当前位置:文档之家› 反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)
反比例函数经典例题(有答案)

反比例函数专题复习

一、反比例函数的对称性

1、直线y=ax(a>0)与双曲线y= 3/x交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1=

2、如图1,直线y=kx(k>0)与双曲线y= 2/x交于A,B两点,若A,B两点的坐标分别为

A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()

A、-8

B、4

C、-4

D、0

解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称

因此两交点A、B也关于原点对称

X2=-X1,Y2=-Y1

双曲线形式可变化为XY=2,即双曲线上点的横纵坐标乘积为2

因此X1Y1=2

X1Y2+X2Y1=X1(-Y1)+(-X1)Y1=-X1Y1-X1Y1=-4

图1 图2 图3 图4

二、反比例函数中“K”的求法

1、如图2,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在

直线l上滑动,使A,B在函数 y=k/x的图象上.那么k的值是()

A、3

B、6

C、12

D、 15/4

解析:∵BC在直线X=1上,设B(1,M),则C(1,M-3),∴A(5,M-3),

又A、B都在双曲线上,∴1*M=5*(M-3),M=15/4 即K=15/4

2、如图3,已知点A、B在双曲线y= k/x(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于

点P,P是AC的中点,若△ABP的面积为3,则k=

解析:A(x1,k/x1),B(x2,k/x2)

AC:x=x1 BD:y=k/x2

P(x1,k/x2)

k/x2=k/2x1 2x1=x2

BP=x2-x1=x1

AP=k/x1-k/x2=k/2x1

S=x1*k/(2x1)*1/2)=k/4=3 k=12

3、如图4,双曲线y= k/x(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为

3,则双曲线的解析式为()

A、y=1/x

B、y=2/x

C、y=3/x

D、y=6/x

解析:设E(x0,k/x0)

E是BC中点,∴B(x0,2k/x0)

B、D两点纵坐标相同,∴D(x0/2,2k/x0)

BD=x0/2,OC=x0,BC=2k/x0

梯形面积=(BD+OC)×BC/2=3k/2=3

∴k=2 ∴双曲线的解析式为:y=2/x

三、反比例函数“K”与面积的关系

1、如图5,已知双曲线 y1=1/x(x>0), y2=4/x(x>0),点P为双曲线y2=4/x上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别次双曲线y1=1/x于D、C两点,则△PCD的面积为()

图5 图6 图7

解析:假设P的坐标为(a,b),则C(a/4,b), D(a,b/4),

PC=3/4*a PD=3/4*b

S=1/2*3/4*a*3/4*b

因为点P为双曲线y2=4/x上的一点所以a*b=4

所以S=9/8

2、如图6,直线l和双曲线 y=k/x(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、

B、P分别向x轴作垂线,垂足分别为

C、

D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()

A、S

1<S

2

<S

3

B、S

1

>S

2

>S

3

C、S

1

=S

2

>S

3

D、S

1

=S

2

<S

3

解析:结合题意可得:AB都在双曲线y=kx上,

则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.

3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线 y=k/x交于C、D两点,且S△AOC=S△COD=S△BOD,

则k=。

解析:S△AOC=S△COD=S△BOD=3/2 所以,CD两点的坐标为(2,1)(1,2) k=2

4、反比例函数y= 6/x 与y= 3/x在第一象限的图象如图8所示,作一条平行于x轴的直线分别交双曲线

于A、B两点,连接OA、OB,则△AOB的面积为()

A、 3/2

B、2

C、3

D、1

解:设直线方程:y=b,则A(6/b,b) B(3/b,b)

|AB|=(6/b-3/b)=3/b ,h(o-AB)=b

s(OAB)=(1/2)*(3/b)*b=3/2

图8 图9 图10 图11

5、如图9,已知梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,过点C的双曲线 y=k/x交OB于D,且OD:DB=1:2,若△OBC的面积等于3,则k的值()

A、等于2

B、等于 3/4

C、等于 24/5

D、无法确定

解析:如图,设点B(a,b),过点D作x轴垂线,垂足为E

则点A(a,0)

点C的纵坐标为b,那么x=k/y=k/b 所以,点C(k/b,b)

OB所在的直线为y=(b/a)x,它与y=k/x相交

所以,(b/a)x=k/x ===> x^2=ak/b ===> x=√(ak/b) ——这就是点D横坐标

已知OD/DB=1/2,所以:OD/OB=1/3

则,OE/OA=OD/OB=1/3

===> √(ak/b)/a=1/3 ===> a=3√(ak/b)

===> a^2=9ak/b ===> ab=9k

又BC=a-(k/b)

所以,S△OBC=(1/2)*BC*AB=(1/2)*[a-(k/b)]*b=3

===> ab-k=6 ===> 9k-k=6 ===> k=3/4

6、如图10,反比例函数y=k/x(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若

四边形ODBE的面积为6,则k的值为()

A、1

B、2

C、3

D、4

解:由题意得:E、M、D位于反比例函数图象上,则S△OCE= |k|/2,S△OAD= |k|/2,

又M为矩形ABCO对角线的交点,则矩形ABCO的面积为4|k|,

由于函数图象在第一象限,k>0,则k/2+ k/2+6=4k,k=2.

故选B

7、如图11,梯形AOBC的顶点A,C在反比例函数图象上,OA∥BC,上底边OA在直线y=x上,下底边BC交x轴于E(2,0),则四边形AOEC的面积为()

A、根号3

B、 3

C、根号3-1

D、根号3+1

解析:四边形AOEC是梯形,需求出EC、OA和高(两平行线的距离);

必须确认反比例函数是xy=1,否则反比例函数很靠近或远离坐标轴将使所得图形面积变化不定。

直线BEC的方程为:y=x-2,与反比例函数交点坐标C的y坐标满足:(y+2)y=1,解得y=√2-1;

因直线BEC的斜率是1,EC=√2*C点y坐标=√2*(√2-1)=2-√2;

E到平行线OA的距离h=(√2/2)*OE=(√2/2)*E点x坐标=(√2/2)*2=√2;

A点坐标(1,1),所以OA=√2;

四边形AOEC的面积=(EC+OA)*h/2=(2-√2+√2)*√2/2=√2;

8、如图,A、B是双曲线y= k/x(k>0)上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交

x轴于点C,若S△AOC=6.则k=

解析:A,B是双曲线y=k/x(k>0)上的点

则 A(a,k/a) , B[2a,k/(2a)]

AB直线方程:(y-k/a)/(x-a)=(k/a-k/(2a))/(a-2a)

2a^2 y-2ak=-k(x-a)

0-2ak=-k(x-a)

x=3a

AB的延长线交x轴于点C(3a,0)

S△Aoc= (k/a)(3a)/2=6

k=4 y=6/x

图1 图2 图3

四、反比例函数与一次函数综合:

1、如图1,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y= 1/x(x>0)的图象上,则点E 的

坐标是

解析:很明显B(1,1)设正方形ADEF边长为a

则E(1+a,a)在Y=1/X上即(1+a)a=1

a^2+a-1=0

用求根公式得a=(-1+√5)/2(因为a>0)

E的坐标是((1+√5)/2 ,(-1+√5)/2 )

2、如图2,过y轴上任意一点P,作x轴的平行线,分别与反比例函数 y=-4/x和y=2/x的图象交于A 点

和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()

A、3

B、4

C、5

D、6

解析:设P点坐标为(0,a),则A点坐标为(-4/a,a)B点坐标为(2/a,a)

所以AB的距离为2/a-(-4/a)=6/a

点C到AB的距离为a

所以三角形ABC的面积为1/2×6/a×a=3

3、如图3,直线y=-x+b(b>0)与双曲线y= k/x(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,

BN⊥x轴于N;有以下结论:①OA=OB;②△AOM≌△BON;③若∠AOB=45°,则S△AOB=k;

④当AB= 2时,ON-BN=1;其中结论正确的个数为()

A、1

B、2

C、3

D、4

解:-x+b=k/x得出X值(用公式法解)一个为A的横坐标一个为B的横从标,把B的横坐标代入y=-x+b得B的纵坐标与A的横从标相等即MO=ON,因为三角形AMO与三角形BON面积相等,所以MA=BN,所以:△AOM≌△BON,由勾股定理可得OA=OB,把A,B坐标表示出来,AB用两点间的距离公式可算出AB=根号2乘以根号下B平方减4K,因为AB=根号2,所以根号下B平方减4K=1,,ON-BN=根号下B平方减4K,所以ON-BN=1,最难的是第三个结论解法如下:

过O作OM垂直AB于点D ,可得三角形AOM与AOD面积相等,三角形ODB与OBN面积相等,所以三角形AOB面积为K

选D

4、如图4,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数 y=4/x(x>0)图象上位于直线下方的

一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF?BE=()

A、8

B、6

C、4

D、 6倍根号2

图4 图5

解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,

∵直线y=6-x交x轴、y轴于A、B两点,

∴A(6,0),B(0,6),

∴OA=OB,

∴∠ABO=∠BAO=45°,

∴BC=CE,AD=DF,

∵PM ⊥OA ,PN ⊥OB ,

∴四边形CEPN 与MDFP 是矩形, ∴CE=PN ,DF=PM ,

∵P 是反比例函数 图象上的一点, ∴PN?PM=4, ∴CE?DF=4,

在Rt △BCE 中,BE= = CE , 在Rt △ADE 中,AF= = DF , ∴AF?BE= CE? DF=2CE?DF=8.

5、如图5,反比例函数 y=k/x (k >0)与一次函数 y=1/2x+b 的图象相交于两点A (x 1,y 1),B (x 2,

y 2),线段AB 交y 轴与C ,当|x 1-x 2|=2且AC=2BC 时,k 、b 的值分别为( )

A 、k= 1/2,b=2

B 、k= 4/9,b=1

C 、k= 1/3,b= 1/3

D 、k= 4/9,b= 1/3

解析:y=k/xy=x/2+b

联立得,x2/2+bx-k=0 x1+x2=-2b ,x1*x2=-2k

|x1-x2|=√[(x1+x2)2-4x1*x2]=2

整理,√(b2+2k)=1【从这一步,就能推断出答案,只能选择答案是D 】 |AC|/|BC|=|x1|/|x2|=2 【第一种情况】

设x1<0,x2>0

x1=-2x2,

|x1-x2|=3x2=2,故x2=2/3,x1=-4/3 x1+x2=-2b=-2/3,即b=1/3 x1*x2=-2b=-8/9,即,k=4/9.

【第二种情况】 x1>0,x2<0

x1=-2x2,

|x1-x2|=-3x2=2,故x2=-2/3,x1=4/x 同理,解出b=-1/3,k=4/9

综上可得,k=4/9,b=1/3或-1/3。【没有设置b 的条件,故,b 可取负值也可取正值。】

五、综合(函数与几何)

1、如图,?ABCD 的顶点A 、B 的坐标分别是A (-1,0),B (0,-2),顶点C 、D 在双曲线y= k/x 上,边AD

交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k= 解:过点D 作x 轴的垂线,垂足为M ,过点C 作y 轴的垂线,垂足为N

DM 与CN 交于点F

则△ABO ≌△CDF ∴DF=2,CF=1

∵四边形BCDE 的面积是△ABE 面积的5倍 ∴(BC+AD)=5AE ∴DE=2AE ∴MO=2AO

∴点D 的横坐标为2,∴点C 的横坐标为3

设点的坐标为(2,m)

∴点C的坐标为(3,m-2)

∵C,D都在函数y=k/x 的图象上

∴k=2m=3(m-2)解得m=6,k=12

2、如图,已知C、D是双曲线,y= m/x在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A、B两点,

设C、D的坐标分别是(x1,y1)、(x2,y2),连接OC、OD.

(1)求证:y1<OC<y1+ m/y1;

(2)若∠BOC=∠AOD=a,tana= 1/3,OC= 根号10,求直线CD的解析式;

(3)在(2)的条件下,双曲线上是否存在一点P,使得S△POC=S△POD?若存在,请给出证明;若不存在,请说

明理由.

解:1.因为CG

2.因为OG:CG=1:3,OC=根号10,所以OG=1,CG=

3.

解析式为y=10/x

3 双曲线y= 上存在点P,使得S△POC=S△POD,这个点P就是

∠COD的平分线与双曲线y= 的交点证明如下:

∵点P在∠COD的平分线上.

∴点P到OC、OD的距离相等.

又OD =OC∴S△POD=S△POC

3、如图,将一矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的一个动点(不与点A、N重合),过点E的反比例函数y=k/x(x>0)的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求k的值;

(2)若OA=2.0C=4.问当点E运动到什么位置时.四边形OAEF的面积最大.其最大值为多少?

解:四边形OAEF的面积=矩形OABC的面积 - 三角形OCF的面积 - 三角形BEF的面积

= 4*2 - (1/2)OC*CF - (1/2)EB*FB

= 8 - (1/2)*4*k/4 - (1/2)(4 - k/2)(2 - k/4)

= 8 - k/2 -(1/2)(8 - k - k + k2/8)

= 4 + k/2 - k2/16

= 5 - (k - 4)2/16

k = 4时,四边形OAEF的面积最大,为5。此时E(2, 2)

4、如图,已知直线l经过点A(1,0),与双曲线y= m/x(x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平行线分别交双曲线y= m/x(x>0)和y=- m/x(x<0)于点M、N.

(1)求m的值和直线l的解析式;

(2)若点P在直线y=2上,求证:△PMB∽△PNA;

(3)是否存在实数p,使得S△AMN=4S△AMP?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

解:(1)把B(2,1)代入y=m/x得m=2,

设直线l解析式为y=kx+b,把A(1,0)和B(2,1)代入,

解得k=1,b=-1,∴直线l的解析式为y=x-1

(2)如图,由题意得P(3,2),M(1,2),N(-1,2)

∴PM=2,PN=4,PB=√2,PA=2√2,

∵PM/PN=PB/PA,∠MPB=∠NPA,∴△PMB∽△PNA

(3)设存在p,则M[2/(p-1),p-1],N[-2/(p-1),p-1]

NM=4/(p-1),PM=lp-2/(p-1)l,由题意得MN=4PM,

解得关于p的方程得p的值有两个。p=(√13+1)\2,p=2(不成立)p=(√5+1)\2

5、如图,四边形OABC是面积为4的正方形,函数y=k/x(x>0)的图象经过点B、E,F;

(1)求k的值;

(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与

函数y=k/x(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

解:(1)∵四边形OABC是面积为4的正方形,∴OA=OC=2,

∴点B坐标为(2,2),∴k=xy=2×2=4.

(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,

∴ON=OM=2OA=4,

∴点E横坐标为4,点F纵坐标为4.

∵点E、F在函数y= 的图象上,∴当x=4时,y=1,即E(4,1),

当y=4时,x=1,即F(1,4).

设直线EF解析式为y=mx+n,将E、F两点坐标代入,

得m=-1,n=5.

∴直线EF的解析式为y=-x+5.

初中反比例函数经典例题

初中反比例函数习题集合(经典) (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2 x y =-⑥13y x = ; 其中是y 关于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0k y k x = ≠) 的图象经过(—2,5)和(2, n ), 求(1)n 的值;(2)判断点B (24,2-)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1; x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值. (8)若反比例函数2 2)12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数k y x =在同一坐标系内的图象大致是( ) (10)正比例函数2x y = 和反比例函数2 y x =的图象有 个交点. (11)正比例函数5y x =-的图象与反比例函数(0)k y k x =≠的图象相交于点A (1,a ), 则a = . (12)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. x y O x y O x y O x y O A B C D

反比例函数及典型例题

反比例函数知识点及典型例题 反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。由反比例函数的图像和性质衍生出了好多数学问题,这对“数形结合”思想还有点欠缺的中学生来说无疑是一个难点。 一、反比例函数知识要点点拨 1、反比例函数的图象和性质: 反比例函数 (0)k y k x = ≠ k 的符号 0k > 0k < 图象 性质 ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k >时,函数图象的两个分支分别在第一、第三象限.在每 个象限内,y 随x 的增大而减小. ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k <时,函数图象的两个分支分别在第二、第四象 限.在每个象限内,y 随x 的增大而增大. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. 2、反比例函数与正比例函数(0)y kx k =≠的异同点: 函数 正比例函数 反比例函数 x y O x y O

解析式 (0)y kx k =≠ (0)k y k x = ≠ 图象 直线,经过原点 双曲线,与坐标轴没有交点 自变量取值范围 全体实数 0x ≠的一切实数 图象的位置 当0k >时,在一、三象限; 当0k <时,在二、四象限. 当0k >时,在一、三象限; 当0k <时,在二、四象限. 性质 当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小. 当0k >时,y 随x 的增大而 减小; 当0k <时,y 随x 的增大而增大. 二,、典型例题 例 1 下面函数中,哪些是反比例函数? (1)3 x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k , 它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式. 例 2在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填 (正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

反比例函数经典编辑中考例题

反比例函数经典中考例题解析一 一、 填空题(每空3分,共36分) 1、任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 2、若正比例函数y =mx (m ≠0)和反比例函数y =n x (n ≠0)的图象有一个交点为点(2,3),则m =______,n =_________ . 3、已知正比例函数y=kx 与反比例函数y= 3 x 的图象都过A (m ,1)点,求此正比例函数解析式为________,另一个交点的坐标为________. 4、已知反比例函数2k y x -=,其图象在第一、三象限内,则k 的值可为 。 (写出满足条件的一个k 的值即可) 5、已知反比例函数x k y = 的图象经过点)2 1 4(,,若一次函数1+=x y 的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标为______________ 6、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上,且1a <2a <0,那么1b 2b . 7、函数y=x 2的图象如图所示,在同一直角坐标系内,如果将直线y=-x+1沿y 轴向上平 移2个单位后,那么所得直线与函数y= x 2 的图象的交点共有 个 8、已知函数y kx =- (k≠0)与y=4x -的图象交于A 、B 两点,过点A 作AC 垂直于y轴,垂足为点C ,则△BOC 的面积为____ (第9题)

9.如图,11POA V 、 212P A A V 是等腰直角三角形,点1P 、2P 在函数4 (0)y x x =>的图象上,斜边1OA 、12A A 都在x 轴上,则点2A 的坐标是____________. 10. 两个反比例函数x y 3= ,x y 6 =在第一象限内的图象如图 所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数x y 6 = 图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2 005个连续奇数,过点P 1, P 2,P 3,…,P 2 005分别作 y 轴的平行线,与x y 3 = 的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则 y 2 005= . 二、选择题(每题3分,共30分) 11、反比例函数k y x = 与直线2y x =-相交于点A ,A 点的横坐标为-1,则此反比例函数的解析式为( ) A .2y x = B .12y x = C .2y x =- D .12y x =- 12、如图所示的函数图象的关系式可能是( ). (A )y = x (B )y =x 1 (C )y = x 2 (D) y = 1x 13、若点(3,4)是反比例函数2 21m m y x +-=图象上一点,则此函数图象必须经过点 ( ). O x y (第12题) 第10

反比例函数经典中考例题解析二

反比例函数经典中考例题解析二 一、选择题(每小题3分,共30分) 1、反比例函数y = x n 5 图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2、若反比例函数y = x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(- 2 1 ,2) C 、(-2,-1) D 、( 2 1 ,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y = x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限 6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y = x 1 于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定 Q p x y o t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O t /h v /(km/ O A . B . C . D .

7、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ= V m ,它的图象如图所示,则该 气体的质量m 为( ). A 、1.4kg B 、5kg C 、6.4kg D 、7kg 8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x 1的图象上,则y 1,y 2,y 3的大 小关系是( ). A 、y 1>y 2>y 3 B 、y 1<y 2<y 3 C 、y 1=y 2=y 3 D 、y 1<y 3<y 2 9、已知反比例函数y = x m 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <2 1 D 、m > 2 1 10、如图,一次函数与反比例函数的图象相交于A 、B 两 点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2 二、填空题(每小题3分,共30分) 11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式 为 . 12、已知反比例函数 x k y = 的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3 -和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m 2 - 10的图象分布在第二、四象限内,则m 的值为 .

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

反比例函数知识点归纳总结与典型例题(供参考)

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2)2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,52, n ), 求1)n 的值; 2)判断点B (24,2- (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =.

反比例函数的典型例题集

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y 与x 的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了 正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2)2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2)2(--=a x a y 是反比例函数,且y 随x 的增大而减小, 所以???>--=-.02,162a a 解得???>±=. 2,5a a

反比例函数经典题型

X Y -9 -8-7-6-5-4-3-2-1 1110987654321 -8-7-6-5-4-3-2-1 9 876543210X Y -9 -8-7-6-5-4-3-2-1 11109876543 21 -8-7-6-5-4-3-2-19 8 7 6 5 4 3 2 1 0反比例函数 一、经典内容解析 1.反比例函数的概念 (1) (k ≠0)可以写成(k ≠0)的形式,注意自变量x 的指数为-1,在解决有关 自变量指数问题时应特别注意系数k ≠0这一限制条件; (2) (k ≠0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k ,从而得到反比例函数的解析式; (3) 反比例函数 的自变量x ≠0,故函数图象与x 轴、y 轴无交点. 解析式 x k y = (k 为常数,且0k ≠) 自变量取值范围 0≠x 的实数 图 象 图象的性质 双曲线 0k > 0k < 示意图 位置 两个分支分别位于 一、三象限 两个分支分别位于 二、四象限 变化趋势 在每个象限内,y 随x 的增大而减小 在每个象限内,y 随x 的增大而增大 对称性 是轴对称图形,直线x y ±=是它的两条对称轴 是中心对称图形,对称中心为坐标原点 3.反比例函数的性质(与正比例函数对比) 函数解析式 正比例函数 y=kx (k ≠0) 反比例函数 (k ≠0) 自变量的 取值范围 全体实数 x ≠0 图 象 直线,经过原点 双曲线,与坐标轴没有交点

图象位置 (性质) 当k>0时,图象经过一、三象限;当 k<0时,图象经过二、四象限. 当k>0时,图象的两支分别位于一、三 象限;当k<0时,图象的两支分别位 于二、四象限. 性质 (1) 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小. (2) 越大,图象越靠近y轴. (1) 当k>0时,在每个象限内y随x的 增大而减小;当k<0时,在每个象限 内y随x的增大而增大. (2) 越大,图 象的弯曲度越小,曲线越平直. 注: (1) 双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论, 不能一概而论. (2) 正比例函数与反比例函数, 当时,两图象没有交点; 当时,两图象必有两个交点, 且这两个交点关于原点成中心对称. (3) 反比例函数与一次函数的联系. 4.反比例函数中比例系数k的几何意义 (1)过双曲线(k≠0) 上任意一点作x轴、y轴的垂线,所得矩形的面积为. (2)过双曲线(k≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形

反比例函数知识点及经典例题

第十七章 反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函 数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )

即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ?????== ???-=-=?? ? ? ?=+==+=∴2 21111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴, 另一个点为 【例4】 如图,在AOB Rt ?中,点A 是直线m x y +=与双曲线x m y =在第一象限的交点,且2=?AOB S ,则m 的值是_____.

反比例函数经典例题(含详细解答)

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n An-1An都是等腰直角三角形,点P1、P 2、P3…Pn都在函 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y= (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+k ,b+k+2)两点.?(1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B 的坐标: (3)根据函数图象,求不等式 2k x >2x -1的解集;?(4)在(2)的条件下,x轴上是否存在点P,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k≠0)的图象与反比例函数y = (m≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =\f (4,5). (1)求该反比例函数和一次函数; (2)求△AO C的面积. (1)过A 点作AD⊥x轴于点D,∵sin ∠AO E= 错误!未定义书签。,OA =5, ∴在Rt△ADO中,∵sin∠AOE=错误!未定义书签。 =错误!未定义书签。= 4 5, ∴AD=4,DO=OA 2-DA2=3,又点A 在第二象限∴点A的坐标为(-3,4), x m

反比例函数经典习题及答案

反比例函数练习题 一、精心选一选!(30分) 1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1 y x = B .1y x -= C .2y x = D .2y x -= 2. 反 比例函数2 k y x =-(k 为常数,0k ≠)的图象位于( ) A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限 3.已知 反比例函数y = x 2 k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2 4.反 比例函数x k y = 的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2 y x = ,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 6.反比 例函数 2 2)12(--=m x m y ,当x >0时,y 随x 的增大而增大,则m 的值时( ) A 、±1 B 、小于 2 1 的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。 A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 3<S 1<S 2 D 、S 1=S 2=S 3 8.在同 一直角坐标系中,函数x y 2 - =与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 10.如图,直线y=mx 与双曲线y=x k 交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ?=2,则k 的值是( ) A .2 B 、m-2 C 、m D 、 4

反比例函数知识点总结典型例题大全

. 反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

反比例函数典型例题

反比例函数典型例题

————————————————————————————————作者:————————————————————————————————日期: ?

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y与x的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2 )2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2 )2(--=a x a y 是反比例函数,且y 随x的增大而减小, 所以???>--=-.02, 162a a 解得???>±=. 2,5a a 所以5=a ,解析式为x y 2 5-= . 反比例函数的典型例题四

初中数学反比例函数经典测试题附答案

初中数学反比例函数经典测试题附答案 一、选择题 1.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( ) A .2 B .3 C .4 D .6 【答案】C 【解析】 【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值. 【详解】 过点A 作x 轴的垂线,交CB 的延长线于点E , ∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A ( 4 k ,4),B (2k ,2), ∴AE =2,BE 12=k 14 -k 1 4=k , ∵菱形ABCD 的面积为5 ∴BC×AE =5BC 5= ∴AB =BC 5=

在Rt △AEB 中,BE ==1 ∴ 1 4 k =1, ∴k =4. 故选:C . 【点睛】 本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键. 2.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m > C .32 m >- D .32 m <- 【答案】D 【解析】 【分析】 根据已知得3+2m <0,从而得出m 的取值范围. 【详解】 ∵点()11,A y -、()22,B y -两点在双曲线32m y x +=上,且y 1>y 2, ∴3+2m <0, ∴32 m <- , 故选:D . 【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限. 3.如图,点A 、B 在函数k y x = (0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ?和ABC ?的面积分别为1和4,则k 的值为( )

人教版初中数学反比例函数经典测试题附答案

人教版初中数学反比例函数经典测试题附答案 一、选择题 1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x 上一点,k 的值是( ) A .4 B .8 C .16 D .24 【答案】C 【解析】 【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出 QF 、OF ,进而确定点Q 的坐标,确定k 的值. 【详解】 解:过点Q 作QF OA ⊥,垂足为F , OABC Q 是正方形, 6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=?=∠, D Q 是AB 的中点, 1 2 BD AB ∴=, //BD OC Q , OCQ BDQ ∴??∽, ∴ 1 2 BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴??∽,

∴ 22 213 QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=? =,2 643 OF =?=, (4,4)Q ∴, Q 点Q 在反比例函数的图象上, 4416k ∴=?=, 故选:C . 【点睛】 本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键. 2.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数 k y x = (x>0)的图象经过顶点B ,则k 的值为 A .12 B .20 C .24 D .32 【答案】D 【解析】 【分析】 【详解】 如图,过点C 作CD ⊥x 轴于点D , ∵点C 的坐标为(3,4),∴OD=3,CD=4. ∴根据勾股定理,得:OC=5. ∵四边形OABC 是菱形,∴点B 的坐标为(8,4).

反比例函数经典例题

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P 2、P3…P n都在函数y=4 x (x>0)的图象上,斜边OA1、A1A2、A2A3…A n-1A n都在x轴上.则点A10的坐标为 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y=k x 的图象上. (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点. (1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式 2k x >2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y = x m (m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =4 5 . (1)求该反比例函数和一次函数; (2)求△AOC 的面积.

反比例函数经典例题

反比例函数经典例题 典型例题分析1: 如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(√3,1)在反比例函数y=k/x的图象上. (1)求反比例函数y=k/x的表达式; (2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB/2,求点P的坐标; (3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.

考点分析: 待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化﹣旋转. 题干分析: (1)将点A(√3,1)代入y=k/x,利用待定系数法即可求出反比例函数的表达式; (2)先由射影定理求出BC=3,那么B(√3,﹣3),计算求出 S△AOB=1/2×√3×4=2√3.则S△AOP=S△AOB/2=√3.设点P的坐标为(m,0),列出方程求解即可; (3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣√3,﹣1),即可求解. 解题反思:

本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,旋转的性质,正确求出解析式是解题的关键. 典型例题分析2: 已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上. (1)k的值是; (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=-4/x图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若S1/S2=7/9,则b的值是.

反比例函数知识点总结典型例题大全

反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的 面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系. (四)实际问题与反比例函数

相关主题
文本预览
相关文档 最新文档