变化。具体来说如下: a. 对于N型半导体费米能级在禁带中央以上;掺杂浓度越大,费米能级离禁带中央越远,越靠近导带底部 b. 对于P型半导体费米能级在禁带中央以下;掺杂浓度越大,费米能级离禁带中央越远,越靠近价带顶部 在固体物理学中,Fermi能量(Fermi energy)是表示在无相互作用的Fermi粒子的体系中加入一个粒子所引起的基态能量的最小可能增量;也就是在绝对零度时,处于基态的Fermi 粒子体系的化学势,或者是处于基态的单个Fermi粒子所具有的最大能量——Fermi粒子所占据的最高能级的能量。 对于绝缘体和半导体,Fermi能级则处于禁带中间。特别是本征半导体和绝缘体,因为它们的的价带是填满了价电子(占据几率为100%)、导带是完全空着的(占据几率为0%),则它们的Fermi能级正好位于禁带中央(占据几率为50%)。即使温度升高时,本征激发而产生出了电子-空穴对,但由于导带中增加的电子数等于价带中减少的电子数,则禁带中央的能级仍然是占据几率为50%,所以本征半导体的Fermi能级的位置不随温度而变化,始终位于禁带中央。

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.doczj.com/doc/a218922277.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

费米子和费米能级

1、费米子(fermion): 自旋为半整数的粒子。比如电子、质子、中子等以及其反粒子。 在一组由全同粒子组成的体系中,如果在体系的一个量子态(即由一套量子数所确定的微观状态)上只容许容纳一个粒子,这种粒子称为费米子。或者说自旋为半整数(1/2,3/2…)的粒子统称为费米子,服从费米-狄拉克统计。费米子满足泡利不相容原理,即不能两个以上的费米子出现在相同的量子态中。轻子,核子和超子的自旋都是1/2,因而都是费米子。自旋为3/2,5/2,7/2等的共振粒子也是费米子。中子、质子都是由三种夸克组成,自旋为1/2。奇数个核子组成的原子核。因为中子、质子都是费米子,故奇数个核子组成的原子核自旋是半整数。 基本费米子分为2类:夸克和轻子。而这2类基本费米子,又分为合共24种味(flavour): 12种夸克:包括上夸克(u)、下夸克(d)、奇夸克(s)、粲夸克(c)、底夸克(b)、顶夸克(t),及它们对应的6种反粒子。[1] 12种轻子:包括电子(e-)、μ子(μ-)、τ子(τ-)、中微子(即中微子)νe、中微子νμ、中微子ντ,及对应的6种反粒子,包括3种反中微子。 2、玻色子: 是依随玻色-爱因斯坦统计,自旋为整数的粒子。玻色子不遵守泡利不相容原理,在低温时可以发生玻色-爱因斯坦凝聚。 玻色子包括: 胶子-强相互作用的媒介粒子,自旋为1,有8种; 光子-电磁相互作用的媒介粒子,自旋为1,只有1种。这些基本粒子在宇宙中的―用途‖可以这样表述:构成实物的粒子(轻子和重子)和传递作用力的粒子(光子、介子、胶子、w和z玻色子)。在这样的一个量子世界里,所有的成员都有标定各自基本特性的四种量子属性:质量、能量、磁矩和自旋。 3、波色子和费米子是物质世界的两种存在,波色子和费米子正好和中国古代的 阴阳太极思想一致,即阴物质是波色子,是物质存在的基础,阳物质是费米子,是物质存在的形式,我们现实世界存在就是以阴物质存在的基础而表现出阳物质形式。 4、费米能级: 对于金属,绝对零度下,电子占据的最高能级就是费米能级。费米能级的物理意义是,该能级上的一个状态被电子占据的几率是1/2。 在半导体物理中,费米能级是个很重要的物理参数,只要知道了它的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。它和温度,半导体材料的导电类型,杂质的含量以及能量零点的选取有关。 n型半导体费米能级靠近导带边,过高掺杂会进入导带。p型半导体费米能级靠近价带边,过高掺杂会进入价带。 将半导体中大量电子的集体看成一个热力学系统,可以证明处于热平衡状态下的电子系统有统一的费米能级。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

费米能级位置

什么是Fermi能级为什么Fermi能级可以处于禁带中间为什么本征半导体的Fermi能级位于禁带中央为什么n型半导体的Fermi能级 位于导带底附近Fermi能级随着温度和掺杂浓度的改变而如何变化Fermi能级(E F)是一个非常重要的物理概念,它在半导体电子学中起着极其重要的作用。 (1) Fermi能级的概念: 在固体物理学中,Fermi能量(Fermi energy)是表示在无相互作用的Fermi粒子的体系中加入一个粒子所引起的基态能量的最小可能增量;也就是在绝对零度时,处于基态的Fermi粒子体系的化学势,或 者是处于基态的单个Fermi粒子所具有的最大能量--------- F ermi粒子所占据的最高能级的能量 另一方面,按照Fermi-Dirac统计,在能量为E的单电子量子态上 的平均电子数为: 式中的T为绝对温度,k为玻尔兹曼常数,圧是该Fermi-Dirac分布函 数的一个参量(称为化学势「在绝对零度下,所有能量小于E F的量子态都被 电子占据,而所有能量大于E F的量子态都是空着的, 则作为化学势的参量E F就是电子所占据的最高量子态的能量,因此这时系 统的化学势也就与费米能量一致。从而,往往就形象地把费米

能量和化学势统称之为Fermi能级。虽然严格说来,费米能级是指无相互作用的Fermi粒子系统在趋于绝对零度时的化学势,但是在半导 体物理电子学领域中,费米能级则经常被当做电子或空穴的化学势来使用,所以也就不再区分费米能级和化学势了。 在非绝对零度时,电子可以占据高于E F的若干能级,则这时Fermi 能级将是占据几率等于50%的能级。处于Fermi能级附近的电子(常称为传导电子)对固体的输运性质起着重要的作用。 (2)Fermi能级的含义: 作为Fermi-Dirac分布函数中一个重要参量的Fermi能级EF,具有决定整个系统能量以及载流子分布的重要作用。 ①在半导体中,由于Fermi能级(化学势)不是真正的能级,即不一定是允许的单电子能级(即不一定是公有化状态的能量),所以它可以像束缚状态的能级一样,可以处于能带的任何位置,当然也可以处于禁带之中。 对于金属,其中的自由电子在k空间中将填充成一个球体,称为Fermi 球;Fermi能量也就是Fermi球面对应的能量,该能量可以采用Fermi球的半径-------------- Fermi半径k F来表示为 式中的h是Dirac常数,m是自由电子的质量。因此,金属中的 Fermi能级也就是导带中自由电子填充的最高能级。p F=~h k F称为Fermi动量,V F= h k F/m称为Fermi速度。一般,金属的Fermi能量约为~

Excel中的正态分布的密度函数

Excel中的正态分布的密度函数 关于在Excel中的正态分布的密度函数NORMDIST(x,μ,σ,逻辑值)中积累逻辑值取“FALSE”时的图形,在《Excel:正态分布的面积图(积累逻辑值为FALSE)》(地址见【附录】)中简单作了尝试。现为了绘制正态累计分布逻辑值要取“TRUE”。 在Excel中的正态分布的密度函数NORMDIST的语法表达式是: NORMDIST(值,平均数,标准差,积累与否),其中: x ——“值”,是要求分布的随机变量数值; μ——“平均数”,是分布的算数平均数; σ——“标准差”,是分布的标准差; 逻辑值——“积累与否”,是决定函数的逻辑值,其中: ●如果“积累与否”的逻辑值取“TRUE”(真),则NORMDIST 会返回累计分布函数。如果为了绘制正态累计分布,逻辑值就要取 “TRUE”。 ●如果“积累与否”的逻辑值取“FALSE”(伪),则NORMDIST 会返回正态分布函数的高度。 为了制作正态累计分布面积图,先准备下列数据表格(实际使用的表格中,单元格中都是数据,以下为了说明具体公式,在“工具”-“选项”-“视图”中勾选了“公式”,以便各单元格的具体参数都显示出来,以供参考。实际使用时还应该将这个勾选取消)。下列表格中各列NORMDIST函数中的逻辑值都取“TRUE”: 表1 在A列,准备按自己需要设置自变量数据x,本例从0——100,(A2——A102)。 在F列:B2=NORMDIST(A2,50,5, TRUE),μ=50,σ=5,一直拖到F102。

在G列:G2=NORMDIST(A2,50,10, TRUE),μ=50,σ=10,一直拖到G102。 在H列:H2=NORMDIST(A2,50,15, TRUE),μ=50,σ=15,一直拖到H102。 在I列:I2=NORMDIST(A2,70,8, TRUE),μ=70,σ=8,一直拖到I102。 先选取I列,选取I2:I102,作二维面积图,如图1所示: 图1 再选取H列,选取H2:H102,作二维面积图,如图2所示:

导带价带禁带费米能级

导带价带禁带费米能级 The Standardization Office was revised on the afternoon of December 13, 2020

(1)导带conduction band: 导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。 对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 势能动能:导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。 (2)价带与禁带: 价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K 时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。

禁带,英文名为:Forbidden Band 常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。无机半导体的禁带宽度从~,π-π共轭聚合物的能带隙大致在~,绝缘体的禁带宽度大于。 (3)导带与价带的关系: “电子浓度=空穴浓度”,这实际上就是本征半导体的特征,因此可以说,凡是两种载流子浓度相等的半导体,就是本征半导体。 注意:不仅未掺杂的半导体是本征半导体,就是掺杂的半导体,在一定条件下(例如高温下)也可以转变为本征半导体。 空穴,载流子:价带中的许多电子(价电子)并不能导电,而少量的价电子空位——空穴才能导电,故称空穴是载流子。空穴的最低能量——势能,也就是价带顶,通常空穴就处于价带顶附近。 禁带宽度:价带顶与导带底之间的能量差,就是所谓半导体的。这就是产生本征激发所需要的最小平均能量。 施主与受主:对于掺杂半导体,电子和空穴大多数是由杂质来提供的。能够提供电子的杂质称为施主;能够提供空穴的杂质称为受主。施主的能级处在靠近导带底的禁带中;受主的能级处在靠近价带顶的禁带中。实际上未掺杂半导体的费米能级在价带和导带的中央附近。n型半导体的费米能级在导带底附近,而p型在价带顶附近。

相关主题
文本预览
相关文档 最新文档