当前位置:文档之家› 肺动脉压力测定的方法

肺动脉压力测定的方法

肺动脉压力测定的方法
肺动脉压力测定的方法

肺动脉压力测定的方法(原理)

求助肺动脉压力测定的方法(原理),应该是根据三尖瓣反流.具体怎么算呢等待回答,恳请帮助

试试看:测出三尖瓣返流速度的同时,可显示压差,如果右房不大加10mmHg,如果右房大则加15mmHg.说的不一定对,听听大家的.

谢谢,但我需要确切的.因为SCI文章要求写得很详细.没人应答超声版太让人失望了,比我

们心版的热情度差远了

我帮助很多人解答问题,可没想到在这居然这么冷清,版主也有责任

一般是测三尖瓣反流压差,若右房不大,一般加5,右房偏大,加10 ,右房增大,加15,只是我觉得好象超声上在数据上有很多地方不是很统一,不知其他战友怎么算的

fixedsoldier我查了一下资料回答你:根据三尖瓣最大返流速度,计算出右室与右房之间的压力差(△P一4V。),由于右室收缩压(SPvP)=右心房压(RAP)+Ap,其中RAP可根据颈静脉充盈的程度及有无右心衰竭来计算,一般定为常数10mmHg,右房轻度长大为12 mmHg,重度长大为15mmHg。无右室流出道梗阻及肺动脉狭窄时,肺动脉压力几乎等于右心室收缩压。

正常肺动脉压力15—30mmHg,>30mmHg为肺动脉高压。

不知战友所说确切为何。

超声多普勒用简化伯努利方程计算心腔间或心腔与大血管间的压差(PG),△P=4V2,V为血流峰值速度。例如右室收缩压RVSP=△P+RAP,,△P为三尖瓣反流峰值速度用伯努利方程计算的右室与右房压差,RAP为右房压力,一般为10mmHg,要是右房增大或者颈静脉怒涨可加15mmHg。

4V平方不知怎么到就变成4V2了。

SCI文章不会要求具体的测量原理, 没有右室流出道/肺动脉梗阻时, 肺动脉收缩压用三尖

瓣返流压差法测量, 这所有心超工作者都知道,

SPAP=RVSP =返流压差+右房压

关键是右房压力如何估计的. 前面网友说的用右房大小来粗略估计右房压, 这种用法已经

很多年了,大家都觉得不错, 但某些情况下(如房颤时)右房大小并不一定与右房压呈正相关, 所以目前国外更倾向于用下腔静脉随呼吸变化的情况结合下腔静脉或肝静脉频谱来判断的.? 请问fixedsoldier,您的研究是用的什么方法测的呢如果是您的手下在为您实施, 那就问

他们是如何测的啊!

肺动脉压力测定的方法有多种,超声检查测量三尖瓣返流速度,用简化伯努利方程计算很简便,现在彩超都能显示压差,在压差上加10(可根据右房的大小加5-15,各医院掌握也不一样),就是肺动脉收缩压。正常肺动脉收缩压不超过30mmHg,大于30mmHg为肺动脉高压。但是,要注意测量三尖瓣返流速度测定肺动脉压力,必须是没有右室流出道梗阻。

超声多普勒用简化伯努利方程计算心腔间或心腔与大血管间的压差(PG),△P=4V2,V为血流峰值速度。根据三尖瓣最大返流速度,计算出右室与右房之间的压力差,肺动脉收缩压等于三尖瓣返流压差加右房压;若右房不大,一般加5mmHg,右房偏大,加10mmHg ,右房增大,加15mmHg。要注意测量必须是没有右室流出道/肺动脉梗阻。肺动脉平均压等于肺动脉最大反流压差;肺动脉舒张压等于肺动脉最大反流压差加右房压。

肺动脉压的估测(摘抄一部分)

1、根据瓣膜返流或心内分流?

应用频谱多普勒超声技术可准确测得心内分流或瓣膜返流速度,根据简化Bernoulli方程可定量估测心腔间压差或跨瓣压差,从而估测肺动脉压力。

(1)??三尖瓣返流、肺动脉瓣返流?

测得三尖瓣返流最高流速,根据简化Bernoulli方程(△P=4V2,V为最大返流速度)可求得右心室与右心房之间压差。若无右室流出道梗阻,肺动脉收缩压(PASP)与右心室收缩压(RVSP)在肺动脉瓣开放时大致相当,即pASP=RVSP=右房压(PAP)+三尖瓣跨瓣压差(ΔP) 。其中右房压估计:a、肋下切面观正常呼吸状态下下腔静脉距右房开口2cm范围内的内径小于或等于且吸气后减小大于50%,右房压为5mmHg;若减小小于50%,右房压为10mmHg;若下腔静脉内径大于且吸气后减小小于50%,右房压为15mmHg。b、根据右房大小及三尖瓣返流程度估计右房压:右房内径正常,轻度三尖瓣返流,右房压约5mmHg;右房轻度扩大,中度三尖瓣返流,右房压约10mmHg;右房明显扩大,重度三尖瓣返流,右房压约15mmHg。c、根据吸气时下腔静脉塌陷程度估计右房压:完全塌陷右房压为5mmHg;部分塌陷为10mmHg;无塌陷为15mmHg[20]。另有根据颈静脉充盈情况估计右房压:正常充盈时为5mmHg;中度受阻为10mmHg;重度受阻为15mmHg。尚有右房压估计为10mmHg或5mmHg或14mmHg以及Berger等为简化运算,认为可应用PASP=4V2×估算PASP(V为最大返流速度的报道。据有关文献报道,三尖瓣返流估测肺动脉收缩压是超声各种估测法中最精确、最简单的方法。依三尖瓣返流速度估测的肺动脉收缩压与右心导管所测值的相关系数为。Bibiana Stephen等利用已被证实的右室和肺动脉舒张压在肺动脉瓣开放瞬间相等的原理,测量三尖瓣在肺动脉瓣开放瞬间的返流速度,按照简化的Bernolli方程得出跨瓣压差加上右房压便得出肺动脉舒张压并与右心导管检查做了对比,相关系数r=,从而为无创评价肺动脉舒张压提供了一种新方法。根据肺动脉瓣返流速度可算出肺动脉瓣跨瓣压差,从而可估测肺动脉舒张压(PADP),即PADP=肺动脉跨瓣压差(ΔP)+右室舒张早期压(RVDP)。无右心衰竭时右室舒张早期压为零,则PADP=肺动脉瓣跨瓣压差(ΔP)。ZGe,YZhang等研究51例患者结果显示依肺动脉瓣返流法及右心导管法所测的PADP值相关性r=,而两者所测量的肺动脉平均压相关性r=。

MPAP=80-AT/2

MPAP为主肺动脉压,80为常数,AT为加速时间

AT正常值为±,正常肺动脉压为18-30mmHg。

当AT<100ms时,(80-AT/2)>80-100/2=30则有肺动脉高压存在。

肺动脉瓣口处血流频谱,正常肺动脉频谱形态类似抛物线形状,上升支与下降支基本对称,轻度肺动脉高压时频谱形态可无明显改变,中、重度时肺动脉频谱可出现射血前期延长,加速时间及射血时间缩短,峰值前移,下降支顿挫,频谱形态类似三角形。

根据加速时间的变化可判断肺动脉高压的程度。正常成人肺动脉血流的加速时间为±;肺动脉高压时,加速时间缩短,小于100ms时说明有肺动脉高压存在,小于80ms认为有重度肺动脉高压。也可以通过计算加速时间与射血时间比值、右室射血前期时间与加速时间(PEP/AT)比值来估计肺动脉高压程度。正常成人PEP/AT<,若>即认为有肺动脉高压。

大多数肺动脉高压患者伴有三尖瓣返流,通过测定三尖瓣返流速度,经简化柏努利方程计算出三尖瓣跨瓣压差,加上右房压10mmHg,得到右室收缩压,在无右室流出道狭窄的情况下,可近似等于肺动脉收缩压,右房严重扩大或右心衰时右房压应为15mmHg。?

其他-肺动脉压的测量方法:

在无右室流出道梗阻及肺动脉狭窄的情况下,肺动脉压=右室收缩压。

1. 用三尖瓣返流法估测肺动脉收缩压(PASP):此法是超声界公认的较敏感和准确的方法。公式:RVSP=△P+SRAP

RVSP=右室收缩压; SRAP=收缩期右房压;△P=三尖瓣返流的最大压差

正常人右房压为5-7mmHg;右房中度增大者为10 mmHg;右房重度增大者为15 mmHg。肺动脉收缩压正常值15-30 mmHg。

2. 存在室水平分流如室间隔缺损时,左右心室的压力阶差△P= LVSP-RVSP(LVSP:左室收缩压;RVSP:右室收缩压),在左室流出道正常时,左室收缩压可用肱动脉收缩压(BASP)代替,这样RVSP=BASP-△P。应用简化的伯努力方程计算最大压力阶差,即左右室之间的压力阶差△P=4V2,V为连续多普勒测得的收缩期室水平左向右最大分流速度。

例如:测得的室水平左向右分流的最大峰速为5m/s,肱动脉收缩压为120mmHg,则RVSP=120-4×52=20 mmHg,即肺动脉收缩压为20 mmHg。应当注意的是室间隔缺损合并重度肺动脉高压出现双向分流,以右向左分流为主或右向左分流时,右室收缩压与左室收缩压几乎相等,甚至高于左室收缩压,应用分流速度间接估计肺动脉收缩压已无意义。

3. 存在大动脉水平分流如动脉导管未闭,动脉导管两端的收缩压差△Ps=AOSP-PASP(AOSP:主动脉收缩压;PASP:肺动脉收缩压)。在无左室流出道狭窄时,AOSP与肱动脉收缩压(BASP)相近,可替代主动压力,这样肺动脉收缩压PASP=BASP-△Ps。应用简化的伯努力方程△

Ps=4V2,即收缩期左向右最大分流速度计算动脉导管两端的收缩期压差。

例如:测得导管血流收缩期峰速为5m/s,肱动脉收缩压为120mmHg,则PASP=120-4×52=20 mmHg,即肺动脉收缩压为20 mmHg。

无论是利用室水平分流还是大动脉水平分流计算肺动脉收缩压,当肺动脉收缩压显着升高使左向右分流速度明显减低

Doppler法估测肺动脉压有四种方法:

1.有三尖瓣反流时可以用三尖瓣反流压差估测肺动脉收缩压(或平均压),

2.有肺动脉瓣反流时可以根据肺动脉瓣反流压差估测肺动脉舒张压(或平均压)。

3.根据肺动脉的脉冲多谱勒频谱经验公式估测肺动脉收缩压(无明显三尖瓣及肺动脉瓣反流时)。

、PDA时直接测量左向右最大分流压差△P,然后用血压减△P估测肺动脉压,无论哪种方法均有一个前提条件即右房、右室及肺动脉这个循环过程中不能有梗阻的情况,同时一定要结合二维超声心动图及M型超声心动图改变,比如右心增大或比例(形态)失调、右室壁肥厚、肺动脉增宽、M型肺动脉瓣活动曲线呈W或V型(a凹低平或消失)或有明显扑动、室间隔的异常运动等等。

肺动脉高压的超声诊断定性以二维及M型的表现为主,量化则靠Doppler法,两者结合诊断肺动脉高压在临床上是可靠、准确的,重复性也较好。二维及M型的表现定性诊断肺动脉高压比Doppler法测得的肺动脉压要更具有特异性,与有创的心导管测压符合率极高,但无法量化,而Doppler反流法估测肺动脉平均压比测最大压具有更好的临床应用价值,肺动脉瓣反流估测肺动脉压比三尖瓣反流估测肺动脉压对于诊断肺动脉高压更具有特异性,在有先天性心脏病的情况下如ASD、VSD、PDA等用三尖瓣或肺动脉瓣反流法估测肺动脉压均与有创导管测压有出入。

各位老大,如果同时伴有肺动脉反流如:s,三尖瓣也有反流如:3m/s。那么肺动脉压是不是4x9+10=46mmHg呢

没人帮我啊失望!

楼上的战友:三尖瓣反流法测的是肺动脉的收缩压,肺动脉反流法测定的是肺动脉的舒张压,分属于不同的时相,你上述的计算方法是错误的!

谢谢jinlaoguai !

那么象我说的那种情况又怎么测呢(相当幼稚的问题吧)没办法啊!我这里没人教哦。对心超实在有点胆缩!

在没有右室流出道梗阻情况下肺动脉压估测:右室不大时三尖瓣反流压差加5,右室增大加10,如果有颈静脉怒张加15。不知道是否准确望指正!!!

在没有右室流出道梗阻情况下肺动脉压估测:右室不大时三尖瓣反流压差加5,右室增大加10,如果有颈静脉怒张加15。不知道是否准确望指正!!!

水硬度及测定方法

水硬度及测定 水中有些金属阳离子,同一些阴离子结合在一起,在水被加热的过程中,由于蒸发浓缩,容易形成水垢,随着在受热面上而影响热传导,我们把水中这些金属离子的总浓度称为水的硬度。如在天然水中最常见的金属离子是钙离子(Ca2+)和镁离子(Mg2+),它与水中的阴离子如碳酸根离子(Co32-)、碳酸氢根离子(HCO3-)、硫酸根离子(SO42-)、氯离子(Cl-)、以及硝酸根离子(NO3-)等结合在一起,形成钙镁的碳酸盐、碳酸氢盐、硫酸盐、氯化物、以及硝酸盐等硬度,水中的铁、锰、锌等金属离子也会形成硬度,但由于它们在天然水中的含量很少,可以略去不计。因此,通常就把Ca2+、Mg2+的总浓度看作水的硬度。 一.锅炉水垢类别: 锅炉的给水和锅水的组成、性质以及生成水垢的具体条件不同,使水垢在成分上有很大的差别。如按其化学组成,水垢可以分为下列几种,其特性和结垢的部位简述如下: 1、碳酸盐水垢碳酸盐水垢的成分以碳酸钙为主,也有少量的碳酸镁。 其特性按其生成条件不同。有坚硬性的硬垢;也有疏松海绵状的软垢。此类水垢具有多孔性。比较容易清除: 它常在锅炉水循环较嘎的部位和给水的进口处结生。 2、硫酸盐水垢硫酸盐水垢的主要成分是硫酸钙。它的特性是特别坚硬和致密。它常沉积在锅炉内温度最高。蒸发率最大的蒸发面上。 3、硅酸盐水垢硅酸盐水垢的主要成分是硬硅钙石(5CaO·5Si0 2·H 2 O)或镁 橄榄石(MgO.SiO 2 》:另一种是软质的硅酸镁。主要成分是蛇纹石 (3MgO·2SiO 2·2H 2 O):一般二氧化硅的含量都在20%以上。 它的特性是非常坚硬,导热性非常小,它常常容易在锅炉温度高的蒸发面上沉积。 4、混合水垢混合水垢是由钙、镁的碳酸盐、硫酸盐、硅酸盐以及铁铝氧化物等组成,很难指出其中哪一种是最主要的成分。主要是由于使用不同成分的水质生成的。

动态压力测量方法

动态压力风洞实验数据处理软件 使用手册

目录 第一章绪论 (1) 1.1风洞数据采集系统特点 (1) 1.2风洞数据采集系统现状与发展 (2) 1.3本软件主要功能特点 (3) 第二章动态压力测量方法 (5) 2.1 测压导管的传递函数 (5) 2.2 两通道的传递函数 (6) 2.3 不同外径导管传递函数的模值比和相位差 (7) 2.4 动态数据处理技术 (11) 2.5 结论 (12) 第三章动态压力风洞实验数据处理软件的设计与实现 (13) 3.1 软件需求分析 (13) 3.2 软件功能设计 (14) 3.3软件流程设计 (15) 3.4 软件界面设计 (17) 第四章动态压力数据处理系统调试 (24) 4.1 动态线性度检定 (24) 4.2 动态误差限检定 (24)

第一章绪论 1.1风洞数据采集系统特点 风洞是进行空气动力学研究的重要试验装置。风洞试验装置包括测量系统、数据采集系统、模型姿态及控制系统、风速控制系统等。风洞试验中要采集大量的数据,主要有试验模型的升力、阻力、力矩、模型表面压、温度、洞体压力、模型角度等,这些数据依靠热线风速仪、压力扫描阀、应变天平、激光位移计、加速度传感器等进行量测。早期,风洞试验为人工读数和手动方式,试验周期长,数据量大,试验精度低,处理周期长。为了提高风洞试验效率、试验精度及试验水平,从20世纪70年代开始,各风洞逐步引入了数据采集系统。由数据采集系统负责将来自天平或压力传感器等测量系统的电信号转化成数据,通过多通道数据采集板,把传感器送出的模拟信号转化成数字信号送计算机存储。 风洞数据采集系统具有如下特点: (1)高速、高精度、具有强的抗干扰能力 风洞试验数据的精度直接影响到试验对象的空气动力学设计的正确性。风洞数据采集系统应具有高速、高精度、具有强的抗干扰能力。气动力系数中模型的阻尼系数△CX的试验精度要达到0.0001,风洞各参数测量精度要求为总压精度0.07%,静压精度0.07%,总温精度1%,法向力精度0.08%,轴向力精度0.08%,迎角精度0.01%。 目前计算机技术在速度和内存量等方面不断提高,为高速、高精度、多路并行采集以及实时数据传输等创造了必要的条件。单路A/D数据采集系统来分时采集的多路数据采集系统在风洞试验中己成为基本配置,但其不能满足真正的实时、同步采集的要求。并行动态数据采集系统已成为一个基本的发展趋势。它将多路A/D采集电路并行处置,用同一个触发信号同时启动各路A/D进行编码,保证了各路信号采集的严格同步性,对某瞬态时刻各路信号的分析具有十分重要的意义。同时由于不再使用模拟开关,使各路信号间的串模干扰减到了最小,系统精度可获得进一步提高。 (2)采集参数多,点数多

各种硬度测试方法

二 硬 度 1、硬度试验 1.1硬度(hardness ) 材料抵抗弹性变形、塑性变形、划痕或破裂等一种或多种作用同时发生的能力。 最常用的有:布氏硬度、洛氏硬度、维氏硬度、努氏硬度、 肖氏硬度等。 1.2布氏硬度试验(Brinell hardness test ) 对一定直径的硬质合金球加规定的试验力压入试样表面,经规定的保持时间后,卸除试验力,测量试样表面的压痕直径。布氏硬度与试验力除的压痕表面积的商成正比。 HBW=K · ) (22 2 d D D D F ??π 式中:HBW ——布氏硬度; K ——单位系数 K=0.102; D ——压头直径mm ; F ——试验力N ; D ——压痕直径mm 。 标准块硬度值的表示方法,符号HBW 前为硬度值,符号后按顺序用数字表示球压头直径(mm ),试验力和试验力保持时间(10~15S 可不标注)。如350HBW5/750。表示用直径5mm 的硬质合金球在7.355KN 试验力下保持10~15S 测定的布氏硬度值为350,600HBW1/30/20表示用直径1mm 的硬质合金球在294.2N 试验力下保持20S 测定的布氏硬度值为600。 1.3洛氏硬度试验(Rockwell hardness test ) 在初试验力F 。及总试验力F 先后作用下,将压头(金刚石圆锥、钢球或硬质合金球)压入试样表面,经规定保持时间后,卸除主试验力F 1,测量在初试验力下的残余压痕深度h 。 HR=N- s h 式中:HR ——洛氏硬度; N ——给定标尺的硬度常数; H ——卸除主试验力后,在初试验力下压痕残留的深度(残余压痕深度);mm ; S ——给定标尺的单位;mm 。 A 、C 、D 、N 、T 标尺N=100, B 、E 、F 、G 、H 、K 标尺N=130;A 、B 、 C 、 D 、 E 、

GPS动态测量方法

一、 RTK的作业过程 1.启动基准站 将基准站架设在空旷的控制点上,正确连接各仪器电缆,打开仪器,把基准站设置为动态测量模式。 2、建立新工程,定义坐标系统 新建一个文件夹,设置好测量参数,如椭球参数、投影参数等。这个文件夹中包括许多小文件,它们分别就是测量的成果文件与各种参数设置文件,如*、dat、*、cot、*、rtk、*、ini 等 打开手簿到主页面,点击设置—单位设置 第一项,设置坐标显示格式设置,即中央经线设置 1)在“中央经线”项里输入您当地的中央子午线经度,在“尺度比 (Scale)”里输入1、0000000 2)在“横坐标平移量(False Easting)”里输入+500000,在“纵坐标平 移量(False Northing)”输入0、0。 这几个参数输入后把光标移到下面的Save(保存),这时,位置显示格式设置好了,即以投影坐标形式显示,单位就是“米”,选这种格式显示的好处就就是:显示的结果与地形图上的坐标一致,在实际工作中便于定位。 第二项,“坐标系统(Map Datum)”, 点击它,在出现的列表项里选择“用户(User)”,点击后出现“用户参数(User Datum)” 参数项包括:DX,DY,DZ,DA,DF,这组参数各地的值都不一样, 要到当地测绘部门获取,设置好参数后,同样点击“保存”。 第三项,“距离与速度”单位,我们选择“米制(Metric)

第四项,高度单位选择“米(Meters)”; 第五项,“压力单位”,选择“毫巴(Millibars)”,至此,您的手持GPS 机已经根据您的需要设置好了,点击页面切换键返回到主菜单3、坐标转换即点校正 GPS测量的为WGS-84系坐标,而我们通常需要的就是在流动站上实时显示国家坐标系或当地独立坐标系下的坐标,因此要进行转换。点校正可以通过两种方式进行。 (1)在已知转换参数的情况下。如果有当地坐标系统与W CS84坐标系统的转换七参数,则可以在测量控制器中直接输入,建立坐标转换关系。如果上作就是在国家大地坐标系统下进行,而且知道椭球参数与投影方式以及基准点坐标,则可以直接定义坐标系统,建议在RTK测量中最好加入1-2个点校正,避免投影变形过大,提高数据可靠性。 (2)在不知道转换参数的情况下。如果在局域坐标系统中工作或任何坐标系统进行测量与放样工作,可以直接采用点校正方式建立坐标转换方式,平面至少3个点,如果进行高程拟合则至少要有4个水准点参与点校正。 4、流动站开始测量 (1)单点测量:在主菜单上选择“测量”图标打开,测量方式选择“RTK”,再选择“测量点”选项,即可进行单点测量。注意要在“固定解”状态下,才开始测量。 (2)放样测量:在进行放样之前,根据需要“键入”放样的点。当初始化完成后,在主菜单上选择“测量”图标打开,测量方式选择“RTK”,再选择“放样”选项,即可进行放样测量作业。在作业时,在手薄控制器上显示箭头及目前位置到放样点的方位与水平距离,观测值只需根据箭头的指示放

肺动脉压力测定的方法

肺动脉压力测定的方法(原理) 求助肺动脉压力测定的方法(原理),应该是根据三尖瓣反流.具体怎么算呢?等待回答,恳请 帮助 试试看:测出三尖瓣返流速度的同时,可显示压差,如果右房不大加10mmHg,如果右房大则加15mmHg.说的不一定对,听听大家的. 谢谢,但我需要确切的.因为SCI文章要求写得很详细.没人应答?超声版太让人失望了,比我们心版的热情度差远了 我帮助很多人解答问题,可没想到在这居然这么冷清,版主也有责任 一般是测三尖瓣反流压差,若右房不大,一般加5,右房偏大,加10 ,右房增大,加15,只是我觉得好象超声上在数据上有很多地方不是很统一,不知其他战友怎么算的 fixedsoldier我查了一下资料回答你:根据三尖瓣最大返流速度,计算出右室与右房之间的压力差(△P一4V。),由于右室收缩压(SPvP)=右心房压(RAP)+Ap,其中RAP可根据颈静脉充盈的程度及有无右心衰竭来计算,一般定为常数10mmHg,右房轻度长大为12 mmHg,重度长大为15mmHg。无右室流出道梗阻及肺动脉狭窄时,肺动脉压力几乎等于右心室收缩压。 正常肺动脉压力15—30mmHg,>30mmHg为肺动脉高压。 不知战友所说确切为何。 超声多普勒用简化伯努利方程计算心腔间或心腔与大血管间的压差(PG),△P=4V2,V为血流峰值速度。例如右室收缩压RVSP=△P+RAP,,△P为三尖瓣反流峰值速度用伯努利方程计算的右室与右房压差,RAP为右房压力,一般为10mmHg,要是右房增大或者颈静脉怒涨可加15mmHg。 4V平方不知怎么到就变成4V2了。 SCI文章不会要求具体的测量原理, 没有右室流出道/肺动脉梗阻时, 肺动脉收缩压用三尖 瓣返流压差法测量, 这所有心超工作者都知道, SPAP=RVSP =返流压差+右房压 关键是右房压力如何估计的. 前面网友说的用右房大小来粗略估计右房压, 这种用法已经 很多年了,大家都觉得不错, 但某些情况下(如房颤时)右房大小并不一定与右房压呈正相关, 所以目前国外更倾向于用下腔静脉随呼吸变化的情况结合下腔静脉或肝静脉频谱来判断 的. 请问fixedsoldier,您的研究是用的什么方法测的呢? 如果是您的手下在为您实施, 那就 问他们是如何测的啊!

水中总硬度的测定方法

水中总硬度的测定方法 1、范围适用于水中总硬度的测定 2、引用标准GB/T 8538—95 3、试剂 3.1 缓冲溶液(pH=10):将67.5g氯化铵溶解于300ml蒸馏水中,加氢氧化铵(ρ20=0.90g/ml)570ml,用纯水稀释至1000ml。 3.2 铬黑T指示剂(0.5%):称取0.5g铬黑T(C20H12N3NaO7S),溶于100ml三乙醇胺中。 3.3 c(EDTA)=0.002mol/l 4、分析步骤 吸取50ml水样(若硬度过大可少取水样,用纯水稀释至50ml,若水样硬度过低改用100ml),置于250ml锥形瓶中加入5ml缓冲溶液,5滴铬黑T指示剂,立即用c(EDTA)=0.002mol/l 滴定至溶液呈纯蓝色为终点。记录消耗量,同时做空白。 5、计算 5.1 锅炉水和自来水(以CaO计) ρ(CaO)= (V1-V0)×c×56×1000 V 5.2 矿泉水(以CaCO3计) ρ(CaCO)= (V1-V0)×c×100.09×1000 V 式中:ρ(CaCO)、ρ(CaO)――水样的硬度,mg/l; V1――滴定中消耗EDTA溶液体积,ml:V0――空白消耗EDTA溶液体积,ml: c ――EDTA标准溶液的浓度,mol/l:V ――所取水样体积,ml。 水中氯化物的测定方法 1. 适用范围适用于矿泉水、纯净水、自来水及炉水的测定。 2. 试剂 2.1 铬酸钾溶液(5%):称取5克铬酸钾溶于100ml纯水中。 2.2 酚酞指示剂(1%):称取1克酚酞溶于100ml 95%乙醇中。 2.3 硫酸溶液(0.1mol/L):吸取6ml浓硫酸加入1000ml纯水中摇匀。

硬度测试方法

1 引言 涂膜硬度是涂膜抵抗诸如碰撞、压陷、擦划等机械力作用的能力;是表示涂膜机械强度的重要性能之一;也是表示涂膜性能优劣的重要指标之一。涂膜硬度与涂料品种及涂膜的固化程度有关。油性漆及醇酸树脂漆的涂膜硬度较低,其它合成树脂漆的硬度较高。涂膜的固化程度直接影响涂膜的硬度,只有完全固化的涂膜,才具有其特定的最高硬度,在涂膜干燥过程中,涂膜硬度是干燥时间的函数,随着时间的延长,硬度由小到大,直至达到最高值。在采用固化剂固化的涂料中,固化剂的用量影响涂膜硬度,一般情况下提高固化剂的配比,使涂膜硬度增加,但固化剂过量则使涂膜柔韧性、耐冲击性等性能下降。一些自干型涂料,以适当的温度烘干,在一定程度上能提高涂膜硬度。涂膜硬度是涂料、涂装的重要指标,大多数情况下属于必须检测的项目。 2 铅笔硬度测定法 铅笔硬度法是采用已知硬度标号的铅笔刮划涂膜,以能够穿透涂膜到达底材的铅笔硬度来表示涂膜硬度的测定方法。国家标准GB/T 6739—1996《涂膜硬度铅笔测定法》规定了手动法和试验机法2 种方法,该标准等效采用日本工业标准JIS K5400-90-8.4《涂料一般试验方法———铅笔刮划值》。标准规定采用中华牌高级绘图铅笔,其硬度为9H、8H、7H、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6B 共16 个等级,9H 最硬,6B 最软。测试用铅笔用削笔刀削去木质部分至露出笔芯约3 mm,不能削伤笔芯,然后将铅笔芯垂直于400# 水砂纸上画圆圈,将铅笔芯磨成平面、边缘锐利为止。试板为马口铁板或薄钢板,尺寸为50 mm×120mm×(0.2 ~0.3)mm 或70 mm×150 mm×(0.45 ~0.80)mm,按规定方法制备涂膜。

简述系统动态特性及其测定方法

简述系统动态特性及其测定方法 系统的特性可分为静态特性和动态特性。其中动态特性是指检测系统在被测量随时间变化的条件下输入输出关系。一般地,在所考虑的测量范围内,测试系统都可以认为是线性系统,因此就可以用一定常线性系统微分方程来描述测试系统以及和输入x (t)、输出y (t)之间的关系。 1) 微分方程:根据相应的物理定律(如牛顿定律、能量守恒定律、基尔霍夫电 路定律等),用线性常系数微分方程表示系统的输入x 与输出y 关系的数字方程式。 a i 、 b i (i=0,1,…):系统结构特性参数,常数,系统的阶次由输出量最高微分阶次决定。 2) 通过拉普拉斯变换建立其相应的“传递函数”,该传递函数就能描述测试装 置的固有动态特性,通过傅里叶变换建立其相应的“频率响应函数”,以此来描述测试系统的特性。 定义系统传递函数H(S)为输出量与输入量的拉普拉斯变换之比,即 式中S 为复变量,即ωαj s += 传递函数是一种对系统特性的解析描述。它包含了瞬态、稳态时间响应和频率响应的全部信息。传递函数有一下几个特点: (1)H(s)描述系统本身的动态特性,而与输入量x (t)及系统的初始状态无关。 (2)H(S)是对物理系统特性的一种数学描述,而与系统的具体物理结构无关。H(S)是通过对实际的物理系统抽象成数学模型后,经过拉普拉斯变换后所得出的,所以同一传递函数可以表征具有相同传输特性的不同物理系统。 (3)H(S)中的分母取决于系统的结构,而分子则表示系统同外界之间的联系,如输入点的位置、输入方式、被测量以及测点布置情况等。分母中s 的幂次n 代表系统微分方程的阶数,如当n =1或n =2 时,分别称为一阶系统或二阶系统。 一般测试系统都是稳定系统,其分母中s 的幂次总是高于分子中s 的幂次(n>m)。

肺动脉高压

肺动脉高压

病历摘要患者,女性,54岁。因“乏力、胸闷、气短1年半,双下肢水肿半年”于2004年5月入院。患者自2002年8月无诱因感乏力,并出现活动后胸闷、气短。予扩冠治疗,效果不佳;2002年12月出现胸闷气短加重,晕厥3次,伴呕吐;无肢体抽搐及大小便失禁,约3~5分钟后苏醒,自觉与体位变化及用力有关。最后一次晕厥时咳粉红色泡沫痰,当地医院超声心动图提示:三尖瓣关闭不全(中度),肺动脉高压(重度),肺动脉收缩压95mmHg。诊为原发性肺动脉高压,肺源性心脏病。经强心、利尿等对症治疗,症状有所改善。进一步检查,胸部MRI发现右上纵隔囊性病变、肺动脉增宽、右房右室增大、二尖瓣关闭不全、双侧胸腔少量积液。心导管检查“符合原发性肺动脉高压,肺动脉主干压约122/50mmHg”。血气分析:PaO269.60mmHg,PaCO226.8mmHg。经卡托普利、硝普钠、硝苯地平、氯沙坦等治疗,效果均不佳。患者活动耐量逐步下降,稍微活动则胸闷气短。2003年11月出现双下肢凹陷性水肿,并逐渐加重,同时出现夜间阵发性呼吸困难,利尿治疗可缓解。2004年2月在当地医院腹部B超发现腹水,经利尿治疗后好转。为进一步诊治收入我院。患者1年前出现尿量减少,近期体重增加明显(5kg),平素长期服用利尿药。既往无冠心病、高血压、糖尿病、高脂血症、慢性肺部疾病史,无慢性咳嗽、咳痰史,无吸烟史。从事化工分析工作,有毒气(主要为氨气)接触史20余年,粉尘接触史1年。入院查体慢性病面容,口唇紫绀明显。颈静脉充盈,肝颈静脉回流征(-)。双肺呼吸音清,心相对

浊音界向左稍扩大,心率82次/分,律齐,三尖瓣听诊区可闻及3/6收缩期杂音,P2>A2,未闻及心包摩擦音。右下肺、左中肺肩甲部可闻及吹风样杂音。腹稍膨隆,肝肋下1.5cm,余(-),双下肢凹陷性水肿。实验室检查血常规正常,肝肾功能:谷丙转氨酶(ALT)正常,白蛋白(ALB)3.7~4.0g/dl,总胆红素(Tbil)2.47~3.55mg/dl,直接胆红素(Dbil)1.17~1.72mg/dl,血肌酐(SCr)0.8~1.25mg/dl,尿素氮(BUN)14.9~28mg/dl,血糖74~108mg/dl。尿常规、便常规及OB(-)。24h尿量:800ml。24h尿蛋白排泄量:0.310g。免疫指标:抗核抗体(ANA)+dSDNA、抗Jo-1抗体、自身抗体、补体、免疫球蛋白、类风湿因子、抗中性粒细胞胞质抗体(ANCA)、血沉、C反应蛋白、D-二聚体、抗心磷质抗体(ACL)、可提取核抗原(ENA)均阴性。血气分析PO266.6mmHg,PCO231.0mmHgoX线胸片:肺门影重,纵隔增宽,心影大,肺动脉段突出。高分辨CT:肺动脉高压,右心房及右心室明显增大;心包少量积液,前纵隔及中上纵隔有液体密度影,考虑为心包积液向上的延伸。CT肺动脉及静脉造影(CTPA,CTV):肺动脉高压,右心房及右心室明显增大;心包积液,少量腹水;肝淤血;胆囊结石。未见明显血栓征象。肺灌注通气显像:血流期肺动脉区异常,符合肺动脉高压表现;双肺多节段血流灌注减低,通气受损,通气-灌注基本匹配。肺功能:1秒钟用力呼气量(FEV1)、最大肺活量

压力检测仪表与变送器

第一节压力检测仪表及变送器 一、概述 在化工、炼油等生产过程中,经常需要对压力和真空度进行检测和控制。根据生产过程的不同要求有的需要检测比大气压力高很多的高压,例如高压聚乙烯要在150Mpa的压力下进行反应。而有的生产过程却需要检测比大气压力低的真空度,例如炼油厂的减压蒸馏则需要在一定的负压下才能进行正常操作。此外,通过检测压力还可以间接测量液位的高低、流量的大小等,也可以判断设备的工作善。因此,为了保证产品质量、提高生产效率、确保生产安全顺利地进行,必须对压力进行检测或按一定的要求对压力进行控制。 所谓压力p是指垂直而均匀地作用于单位面积上的力。其数学表达式为 p=(3-15) 式中p为压力,F为垂直作用力,S为受力面积。 在国际单位制(代号SI)和我国法定计量单位中规定,压力的单位是帕斯卡,简称帕,符号Pa,它表示每平方米的表面上垂直作用1牛顿的力,即1Pa =1N/m2。由于帕的单位太小,因此,工程上还常用千帕(kPa)和兆帕(MPa)压力单位,它们之间的关系为: 1Mpa=1×103kPa=1×106Pa 工程上习惯用的压力单位还有工程大气压(kgf/cm2)、标准大气压(atm)、毫米水柱(mmH2O)、毫米汞柱(mmHg)等,按照有关规定,这些单位已不再使用,但为了解这些单位与国际单位制中压力单位的关系,列出表3-5供参考。 单位名称帕(斯 卡) PPa 千克力每平方厘米 (工程大气压) kgf/cm2 毫米汞柱 mmHg 毫米水柱 mmH2O 标准大气压 atm 巴 bar 1Pa(帕) 1 0.0197×10-50.75×10-2 1.0197×10-10.987×10-51×10-5 1kgf/cm2(1千克 力每平方厘米) 0.9807×106 1 0.73556×1031040.9678 0.9807 1mmHg (1毫米汞柱) 1.332×102 1.3595×10-3 1 1.3595×10 1.316×10-3 1.332×10-3 1mmH2O (1毫米水柱) 0.9807×10 10-40.731556×10-1 1 0.9678×10-40.9807×10-4 1atm (1标准大气 压)1.01325× 105 1.0332 760 1.0332×104 1 1.01325 1bar(1巴)1×105 1.0197 0.75×103 1.0197×1040.9869 1 压力检测中,常用绝对压力、大气压力、表压(力)、负压(力)或真空

总硬度的测定-EDTA法

一、总硬度的测定——EDTA法 本方法适用于循环冷却水和天然水中总硬度的测定。 1.0 原理 在PH=10时,乙二胺四乙酸二钠(简称EDTA)和水中的钙镁离子生成稳定络合物,指示剂铬黑T也能与钙镁离子生成葡萄酒红色络合物,其稳定性不如EDTA与钙镁离子所生成的红色铬合物,当用EDTA滴定接近终点时,EDTA自铬黑T的葡萄酒红色络合物夺取钙镁离子而使铬黑T指示剂游离,溶液由酒红色变为兰色,即为终点。其反应如下:Mg2++Hlnd2-→Mglnd-+H+ Mglnd-+H2Y2→MgY2+ H++ Hlnd2- Ca2++ Hlnd2-→Calnd-+H+ Calnd-+ H2Y2→CaY2+ H++ Hlnd2- 式中:Hlnd2-—铬黑T指示剂(蓝色); Mglnd-—镁与铬黑T的络合物(酒红色); H2Y2—乙二胺四乙酸离子(无色)。 2.0 试剂 2.1 6mol/L盐酸溶液。 2.2 10%氨水:量取440mL氯水,稀释至1000mL。 2.3 1+1三乙醇胺溶液 2.4 铬黑T指示剂 称取0.5g铬黑T和4.5g盐酸羟胺,溶于100mL95%乙醇中,储于棕色瓶中。 2.5 PH=10氨—氯化铵缓冲溶液。 称取54g氯化铵,溶于200mL水中,加350mL氯水,用水稀释1000mL。 2.6 0.01mol/L EDTA标准溶液. 3.0 仪器 3.1 滴定管:25mL酸式。 4.0 分析步骤 4.1 吸取水样50mL,移入250mL锥形瓶中,加入5mL氨—氯化铵缓冲溶液,2—4滴铬黑T指示剂,用0.01mol/L EDTA标准溶液滴定至溶液由酒红色变为纯蓝色即为终点。 5.0分析结果的计算 水样中总硬度含量X(毫克/升,以CaCO3计),按下式计算: X=V×M×100.08 ×1000 V w 式中:V—滴定时EDTA标准溶液消耗体积,毫升; M—EDTA标准溶液浓度,摩尔/升; V w—水样体积,毫升; 100.08—碳酸钙摩尔质量,克/摩尔。 6.0 注释 6.1 若水样中有铁、铝干扰测定时,加1+1三乙醇胺1~3mL加以掩蔽。 6.2 若水样中有少量的锌离子时,取样后可加β—氨基乙硫醇0.5mL加以掩蔽,若锌含量高,可另测锌含量,而后从总硬度中减去。 6.3 若测定中有返色现象,可将水样经中速滤纸干过滤,除去悬浮的碳酸钙。 7.0 允许差 水中总硬度在300mg/L(以CaCO3计)时,平行测定两结果差不大于3.5mg/L。 8.0 结果表示

水的总硬度测定

水的总硬度测定 摘要:水的硬度,是指沉淀肥皂的程度,主要指水中含有可溶性钙盐和镁盐的多少。目前测定水质中的总硬度的最好方法,就是用配位滴定分析法(EDTA 一2Na)滴定,标准规定硬度不超过450mg/1(以CaCO,)。水的硬度的测定,是水的质量控制的重要指标之一。 一、实验目的 1、掌握EDTA标准溶液的配制和标定方法。 2、学会判断配位滴定的终点。 3、了解缓冲溶液的应用。 4、掌握配位滴定的基本原理、方法和计算。 5、掌握铬黑体T、钙指示剂的使用条件和终点变化。 6、进一步掌握前面学过的仪器。 二、基本原理 水的硬度的测定可分为水的总硬度的测定和钙镁硬度的测定两种.总硬度的测定是滴定Ca2+,Mg2+离子的总含量,并以Ca2+进行计算.通常以每升水中所含Ca2+离子的毫摩尔数表示,规定1升水中含1mmol Ca2+为1度.后一种是分别测定Ca2+和Mg2+的含量.测定水的总硬度,一般采用配位滴定法.最常用的配位剂是乙二胺四乙酸二钠盐,用Na2H2Y2H2O表示,习惯上称为EDTA,它在溶液中以Y4-的形式与Ca2+,Ma2+离子配位,形成1:1的无色配合物.即: Ca2+ +Y4 -CaY2- Mg2++Y4-MgY2- 用EDTA滴定时,必须借助于金属指示剂确定滴定终点.常用的指示剂为铬黑T,它在pH=10的缓冲液中,以纯蓝色游离的HIn2-形式存在,与Ca2+,Mg2+离子形成酒红色的配合物,通式为: M2+ + HIn2-MIn-+ H+ (蓝色) (酒红色) Ca2+,Mg2+离子与EDTA及铬黑T形成配合物的稳定性不同,其稳定性大小的顺序为: CaY2- >MgY2- >MgIn- >CaIn-

18-某旋翼翼型动态压力测量Φ3.2米风洞试验(兰波)(4)

163 第二十六届(2010)年全国直升机年论文 某旋翼翼型动态压力测量Φ3.2米风洞试验 兰波 彭先敏 章贵川 (中国空气动力研究与发展中心低速所) 摘 要:在Φ3.2米风洞使用旋翼翼型动态测压试验装置和动态压力传感器测量动态压力,完成了某旋翼翼型动态测压试验,建立并验证了翼型模型动态俯仰振动的测压方案、数据采集、数据处理方法,具备了在Φ3.2米风洞完成翼型模型动态俯仰的测压试验能力。 1 试验目的 a .研究旋翼翼型表面压力分布测量试验技术,形成翼型动态压力测量试验能力; b .获得该翼型动态压力分布特性; c .获得该翼型动态失速的升力、俯仰力矩特性,研究折算频率、迎角正弦振动范围等因素对其影响。 2 试验设备与模型 2.1 Φ3.2米风洞 Φ3.2米风洞是一座开、闭两用的回流式风洞,该风洞开口试验段长5m ,横截面为圆形,直径为3.2m ,开口试验段的最高风速可达115m/s 。本试验在开口试验段进行。 2.2 翼型变迎角试验装置 翼型变迎角试验装置见图1。翼型变迎角试验装置不随模型运动,由试验装置两侧立柱上的轴承支撑模型绕转轴运动。 采用低转速、大扭矩的力矩电机配合专用变频器和控制器驱动模型,通过平行四边形机构带动模型以翼型1/4弦线为转轴正弦运动。 2.3 翼型试验模型 翼型模型水平布置在风洞中央,采用相对厚度为9%的某旋翼翼型,弦长500mm ,展长1500mm ,下表面开盖板,内部布置差压式动态压力传感器。为保证翼型模型风洞试验的流动二元性,在模型左右端分别连接端板,两块端板跟随翼型一起运动。模型采用碳纤维结构,表面测压点处预埋铜管。测压剖面位于模型展长中央位置,该剖面布置28个测压点。测压点预埋铜管通过软管把压力传输到压力传感器的测量端。压力传感器参考压由共用的参考压软管通过多通接头输入。 2.4 动态压力传感器 测压元件采用ENDVECO 公司的8510B 差压式动态压力传感器。除上表面前缘20%之前的测压孔采用量程5PSI 的动态压力传感器,其余传感器量程均为2PSI 。 2.5 迎角传感器 迎角传感器采用电位器式传感器,该传感器的测量范围是0o~340o,测量精度优于0.1o,最大响应频率500Hz ,最大速度200rpm 。迎角传感器安装在试验装置旋转轴轴端。 2.6 PXI 总线数据采集系统 图1 翼型变迎角试验装置

GPS动态测量方法

一、RTK 的作业过程 1. 启动基准站将基准站架设在空旷的控制点上,正确连接各仪器电缆,打开仪器, 把基准站设置为动态测量模式。 2、建立新工程,定义坐标系统新建一个文件夹,设置好测量参数,如椭球参数、投影参数等。这个文件夹中包括许多小文件,它们分别是测量的成果文件和各种参数设置文件,如*.dat 、*.cot 、*.rtk 、*.ini 等 打开手簿到主页面,点击设置—单位设置 第一项,设置坐标显示格式设置,即中央经线设置 1) 在“中央经线”项里输入你当地的中央子午线经度,在“尺度比 ( Scale )”里输入1.0000000 2)在“横坐标平移量( False Easting )”里输入+500000,在“纵坐标平移量 ( False Northing )”输入0.0 。 这几个参数输入后把光标移到下面的Save( 保存),这时,位置显示格 式设置好了,即以投影坐标形式显示,单位是“米” ,选这种格式显示的好处就是:显示的结果与地形图上的坐标一致,在实际工作中便于定位。 第二项,“ 坐标系统(Map Datum)”,点击它,在出现的列表项里选择“用户(User) ” , 点击后出现“用户参数( User Datum)” 参数项包括:DX,D Y,D Z, DA,DF这组参数各地的值都不一样,要到当地测绘部门获取,设置好参数后,同样点击“保存” 。第三项,“ 距离和速度”单位,我们选择“米制( Metric ) 第四项,高度单位选择“米(Meters) ”; 第五项,“压力单位”,选择“毫巴(Millibars) ”,至此,你的手持GPS 机已经根据你的需要设置好了,点击页面切换键返回到主菜单

-肺动脉压计算

肺动脉压力测定的方法(原理) 试试看:测出三尖瓣返流速度的同时,可显示压差,如果右房不大加10mmHg,如果右房大则 加15mmHg.说的不一定对,听听大家的. 一般是测三尖瓣反流压差,若右房不大,一般加5,右房偏大,加10 ,右房增大,加15,只是我觉得好象超声上在数据上有很多地方不是很统一,不知其他战友怎么算的 fixedsoldier 我查了一下资料回答你:根据三尖瓣最大返流速度,计算出右室与右房之间的 压力差(△ P 一4V o ),由于右室收缩压(SPvP)=右心房压(RAP)+Ap ,其中RAP可根据颈静脉充盈的程度及有无右心衰竭来计算,一般定为常数10mmHg ,右房轻度长大为12 mmHg,重度长大为15mmHg 。无右室流出道梗阻及肺动脉狭窄时,肺动脉压力几乎等于右心室收缩压。正常肺动脉压力15 —30mmHg , >30mmHg 为肺动脉高压。 超声多普勒用简化伯努利方程计算心腔间或心腔与大血管间的压差(PG),△ P=4V2,V 为血流峰值速度。例如右室收缩压RVSP= △ P+RAP , , △ P为三尖瓣反流峰值速度用伯努利 方程计算的右室与右房压差,RAP为右房压力,一般为10mmH g,要是右房增大或者颈 静脉怒涨可加15 mm H g。 4V平方不知怎么到就变成4V2 了。 CI文章不会要求具体的测量原理,没有右室流出道/肺动脉梗阻时,肺动脉收缩压用三尖瓣 返流压差法测量,这所有心超工作者都知道, SPAP=RVSP = 返流压差+右房压 关键是右房压力如何估计的.前面网友说的用右房大小来粗略估计右房压,这种用法已经很多年了,大家都觉得不错,但某些情况下(如房颤时)右房大小并不一定与右房压呈正相关,所以目前国外更倾向于用下腔静脉随呼吸变化的情况结合下腔静脉或肝静脉频谱来判断的?请问fixedsoldier, 您的研究是用的什么方法测的呢?如果是您的手下在为您实施,那就问 他们是如何测的啊! 肺动脉压力测定的方法有多种,超声检查测量三尖瓣返流速度,用简化伯努利方程计算很简便,现在彩超都能显示压差,在压差上加10 (可根据右房的大小加5-15,各医院掌握也 不一样),就是肺动脉收缩压。正常肺动脉收缩压不超过30mmHg ,大于30mmHg 为肺 动脉高压。但是,要注意测量三尖瓣返流速度测定肺动脉压力,必须是没有右室流出道梗阻。 超声多普勒用简化伯努利方程计算心腔间或心腔与大血管间的压差(PG),△ P=4V2,V 为血流峰值速度。根据三尖瓣最大返流速度,计算出右室与右房之间的压力差,肺动脉收缩 压等于三尖瓣返流压差加右房压;若右房不大,一般加5mmHg ,右房偏大,加10mmHg , 右房增大,

硬度测量方法

·硬度知识 材料局部抵抗硬物压入其表面的能力称为硬度。试验钢铁硬度的最普通方法是用锉刀在工件边缘上锉擦,由其表面所呈现的擦痕深浅以判定其硬度的高低。这种方法称为锉试法这种方法不太科学。用硬度试验机来试验比较准确,也是现代试验硬度常用的方法。常用的硬度测定方法有布氏硬度、洛氏硬度和维氏硬度等测试方法 硬度是衡量金属材料软硬程度的一项重要的性能指标,它既可理解为是材料抵抗弹性变形、塑性变形或破坏的能力,也可表述为材料抵抗残余变形和反破坏的能力。硬度不是一个简单的物理概念,而是材料弹性、塑性、强度和韧性等力学性能的综合指标。硬度试验根据其测试方法的不同可分为静压法(如布氏硬度、洛氏硬度、维氏硬度等)、划痕法(如莫氏硬度)、回跳法(如肖氏硬度)及显微硬度、高温硬度等多种方法。布氏硬度以HB[N(kgf/mm2)]表示(HBS\HBW)(参照GB/T231-1984),生产中常用布氏硬度法测定经退火、正火和调质得刚件,以及铸铁、有色金属、低合金结构钢等毛胚或半成品的硬度。 洛氏硬度可分为HRA、HRB、HRC、HRD四种,它们的测量范围和应用范围也不同。一般生产中HRC用得最多。压痕较小,可测较薄的材料、硬的材料和成品件的硬度。 维氏硬度以HV表示(参照GB/T4340-1999),测量极薄试样。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, 常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度,公式:里氏硬度HL=1000×VB(回弹速度)/ V A(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度; 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷,测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷

肺动脉高压的诊断标准

肺动脉高压的诊断标准 肺动脉高压二维上可见肺动脉增宽,右心室增大等表现,但是估测肺动脉的压力还是诊断它的准确方法,关于测量肺动脉压(收缩压),方法如下: 《一》正常情况下肺动脉压力的估测: 我们先弄清正常情况下如何估测肺动脉压。我们知道,在没有右心室流出道梗阻或肺动脉狭窄时, 肺动脉压=右室收缩压,这时侯我们常规利用三尖瓣返流法估测肺动脉收缩压(PASP)。 我们计算的公式是:RVSP=△P+SRAP (其中RVSP=右室收缩压;SRAP=收缩期右房压;△P=三尖瓣返流的最大压差)所以我们在测量出三尖瓣返流最大压差后,加上右心房收缩压即得出肺动脉收缩压。 右心房的正常压力是5-7mmHg;当出现右房中度增大者为10 mmHg;右房重度增大者为15 mmHg。 《二》当存在心室间分流时肺动脉压的估测: {假如左右心室之间存在分流,如VSD,这时候左右心室的压力阶差△P= LVSP-RVSP(LVSP:左室收缩压;RVSP:右室收缩压) 如果左心室流出道无梗阻出现,这时左室收缩压可用肱动脉收缩压(BASP)代替,这样PASP=BASP-△P,其中左右室之间的压力阶差△P=4V2,V为连续多普勒测得的收缩期室水平左向右最大分流速度。 举例说明: 如果测得一个VSD患者的室水平左向右分流的最大峰速为5m/s,肱动脉收缩压为120mmHg,则PASP=120-4×25=20 mmHg,即肺动脉收缩压为20 mmHg。 但是当室间隔缺损合并重度肺动脉高压出现双向分流时,右室收缩压与左室收缩压几乎相等,甚至高于左室收缩压,应用分流速度间接估计肺动脉收缩压已无意义。 《三》存在大动脉水平分流如动脉导管未闭时 H动脉导管两端的收缩压差△Ps=AOSP-PASP(AOSP:主动脉收缩压;PASP:肺动脉收缩压)。在无左室流出道狭窄时,AOSP与肱动脉收缩压(BASP)相近,可替代主动压力,这样肺动脉收缩压PASP=BASP-△Ps。应用简化的伯努力方程△Ps=4V2,即收缩期左向右最大分流速度计算动脉导管两端的收缩期压差。 《四》根据肺动脉反流估算肺动脉压 1、肺动脉收缩压=3(PG+8)-2(MPG+6) PG为反流最大压差MPG为平均压差 2、肺动脉平均压=4Va2 Va为肺动脉舒张早期反流峰值速度 肺动脉舒张压=4Vb2 Vb为肺动脉舒张晚期反流速度 《五》根据肺动脉血流加速时间来估算肺动脉压 肺动脉收缩压=79-0.45Act Act为肺动脉频谱加速时间(用于无法获取PA反流频谱时)简单总结来说: 1)正常时用三尖瓣反流压差法:肺动脉压=三尖瓣返流压差+右心房收缩压,前提是无右室流出道、肺动脉狭窄 2)出现室水平分流时计算法:肺动脉收缩压=RV收缩压=肱动脉收缩期血压-室缺分流压差;3)出现大动脉水平分流计算法:肺动脉收缩压= 肱动脉收缩期血压-PDA分流压差 静息状态下 肺动脉收缩压: 正常:15-30mmHg 轻度:30-50mmHg

GPS动态测量方法

G P S动态测量方法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

一、R T K的作业过程 1.启动基准站 将基准站架设在空旷的控制点上,正确连接各仪器电缆,打开仪器,把 基准站设置为动态测量模式。 2、建立新工程,定义坐标系统 新建一个文件夹,设置好测量参数,如椭球参数、投影参数等。这个文件夹中包括许多小文件,它们分别是测量的成果文件和各种参数设置文件,如*.dat、*.cot、*.rtk、*.ini 等 打开手簿到主页面,点击设置—单位设置 第一项,设置坐标显示格式设置,即中央经线设置 1)在“中央经线”项里输入你当地的中央子午线经度,在“尺度比 (Scale)”里输入1.0000000 2)在“横坐标平移量(False Easting)”里输入+500000,在“纵坐标平移量(False Northing)”输入0.0。 这几个参数输入后把光标移到下面的Save(保存),这时,位置显示格式设置好了,即以投影坐标形式显示,单位是“米”,选这种格式显示的好处就是:显示的结果与地形图上的坐标一致,在实际工作中便于定位。 第二项,“坐标系统(Map Datum)”,点击它,在出现的列表项里选择“用户(User)”,点击后出现“用户参数(User Datum)” 参数项包括:DX,DY,DZ,DA,DF,这组参数各地的值都不一样,要到 当地测绘部门获取,设置好参数后,同样点击“保存”。 第三项,“距离和速度”单位,我们选择“米制(Metric) 第四项,高度单位选择“米(Meters)”;

第五项,“压力单位”,选择“毫巴(Millibars)”,至此,你的手持GPS 机已经根据你的需要设置好了,点击页面切换键返回到主菜单3、坐标转换即点校正 GPS测量的为WGS-84系坐标,而我们通常需要的是在流动站上实时显示国家坐标系或当地独立坐标系下的坐标,因此要进行转换。点校正可以通过两种方式进行。 (1)在已知转换参数的情况下。如果有当地坐标系统与W CS84坐标系统的转换七参数,则可以在测量控制器中直接输入,建立坐标转换关系。如果上作是在国家大地坐标系统下进行,而且知道椭球参数和投影方式以及基准点坐标,则可以直接定义坐标系统,建议在RTK测量中最好加入1-2个点校正,避免投影变形过大,提高数据可靠性。 (2)在不知道转换参数的情况下。如果在局域坐标系统中工作或任何坐标系统进行测量和放样工作,可以直接采用点校正方式建立坐标转换方式,平面至少3个点,如果进行高程拟合则至少要有4个水准点参与点校正。 4、流动站开始测量 (1)单点测量:在主菜单上选择“测量”图标打开,测量方式选择“RTK”,再选择“测量点”选项,即可进行单点测量。注意要在“固定解”状态下,才开始测量。 (2)放样测量:在进行放样之前,根据需要“键入”放样的点。当初始化完成后,在主菜单上选择“测量”图标打开,测量方式选择“RTK”,再选择“放样”选项,即可进行放样测量作业。在作业时,在手薄控制器上显示箭头及目前位置到放样点的方位和水平距离,观测值只需根据箭头的指示放样。当流动

相关主题
文本预览
相关文档 最新文档