当前位置:文档之家› 季节性冻土地区铁路路基冻害分类及综合整治

季节性冻土地区铁路路基冻害分类及综合整治

季节性冻土地区铁路路基冻害分类及综合整治
季节性冻土地区铁路路基冻害分类及综合整治

季节性冻土地区铁路路基冻害分类及综合整治

【摘要】季节性冻土地区铁路路基冻害对铁路安全行车威胁很大。本文主要介绍季节性冻土地区铁路路基冻害部位分类,不同冻害采用整治方法及达到的效果。

【关键词】路基冻害;冻害分类;冻害整治;整治效果

呼和浩特铁路局管内线路所处地区均属于季节性冻土地区,冻结最大深度为1.4~2m,铁路路基冻害对铁路安全行车威胁很大,这里主要介绍路基冻害部位分类,不同冻害采用整治方法及达到的效果。

1 季节性冻土地区铁路路基冻害部位分类

1.1 表层冻害

表层冻害特点是:一般隆起高度为10mm~40mm;在呼和浩特铁路局管内地区一般从11月上旬开始,最晚到12月中旬停止发展,来年4月中旬~5月上旬回落完。表层冻害危害主要表现在:可引起路肩纵向高低变形、开裂,造成基床表层土体强度降低,从而引起道碴沉陷,导致轨道纵向高低变形;引起坡面隆起变形、开裂,导致土体强度降低。

表层病害形成的主要原因:

(1)基床填料土质不均,致使基床强度不一,在列车荷载作用下,产生不均匀沉降,引起基床面不平整,造成降水不能及时排出,水分渗入到基床土体内,当土层含水量增大且超过了起始冻胀含水量时,基床土体中的水结冰,体积膨胀,同时水分又向冰结封面补给,水分比冻前增加较大,形成冻害。

(2)路基坡面表层为非匀质土。由于路堤填料来源不同,且在填筑时,土层的厚薄和夯填密实度不同,致使填料的结构、层次等条件的不同,在冻期经水分迁移、聚积,其聚流量也不尽相同,产生的冻胀量也不等,从而形成坡面冻害。

(3)气温对土的冻结有一定的影响。受地形、地质、日照及植被覆盖的不同,路堤的不同部位(阴坡、阳坡)其热交换不同,对土中冻结率的影响也不同。在土冻结时,由于表层土温及冻结速率的不同,其水分迁移的聚流量和冻胀量便不相同,产生了冻害。

1.2 深层冻害

路基深层冻害产生的时间较晚,在冻期的后半期产生,呼和浩特铁路局管内地区一般在12月中旬以后,直到冻期末冻害才能停止。深层冻害的产生大多是因地下水的关系,如果没有地下水,即使土质有所差异,下部呈现脱水现象,也

季节性冻土施工方案

1.季节性冻土施工范围 1.1.季节性冻土定义和成因 当温度为0℃或负温,含有冰且土颗粒呈胶结状态的土称为冻土。土层冬季冻结,夏季全部融化,冻结延续时间一般不超过一个季节,称为季节性冻土层,其下边界线称为冻深线或冻结线。 路基土质、水分及冻结条件的不均一性,会产生不均匀冻胀,冻胀造成地面开裂;春季融化时,土体处于饱和状态,土颗粒间摩擦力降低至消失,在荷载作用下则千出现下沉、翻浆冒泥等病害。 1.2.季节性冻土范围 目前我国东北地区既有铁路冻害比较普遍、严重,路基冻胀和融沉使路基产生不均匀变形,破坏轨道的平顺性,成为影响铁路运行速度和安全的重大隐患之一,也给铁路养护维修千万很大的困难。 2.季节性冻土路基工程施工对策 2.1.季节性冻土路基防冻胀措施 为防止路基结构冻胀变形,主要是改善路基结构和填料及周围水分疏导,从形成起因减少冻胀力和冻胀性来防治冻胀,主要采取如下措施: 2.1.1.填筑非冻胀填料设隔防渗层 路基面以下冻结深度范围内填筑非冻胀性填料(非冻胀填料为细颗粒含量小于15%的A、B组碎石类土,基床表层70cm填级配碎石),于基床表层下部铺设两布一膜不透水工布,土工布上下各设置0.1m中粗砂垫层。基床底层采用A、B组填料和C组块石、砾石类填料,有效的阻隔地表水渗入基床底层。

2.1.2.排水设施降、排水 在地下水埋深较浅段且路基高度小于季节性冻胀地段,考虑毛细水强烈上升高度,路基两侧设置降排水盲沟设施,使地下水降至季节冻深以下。对边沟积水的路段,尤其是低填方段设置集水坑将积水排除,挖方地段路基,加大边沟坡纵向排水坡度,将积水引导排到路基以外。 2.1. 3.防冻胀护道 为防止冻胀破坏路堤边坡,对地下水位较高地段,路堤坡脚两侧设置防冻胀护道,按设设计尺寸(高、宽均为2m),大于最大冻结深度。 2.2.季节性冻土路基施工工艺流程及要点 季节性冻土施工工艺流程如下图。

寒冷地区路基冻害整治

寒冷地区路基冻害整治 摘要 青藏铁路格尔木至拉萨段,全长1118公里,其中多年冻土区为632公里。青藏铁路的修建关键问题是,冻土和路基冻害。因此解决冻土与路基冻害对寒冷地区铁路的发展有着尤为重要的意义。 首先,我们总体分析了寒冷地区铁路路基冻害的主要分布地区、类型及形成的原因对铁路运营造成的影响。其次介绍了冻土和冻胀是产生冻害的原因以及冻土的类型地温分区、危害。最后提出了整治各种路基冻害的综合措施和新型材料EPS板。 关键词 冻土(frozen soil) 、路基冻害(frost damage)、EPS材料 序言 第一章路基冻害的影响 路基是轨道的基础,它承受着轨道及机车车辆的静荷载和动荷载,并将荷载向地基深处传递扩散。它必须保持稳定、坚固,这样才能确保铁路高速、高密、高载的良好状态,不出现可能危及线路正常运营的形变。 路基冻害是寒冷地区铁路线路上分布很广,影响铁路安全及正常运营的常见病害,它与寒冷的气候有关,冰冻线能达到相当深度,又涉及到土的特性。在我国东北、西北、西南以及刚刚建成通车的青藏铁路线上都存在这路基冻害,路基冻害因其分布广、时间长、工作量大、影响行车非常严重占首位。哈局、沈局、呼局、兰局等管内大部分都铺设在冻土地带上,路基冻害较为严重。重要表现形式为:在冬季路基土体冻结时,除路基纵断面在短距离地段内产生不均匀冻胀或路基发生冻结裂缝外,还存在这冰锥、冻胀丘、路基融沉及路基边坡滑坍等一些独特的表现形式。冻害发生发展时期,一般从每年10月中旬起至次年7月中旬止完全回落完。对铁路线路影响很大。

每年都会投入大量人力物力来处理路基冻害。根据历年调查统计报告,沈局关内有冻害207处多,其中冻害高50mm~300mm的冻害6处、50mm 以下的冻害198处,冰锥3处。冬季线路冻胀凸起冰锥流水成冰,冰水漫及线路影响行车。为了预防冻害事故的发生,在冬季需派人看守观察组织刨冰,每年仅用于刨冰的工数就达5000多工日。夏季路基融沉病害情况严重,在管内就有200多处严重下沉地段。有的地段融沉很快,几天就的抬道一次,全年累计下沉达200mm~300mm,情况严重的,如潮乌线8km ,在1972年曾发生过5小时内,路基连续融沉达1。4m,造成列车颠覆事故。每年用于路基冻害融沉抬道的砂石料数量就达30000多立方米,使用的劳动里有20000多工日。 可见,路基冻害的存在,不仅增加了维修养护劳动里,影响了正常维护,加大了维修养护的成本,而且使的线路质量下降,使用年限大大缩短,因此如何整治寒冷地区路基冻害减少维修养护工作量,确保行车安全一直受到各级 领导的高度重视。经过多年的研究和实践,总结出了一套防治冻害的措施,实验了多种处理病害的新方法,取得了一系列成果,进一步完善了寒冷地区路基冻害的防治技术,对今后的设计和施工具有重要意义。 第二章冻胀的形成原因 路基冻害是一个物理力学过程,土冻结是由于水热动力变化而产生的应力应变状态。凡温度等于或低于摄氏零度且含有冰的土称为冻土(frozen soil)。冻土冻胀时能够引起铁路线路变形而形成冻害。当以冻胀的土融化时由于融土的透水性和压缩性提高而使其承载力显著下降,当水分过饱和时又会产生路基基床翻浆冒泥等。因此对路基冻土的发展变化规律的研究就非常重要。

各地冻土深度参考

各地冻土xx 【冻土带范围】: 我国冻土带主要分布在北纬30度以北的广大地区,此线以南几乎不见冻土。西部川陕地区由于山脉地形屏障,北纬33度以南未出现过冻土现象。 【主要测站最大冻土xx】 杭州5厘米;上海至武汉一线8-10厘米;合肥11厘米;济南—西安45厘米;北京85厘米;兰州—银川103厘米;呼和浩特、沈阳120厘米以上;哈尔滨200厘米;长春150厘米;丹东、大连90厘米。 【冻土xx的影响】 冻土气象观测资料对建筑、工程施工、交通运输和农田水利建设都具有重要意义。在季节性冻土地区埋设输油管道和自来水管等地下管道时,需在冬季采取加热或绝热措施,或者深埋至最大冻土层以下,以免有冻裂的危险,但过深则会造成人力、物力的浪费;房屋地基也要在最大冻土深度以下,以保证坚固安全;春季冻土融化使道路返浆,不便行走和运输、并对农业生产和人民生活造成重大影响。 冻土最深的地方是在大兴安岭北部、新疆和青藏高原,例如,内蒙古的二连浩特和新疆的乌恰都在300厘米以上,位于新疆天山腹地的和静县巴音布鲁克气象站,曾记录到439厘米的深度,是我国冻土记录中的冠军。 在高山或高原上的冻土,有些年份常延至盛夏才能融化,还有至9月份未化完的,新的一年的冻土过程又开始了,实际上这些地区已逐渐向永久冻土层过渡。大约在年平均气温低于—5度,便会有永冻土存在,青藏公路昆仑山北坡、西藏北部安多地区永久冻土层厚达80—100米; 山西省海拔2896米的五台山气象站1976年修建上山公路,在顶段一米深也有经夏不化的永冻土存在。 我国xx面积约有

214.8万平方公里,主要集中在青藏高原和大小兴安岭地区。

中铁某局永冻土层路基施工技术

中铁某局永冻土层路基施工技术 永冻土地区公路路基施工技术中铁某局第四工程处 2001 年 9 月目录 《1、永冻土地区公路路基施工技术》项目合同 ; 《2、永 冻土地区公路路基施工技术》研究报告 ; 《3、永冻土地 区公路路基施工技术》测试资料 ; 《4、永冻土地区公路 路基施工技术》建设单位意见 ; 《5、永冻土地区公路路 基施工技术》主要参考文献。中铁某局科技开发计划项目合同项目名称 : 301 国道博克图—牙克石段 A 合同段永冻土地区公路路基施工技术研究负责单位:中铁某局第四工程处项目负责人:起止年限 : 二 OOO 年至二 OO 一年一、研究现状及简要说明永冻土即多年冻土,在我国,多年冻土主要分布在内蒙古自治区和黑龙江省大小兴安岭一带以及青藏高原和甘肃、新疆高山区。我国冻土力学研究开始于二十世纪六十年代,五十年代初期,道路建筑事业迅速发展,由于技术标准低,没有采用有效的防抗冻措施,致使道路的冻胀翻浆破坏大量出现,严重阻碍交通运输业的发展。人们通过野外道路实际情况调查,因地制宜的采取换填石灰土、粉煤灰土、天然沙砾等方法处理道路的冻胀翻浆,取得了一定成绩。近年来我国也有许多冻土工作者提出各种计算冻深、 冻胀量、冻胀力的公式。 188 5 年俄国工程师斯图金伯格提出了冻土水分迁移假说,将冻胀形成同土的毛细管作用相联系。1916-19 30 年由美国学者泰伯研究出结晶力作用下迁移理论使水分迁移理论向前跨出一大步。 ”概念,将地下水、土颗粒美国学者贝斯考提出了冰析出和冻胀的土颗粒“临界尺寸

性质、毛细管性质综合起来评价土的冻胀情况。 195 7 年美国学者潘纳提出一个假说,认为水冰边界上的吸力和水向生长起来的冰晶的迁移决定于土系的孔隙尺寸,他将土中水分迁移和冰析出、同土的分散程度和孔隙率紧密联系起来。另外,也有一些学者将水分迁移变化、冰析出、土冻胀和冰结锋面的水分冷却、自由能、土水势的变化联系起来,探讨冻胀问题。应该说,现今的研究是试验、理论并举,并都已有了长足的进步,并有相当一部分成果应用于工程实践,但是理论与实践仍未能很好的统一,缺乏相互支持,没有形成完整的永冻土地区路基施工方案,和具体的施工细则。我处承建的 301 国道博克图至牙克石段二级公路 K18900 0 — K199000 及K201000— K 217000,全长 2 6.60 9km,跨越大兴安岭,海拔高度 729 米至 1037 米。公路沿线属于温带大陆性气候,年最高气温 36.5? ,最低气温— 46.7? ,全年无霜期仅有 137 天,冰冻深度 ? 3 米,最大积雪厚度 3 1 厘 米。公路地处零星岛状永冻土带,永冻土主要分布在山间谷地、河漫滩、阶地及阴坡植被覆盖地带,在公路里程上体现为 K190 000— K20 4000 以及 K 210000 — K213000 段内。我处在铁路路基施工中已取得一些经验,高寒地区永冻土公路路基施工在我局尚属首次。通过该工程的建设,总结永冻土地区公路工程的施工方案及冻土地区各种不良地质的处理技术。二、要研究内容及关键技术一、永冻土的性质和分类; 二、保护永冻土的方案和材料; 1 三、永冻土路基的沉降情况; 四、永冻土地区不良地质的处理技术; 五、永冻土路基的边坡防护; 三、达到的目的、技术经济指标及成果形成一、通过立项研究,制定科学合理的施工方案,正确指导和控制并掌握永冻土的性质和永冻土路基工程的施工工艺及操作细则,使路基沉降

季节性冻土对工程的影响及防范措施资料讲解

季节性冻土对工程的影响及防范措施 冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时/数日以至半月),季节冻土(半月至数月)以及多年冻土(数年至数万年以上)。地球上多年冻土,季节冻土和短时冻土区的面积约占陆地面积的50%,其中,多年冻土面积占陆地面积的25%。冻土是一种对温度极为敏感的土体介质,含有丰富的地下冰。因此,冻土具有流变性,其长期强度远低于瞬时强度特征。中国冻土可分为季节冻土和多年冻土。季节冻土占中国领土面积一半以上,其南界西从云南章凤,向东经昆明、贵阳,绕四川盆地北缘,到长沙、安庆、杭州一带。季节冻结深度在黑龙江省南部、内蒙古东北部、吉林省西北部可超过3 米,往南随纬度降低而减少。多年冻土分布在东北大、小兴安岭,西部阿尔泰山、天山、祁连山及青藏高原等地,总面积为全国领土面积的1/5 强。冻土地区气温低,土层冻结,降水少,流水、风力和溶蚀等外力作用都不显著,冻融作用则成为冻土地貌发育的最活跃因素。随着冻土区温度周期性地发生正负变化,冻土层中水分相应地出现相变与迁移,导致岩石的破坏,沉积物受到分选和干扰,冻土层发生变形,产生冻胀、融陷和流变等一系列复杂过程,称为冻融作用。它包括融冻风化、融冻扰动和融冻泥流作用。融冻泥流是冻土地区最重要的物质运移和地貌作用过程之一。一般发生在数度至十余度的斜坡上。当冻土层上部解冻时,融水使主要由细粒土组成的表层物质,达到饱和或过饱和状态,从而使上层土层具有一定的可塑性,在重力的作用下,沿着融冻界面向下缓慢移动,形成融冻泥流,年平均流速一般不足1米。由于泥流顺坡蠕动时,各层流速不一,表层流速大于下层,所以有时可把泥炭、草皮等卷进活动层剖面中,产生褶皱和圆柱体等构造形态。 季节性冻土指的是冬季冻结春季融化的土层。自地表面至冻结层底面的厚度称冻结深度。季节性冻土是受季节性的影响,冬季冻结、夏季全部融化。我国季节性冻土区面积大约513.7万平方千米,占国土面积的53.5%,其南界西从云南章凤,向东经昆明、贵阳,绕四川盆地北缘,到长沙、安庆、杭州一带。季节冻结深度在黑龙江省南部、内蒙古东北部、吉林省西北部可超过3米,往南随纬度降低而减少。季节性冻土的冻胀性、融沉性等特性对工程影响重大。所以在季节性冻土地区的工程建筑或项目应特别注意考虑季节性冻土对工程的影响及防范措施。

路基冻害整治

寒冷地区路基冻害整治(2006-3) 铁建齐齐哈尔勘测设计院蔡松昆路基冻害是严寒地区影响铁路安全及正常运营的常见病害,它与寒冷的气候有关,冰冻线能达到相当深度,又涉及到土的特性。在哈局管内的各种路基病害中,路基冻害因其分布广、时间长、工作量大、影响行车非常严重而占首位。如何整治路基冻害,减少维修养护工作量,确保行车安全受到各级领导高度重视。 路基表层冻害的防治 一是排水及隔水。其目的在于排除地表水或降低疏导地下水,以及隔断下层水,以消除或减少路基土体的冻胀。具体措施包括:地表排水——通过修建侧沟、天沟、排水沟、排水槽、截水沟等,尽一切可能使地表排水畅通,并将大量地表水由桥梁及涵洞排走;基床排水——通过基床整形(平整基床及路肩)、挖除道碴陷槽、路肩换渗水性土壤、加设横向盲沟、纵向盲沟、横向排水管等排水;排除地下水——通过截水明沟、渗水暗沟(截水渗沟、边坡渗沟、支撑渗沟)、渗水隧洞等排水;隔水——利用塑料薄膜、聚苯乙烯薄板、聚氯乙烯软板材料制成的隔水层或树脂类注入等方式,隔断毛细水的上升及隔断冬季土冻结时所产生的水分向上迁移。 二是改土。其目的是换除路基土体中的不均匀土质或改良土的性质,以消除或减少路基土体的冻胀。 三是隔温。其目的是使冻胀性土脱离冻结层或部分脱离冻结层,从而消除或减少路基土体的冻胀。 路基深层冻害的防治 路基深层冻害产生在路基基床土体的下部。根据均质土体的冻胀情况来看,冻胀强度最大的部位均发生在路基表层,只有当地下水位较接近最大冻结

深度时或在最大冻结深度内时,则最大的冻胀才发生在下部。只有当开式析冰系统时,其下部的冻胀土才产生一定的冻胀,而且冻胀发生在冻结期的后期(约2~3月份)。所以防治深层冻害主要是整治地下水。 多年冻土地区路基的构成,其上部为季节融化层,下部为多年冻土层。所以它除了上部的季节融化层具有季节冻土地区路基冻害的特点外,下部则有多年冻土路基的特殊病害——路基热融沉陷、路基冻融坍塌、路堑边坡热融滑坍及路堤边坡表层滑坍。多年冻土地区路基特殊病害的防治总的概括为两大类:一是在使用中保持土冻结状态的原则(即采用保温措施等),这种原则适用于含冰丰富的冻土或厚层地下冰地带;二是在使用中冻土可以融化或局部融化,或控制融化速度,这一原则一般使用于厚度较薄的冻土层或含冰量局部较大的岛壮冻土地带。 路基冻害成因 牙林线k92+00~k92+845位于岩山—育林区间,为连续并垂直衔接的多年冻土地带,年平均气温-2℃,多年冻土上限为0.9m,线路位于阳坡沟谷地段,地势较平坦,路堤高1.5m,路堑高1.3m,路堤填料为砂粘土。线路右侧有两处积水坑,形成潜流及渗透作用。地表塔头草及灌木丛生,泥炭层厚0.4m,基底冻结上限下降大于1.50m,上限以下为冰土互层(含冰40%),冬季形成冻害,最大冻高150mm,夏季融后流动路基下沉累计达900mm。下沉时间为7~9月,尤以雨后为大。 地温动态:基底地温明显升高,在路基面以下5m深度范围内,一般较自然地温高2~5℃,多年冻土上限比正常的0.9m下降1.5m,剖面成U型槽,且偏于路基中心的右侧。在基底下地温最低时仍有0~0.3℃的正常温存在。 水温水位动态:凡路基冻害较大及路基严重下沉地段的基底融化槽内均存在自由水,它们由线路右侧的积水坑补给,透过基底,并在基底进行热交换。 上述地质地貌和病害特点可知,基底富冰冻土是路基下沉的内部原因,积水坑水的渗入及积存所引起的热交换作用则是其外部原因。 每年10月份进入冻结阶段,气温逐渐下降到0℃以下,路基土层中的水

北方寒区季节性冻土对隧道工程的影响

北方寒区季节性冻土对隧道工程的影响 发表时间:2018-09-18T16:19:37.420Z 来源:《基层建设》2018年第26期作者:方贞 [导读] 摘要:季节性是影响施工安全、进度和质量的主要因素之一,因此在施工过程中应采取一系列的技术措施和管理措施来降低其影响。 中建二局第三建筑工程有限公司湖北省武汉市 430000 摘要:季节性是影响施工安全、进度和质量的主要因素之一,因此在施工过程中应采取一系列的技术措施和管理措施来降低其影响。冬季施工是保证工期的必要选择,我国北方寒区冬季施工亦在逐渐增多,所以探讨北方寒区冬季施工的特点、安全处理措施是很有必要的。 关键词:北方寒区;冬季施工;隧道;安全措施 一、寒区冬季施工特点及主要问题 寒区冬季施工特点:(1)冬季施工受施工条件和环境的不利影响,是各种安全事故的多发期。(2)隐蔽性、滞后性。冬季发生质量事故往往不易察觉,到春天解冻时,一系列质量问题才暴漏出来,因而会对质量事故的处理带来很大的难度,同时也会埋下安全隐患。(3)冬季施工的计划和准备时工作时间必须充分。如果准备时间不足,仓促施工,技术要求复杂,往往会诱发工程安全事故的发生。 寒区冬季施工主要问题:(1)季节性冻土影响边坡稳定。(2)季节性冻土影响隧道围岩稳定。 二.季节性冻土对边坡稳定的影响 2.1水分迁移对边坡稳定性的影响 对于土质边坡,冻结土表面随着温度升高逐渐融化,使土体含水量升高,抗剪强度降低,下层土体为一个近似不透水的冻结层,因此上层融化的水不能流入下层土体,只能沿交界面运动,形成流体状态的土,严重时会造成融冻泥石流和热融塌方等地质灾害。季节性冻土区土坡由于土的蠕变特性,安全度随时间降低,同时边坡安全系数随边坡土体的温度升高也不断降低,土体的流变性随含水量的增加而增加。 2.2冻融循环对边坡的影响 (1)冻融循环对岩质边坡的影响 在冻融交替作用下,季节性冻土区边坡稳定性将会受到影响。岩石边坡长时间冻融作用下主要表现为表层崩塌的破坏模式。岩石边坡发生破坏主要是由于内在因素和外在因素互相影响的结果,前者表现为地形地貌、工程地质等,后者表现为降水、热融变形以及冻融影响等。根据岩石冻融破坏原理,研究表明片落模式和裂纹模式是岩石发生冻融破坏的基本模式。另外,含水率的大小对岩石冻融损伤有重要影响,水分迁移引起的冰分凝增加对岩石冷生风化有很大程度作用。大量研究试验结果证明,岩石经过反复冻融后其抗压强度和弹性模量存在一定程度的降低,试样中旧有的裂隙明显加宽并诱生新的裂隙。 严寒的冬季常很少发生岩石崩塌现象,主要是因为低温条件下岩石强度和常温状态下相比要强,而且地下水和地表积水的渗流活动在低温情况下都受到约束。进入融化期间,岩石崩塌由于积雪及冻结岩石的融化常易发生。该阶段岩石边坡主要是表层发生破坏。这种作用在含水率高、存在大量软弱结构面的岩体中表现尤为显著。当岩石边坡表层发生冻结使地下水位上升时,裂隙表面水压力作用增强,从而引发边坡滑坡易造成较大规模的破坏。与空气接触的岩石边坡,当边坡表层在气温降到零度以下时变成冻结面。随着温度持续降低及作用时间延长,冻结面具有向内部延伸的趋势,由于水分的聚流作用向冻结面发生移动,边坡内部水分在裂隙面或空隙间向冻结面发生移动,使冻结面含水饱和度大大增加。当饱和度达到一定范围时,液固变换的膨胀力大于岩石抗拉强度,产生的岩石裂缝使岩石承载强度下降。综上所述,边坡的稳定性在冻融循环长时间作用下将引起滑塌,同时由于地质和地下水等的相互影响将引发更大范围的边坡破坏。 (2)冻融循环对土质边坡的影响 在冻融循环作用下,土体的物理和力学性质将发生四个方面的以下变化: ①渗透性,在岩土工程、土壤学和水力学等学科领域关于冻融对岩土渗透性作用的研究很多。此外冻融使土的结构性发生改变,从而使其在垂直方向渗透能力变大。②密实度,冻融会增大其孔隙比而使其密实度降低。③含水率,在冻融期间水分向相变交界面周围移动,冻结土在夏季的融化与多年冻土上限周围地下冰的生成密切相关。④力学性质,在较少冻融循环下,其变形模量会有大范围的减小,伴随细粒增多减少程度越大。因此,冻融循环造成变形模量降低。常认为冻结发生过程中土体密度以及土体结构性的变化造成土体强度的增大降小。冻融过程中含水量与强度呈负相关。在夏季,集中降水坡体含水量增大;常年冻融循环作用下,水分迁移使边坡上层土体含水量增多。而土体的渗透性在冻融发生过程中变大,使得大量水分迁移到边坡,上层土体处于饱或过饱和状态,尤其新幵挖的人工边坡表现明显。在各种因素综合作用下,多年冻土土质边坡稳定性降低。 2.3季节性冻土地区边坡失稳的类型 边坡失稳按照其成因可以归纳为以下四种类型: (1)蠕变型滑坡 冻土区的特殊性是冰以及冰一土胶结结构形成了冻土蠕变变形的特征。在低应力情况下,边坡岩土体即具有蠕变行为,不论边坡的陡缓均可能具有蠕变变形。高富冰区的冻土是非衰减蠕变,周期性蠕变作用导致边坡失稳。另外,由于孔隙间水气冻化凝结形成的粒状冰,融解水渗流过程中结冻成冰透镜体,因此在多年冻土区边坡工程中,含有较为发育的土夹冰层、饱和冰和富冰冻土层,甚至部分地区在粗碎岩体积聚内部填充有地下冰。含冰量越多,边坡就具有较强蠕变性。边坡产生变形主要包含两阶段。第一阶段是冻结时边坡土体沿坡面垂直方向隆起,融沉时沿法线方向降落而顺下坡发生移动;第二阶段是处于融化期的季节融化层在自重影响下沿顺坡方向的流变以及蠕变发育过程。 (2)冻结滞水型滑坡 在适合环境下,边坡表层土体发生冻结时,促使边坡内部地下水不断富集和伸展,边坡的冻结滞水效应使岩体抵抗强度减小、静水压力及动水压力升高等,边坡的整体稳定性降低,变形破坏的加速促发滑坡产生。冻结作用作为外动力因素加速冻区边坡整体变形并引发滑坡发生。其作用特殊性主要是坡体冻结使地下水的渗流状况改变,坡体地下水逐步富积,坡体含水量增大、软化区域扩展、减小强度以及动静水压力增大,使边坡整体稳定性减小。“季节性冻结滞水促滑效应”产生的必备因素就是地下水脉状分布状态和泉眼的排泄方式。季节

铁路路基冻害原因及整治技术探究

铁路路基冻害原因及整治技术探究 摘要: 在高寒地区的铁路路基往往会发生冻害,影响铁路的正常运行。本文就以同煤集团青磁窑铁路专用线路基冻害影响及其整治技术进行一下讲解,分析一下路基冻害形成的原因,针对不同因素造成的冻害,采用的不同的治理措施,希望对今后相关内容的讨论提供一定的参考。 关键词: 路基;冻害;原因分析;防治措施 前言 青磁窑铁路全长9.79km,冻害主要集中在青磁窑专用线2.9km处,该地区干旱少雨,温差较大,最低气温-33.3℃;年平均降雨量为114 ~195 mm,东多西少,大部分集中在7 ~9 月。该铁路的钢轨轨面的最大冻结高度达35 mm,主要是发生在严寒地区的线路段,由于冬季长,这一路段多为冻胀敏感性土;路堤内含水率一般为18 % ~25 %。青磁窑专用线在每年发生线路冻害严重的时间主要集中在12月至次年的2月,严重影响行车安全。因此,应根据不同地段的情况,提出不同的治理措施,消除冻害,确保安全运营。 1 青磁窑线冻害特点调查分析 通过我公司管辖范围内冻害地段的调查可以得出: (1) 经调查,在发生冻害线路段处,排水不良、排水设施损坏、维修养护不及时等问题尤为突出。 (2) 发生冻害地段以粉质粘土和砂粘土为主。 (3) 冻害主要发生在小路堑、低矮路堤、涵洞和路桥过渡地段。 (4) 发生冻害路段的含水率,一般都大于20 %;地下水埋藏较深路段,几乎对冻害无影响;两侧的灌溉农田对冻害影响较大。 (5) 部分涵洞地段由于设计的过水能力不足,导致涵顶有冻害产生。 (6) 部分路段路基下沉,在列车荷载作用下,道碴两侧土垄较高产生冻害。 (7) 冻胀从每年12月底开始,最大冻胀量出现在次年1 月底,2 月为稳定期,3 ~ 4 月开始消融并伴随翻浆冒泥、路基下沉。 2 青磁窑铁路冻害原因分析 形成冻害的因素有: 温度、水分、土质等。线路填料质量较差。由于降水及

冻土地区铁路路基设计

冻土地区铁路路基设计手册(新修订) 第一节季节性冻土 一、季节性冻土的定义 表层冬季冻结,夏季全部融化的土(岩)称为季节性冻土。 二、季节性冻土的分类(级) 季节性冻土应根据土的类别、冻前天然含水率,冻结期间地下水位距冻结面的最小距离和平均冻胀率分为不冻胀、弱冻胀、冻胀、强冻胀和特强冻胀五类,详见表18—1。 表18—1 季节性冻土的冻胀分级 土的类别冻前天然含水率ω (%) 冻结期间地下水 位距冻结面的最 小距离h w(m) 平均冻胀率 η(%) 冻胀等级 及类别 粉黏粒质量不大于15%的粗颗粒土(包 括碎石类土、砾、粗、中砂,以下同), 粉黏粒质量不大于10%的细砂 不考虑不考虑 η≤1 Ⅰ级不冻胀 粉黏粒质量大于15%的粗颗粒土,粉黏 粒质量大于10%的细砂 ω≤12 >1.0 粉砂12<ω≤14 >1.0 粉土ω≤19 >1.5 黏性土ω≤ωp+2 >2.0 粉黏粒质量大于15%的粗颗粒土,粉黏 粒质量大于10%的细砂 ω≤12 ≤1.0 1<η≤3.5 Ⅱ级弱冻胀 12<ω≤19>1.0 粉砂 ω≤14 ≤1.0 14<ω≤19>1.0 粉土 ω≤19 ≤1.5 19<ω≤22>1.5 黏性土ω≤ωp+2 ≤2.0 ωp+2<ω≤ωp +5 >2.0 粉黏粒质量大于15%的粗颗粒土,粉黏 粒质量大于10%的细纱 12<ω≤18 ≤1.0 3.5<η≤6 Ⅲ级冻胀 ω>18 >0.5 粉砂14<ω≤19 ≤1.0 19<ω≤23 >1.0 粉土19<ω≤22 ≤1.5 22<ω≤26 >1.5 黏性土ωP+2<ω≤ωP+5 ≤2.0 ωP+5<ω≤ωP+9 >2.0 粉黏粒质量大于15%的粗颗粒土,粉黏 粒质量大于10%的细纱 ω>18 ≤0.5 6<η≤12 Ⅳ级强冻胀 粉砂19<ω≤23 ≤1.0 粉土22<ω≤26 ≤1.5 26<ω≤30 >1.5

高三地理冻土问题

青藏铁路要穿越“千年冻土”区,必须攻克的难题之一是:只有设法保持该区域的冻土不受夏季高温影响,确保路基坚固、稳定.大家都知道:严寒的冬季,冻土是坚硬的,而外界气温升高时冻土会熔化,使路基硬度减弱,甚至变软,火车的重压会使路基及铁轨严重变形.因此,如何确保冻土的状态在夏季与冬季一样,就成了必须解决的难题.我国科技工作者创造性地解决了这一难题,并且,其中的三个关键措施都只运用了简单的物理知识. 一是“热棒”:被称为不用电的“冰箱”.在冻土区,路基两旁插有一排碗口粗细、看上去像护栏的金属棒,这就是“热棒”.它们的间隔为2m,高出路面2m,插入路基下5m.棒体是封闭中空的,里面灌有液态的氨,外表顶端有散热片.我们知道,酒精比水更容易变成气体,而液态氨变成气体比酒精还要容易.正是液态氨在“热棒”中默默无闻地工作,使它成了在夏季保持路基冻土的“冰箱”. 二是“抛石路基”,被称为天然的“空调”.在冻土区修筑路基时,其土层路基的中间,抛填了一定厚度的碎石块,碎石之间的空隙不填实,并且与外界空气相通.这样的结构具有“空调”的功能,使得冻土层的温度基本不随外界气温变化,能有效地保持冻土的稳定性. 三是“遮阳板路基”,又称旱桥:被称为隔热“外衣”.遮阳板路基,是在路基的边坡上架设一层遮挡太阳的板材,能有效地减弱太阳热对路基温度的影响.热棒工作原理 在可可西里地区,在铁路和公路两旁可以看到很多竖立的“铁棒”,有关技术人员说,这其实是一种高效热导装置,叫做“热棒”。车站工作人员告诉记者,热棒是青藏铁路在运营过程中处理冻土病害、保护冻土的有效措施。 据了解,热棒是一种由碳素无缝钢管制成的高效热导装置,5米埋入地下,地面露出2米。具有独特的单向传热性能:热量只能从地面下端向地面上端传输,反向不能传热。在冬季,热管内工作介质由液态变为气态,带走管内热量;在暖季,热棒则停止工作。独特的冷却地温的作用使热棒堪称“魔棒”。 热棒的结构大致为一个密闭空心长棒,内装有一些液氨,液氨沸点较低,在冬季土中热量使该液体蒸发,到顶部,通过散热片将热量传导给空气,冷却后又液化回到下部,保持冻土冷冻状态不松软。在夏季,液体全部变成气体,气体对流很小,热量向底部传导很慢。 中圣研制开发了中国人自己的冻土治理技术——低温热棒,成功解决了40多年来一直困扰中国科学家和青藏铁路建设者的重大技术难题——青藏铁路路基多年冻

3新藏公路冻土路基的病害分析与防治

新藏公路冻土路基的病害分析与防治 摘要:在多年冻土地区,路基经常发生翻浆、冒泥、沉陷等现象,对公路造成很大的破坏。本文结合新藏公路既有路基病害情况,论述了多年冻土区公路常见病害的产生原因,分析了影响路基冻害的特点及危害,提出了多年冻土地区路基冻害防治措施。 关键词:新藏公路;多年冻土;路基病害;治理 1.引言 国道219线新藏公路k540+000—k651+000沿线分布有连续片状多年冻土,该冻土层构成了区域性较稳定的隔水层,从而使其上部季节性融化层中赋存有冻结层上水(液态),其下的含水层中赋存了冻结层水(固态)。该区域地下水总体可分成冻结层上水和冻结层水,水文地质条件较复杂。由固态地下水构成的冻结层,起着隔水层的作用,随季节、温度等因素的变化,其上部随时还可以转化成液态水的含水层。由于水在固液相转化过程中体积收缩与膨胀差近10%。因此,冻结时体积增大,产生附加压力,引起冻胀;融化时体积收缩引起融陷,会直接破坏路基的稳定性。该段主要是冬季冻胀和春季融沉,冬季路基开始冻结,在负温区内土中的毛细水、自由水先结冻,然后出现水分迁移现象,使土基中水分再冻结发生体积膨胀,出现冻裂或冻胀隆起病害;春季气温回升,土基开始解冻,但由于水分不易向下及两侧排除,使土基过湿,出现凹陷或翻浆病害,并进一步导致路基变形和路基稳定性变化。多年冻土地区的公路路基容易产生冻胀和融沉,严重影响行车条件。因此,对其进行深入研究是非常必要的。 2.多年冻土公路病害影响因素 2.1水文地质条件 2.1.1冻结层上水 路段所在区域的冻结层上水依据含水介质的不同,可分为松散岩类冻结层上水和基岩类冻结层上水两类,与公路工程关系密切的是松散岩类冻结层上水。因多年冻土上限埋藏较浅,冻结层上水发育,寒冬季节该层地下水又全部转变为冻结层下水。冻结层上水包括:(1)基岩类冻结层上水,包括构造裂隙水和风化裂隙水,公路沿线基岩出露段的季节融化层中均有分布。(2)松散岩类冻结层上水,该类地下水接受湖盆周边山岭区大量冰雪融水和少量大气降水补给,赋存于近湖岸基岩层上的坡残积、冲洪积层和湖相沉积层中,由盆地四周向湖心低洼处汇集。公路路基长期处于毛细水上升带或地下水浸泡之下,冬季产生路基冻胀,破坏桥涵基础;夏季冻土融化,引起路基冻融沉陷和翻浆。 2.2.2冻结层孔隙水 在钻探深度范围内,多年冻土上限以下的孔隙水以固态冰存在,地下水冻结成冰加大了岩土体的强度,在保持冻结条件下岩土体物理学性质较好。据采取的 -Na 冰水样进行简分析:其总含盐量为4957.00mg/L,地下水水化学类型为Cl-SO 4型。 2.2气候条件

季节性冻土地区道路冻深的研究

季节性冻土地区道路冻深的研究 发表时间:2017-07-14T16:04:09.723Z 来源:《基层建设》2017年第8期作者:高春元[导读] 摘要:冻深的确定是季节冻土区路基防冻设计的主要内容之一。根据察格高速公路典型路段道路冻深的现场观测资料,对确定道路冻深的各种现场方法的优缺点进行了对比,并且对影响道路冻深大小的气温、地下水位、土质和含水量、线路走向和路基断面形状等因素进行了分析探讨。 青海一达交通科技有限公司青海西宁 810000 摘要:冻深的确定是季节冻土区路基防冻设计的主要内容之一。根据察格高速公路典型路段道路冻深的现场观测资料,对确定道路冻深的各种现场方法的优缺点进行了对比,并且对影响道路冻深大小的气温、地下水位、土质和含水量、线路走向和路基断面形状等因素进行了分析探讨。 关键词:季节性冻土;道路;冻深 季节性冻土是指冬季冻结而春夏融化的土层,受季节气候影响明显。我国季节性冻土面积约为514万km2,占国土面积的53.5%。季节性冻土的冻胀和融沉作用对工程影响非常大,冻结时地层承载力大,解冻时融陷强度低。因此在季节性冻土地区进行公路、铁路建设时需严格考虑季节性冻土对工程的影响并采取适当的防范措施以保证冻土路基的稳定性。土体的冻胀将造成公路、铁路线路不平整,甚至影响行车安全,所以设计冻深的合理确定是保证冻土路基稳定的前提。土的冻结深度是冻结能力的体现,也是决定各种冻土地区工程防冻胀处理措施的主要指标。 1 设计冻深常用计算方法 1. 1 改进的斯蒂芬公式法 斯蒂芬公式是目前广泛应用的冻深计算公式,是基于冻深与气温之间相互关系得到的。最初始的斯蒂芬公式考虑因素过于简单,使得冻深计算精度误差较大,后经多年实践研究,对公式中热量进行修正,提出了改进的斯蒂芬公式: 2.1 气温 在建立气温与冻深的经验关系时,为了能够较真实地反映气温对冻深的影响,通常引入空气冻结指数Tkd的概念,用空气冻结指数代替气温变量,建立空气冻结指数与冻深的关系空气冻结指数是指某地在冻结期间的日平均气温tkd累积值的绝对值,冻结期为从本年度入冬时月平均气温在零下那一个月开始到来年初春月平均气温在零上那一月终止的一段时间,日平均气温为每天2点、8点、14点和20点四个时刻气温的平均值。冻结指数Tkd可用下式表示:

既有铁路路基冻害治理的室内研究

既有铁路路基冻害治理的室内研究 发表时间:2019-06-19T10:39:44.993Z 来源:《基层建设》2019年第8期作者:王松王宁伟王顺 [导读] 摘要:本文针对滨绥线哈牡段的特殊气候,简要分析了路基冻害产生的原因,并就电动化学法处理路基冻害进行了室内试验研究,对土层采用分层治理的方法,得到一种扰动小、无污染的治理措施。 沈阳建筑大学土木工程学院辽宁省沈阳市 110168 摘要:本文针对滨绥线哈牡段的特殊气候,简要分析了路基冻害产生的原因,并就电动化学法处理路基冻害进行了室内试验研究,对土层采用分层治理的方法,得到一种扰动小、无污染的治理措施。 关键词:路基冻害;冻胀;电化学;隔水 我国东北地区既有铁路路基冻害现象比较普遍[1],路基的冻胀会使路面鼓包、开裂,使路面错缝或折断,造成道路破损,影响铁路运行速度和使用寿命[2],因此必须采取应对措施,防止路基发生冻胀产生的不均匀变形。 1 路基冻胀机理 土是由固体颗粒、水和气体组成的三相体系。在冰冻季节,因大气负温影响,使土中水分冻结成为冻土。当土层中温度降到负温时,土中的自由水首先在0℃时冻结成冰晶体,随着气温的继续下降,弱结合水的最外层也开始冻结,土粒产生剩余分子引力。结合水膜变薄,使水膜中的离子浓度增加,加强了渗透压。若未冻结区存在水源和水源补给通道,则未冻结区水分会不断向冻结区迁移积聚,使冰晶体不断扩大,在土层中形成冰夹层,土体发生冻胀。 1.1 土的类别:当土层中碎石等直径较大的颗粒含量高时,不易发生冻胀;以粉黏粒为主的土类,其冻胀性最大。 1.2 温度:负温是产生冻胀的必要条件。温度达到冻胀起始温度时,土体温度向外扩散,当土体中有充足水分来源时,其冻胀量越大。 1.3 水源:路基土体含水量大于起始冻胀含水量时,会发生膨胀,地表水和地下水为土体冻胀水分的主要来源。 2 路基冻胀治理的室内试验 目前,工务部门现场多采用冻害垫板、安装轨道加强设备等措施来整治冻胀问题,但其整治方法范围有限且扰动大,迫切需要扰动小、能够精细控制的工法和工艺。 电动法加固软土地基是将土体通以直流电,在电场作用下使土体发生排水固结,并提高土体强度的一种地基处理方法[3]。电化学注浆法是在电渗的基础上在电极中分别注入一种或两种以上的化学浆液,以达到加速排水和对土壤改性以提高土体强度和耐久性的目的。为了模拟现场实际的工况,对试验土样进行了分层设计,下层为渣土层,上层为粉质黏土层。首先对下层渣土层采用灌入氯化钙浆液与水玻璃浆液的处理方法,然后对上层粉质黏土进行电化学注浆加固处理。 2.1 试验设计:模型箱的尺寸为30cm×20cm×25cm,首先在试验箱内底部铺设厚度为5cm厚的渣土层,然后注入水,使水面与渣土表面持平,以模拟现场地下水的情况;然后在渣土层上铺设10cm厚的粉质黏土,粉质黏土的含水量为35%,并压实,静置24小时后开始进行试验,试验前用微型触探仪测得粉质黏土的承载力为50kPa。 2.1.1 渣土层的灌浆处理:分别插入A、B两根注浆管,两注浆管间距为10cm,注浆管末端插入到渣土层中1cm,如图1所示。 图1 渣土层的灌浆加固 2.1.2 上层粉质黏土的电化学加固:试验采用三组电极平行布置的形式,阳极、阴极距离为15cm,阳极与阳极之间的距离为10cm,电极入土深度为13cm。电极布置图如图2所示,每相邻两组电极通过导线连接在一起并连接到电源控制系统。 图2 电极布置图 2.2 渣土层的隔水治理:向A、B注浆管中分别灌入波美度为44Be的氯化钙与水玻璃浆液,灌入的量以灌满为止,本次试验,A,B两注浆管各灌入氯化钙与水玻璃浆液100mL。间歇30分钟后,进行上层粉质黏土的电化学加固。 2.3 上层粉质黏土的电化学加固:采用阳极、阴极同时灌浆的方法,分别向阳极灌入氯化钙浆液100mL,向阴极灌入水玻璃浆液100mL。其中,氯化钙浆液和水玻璃浆液的浓度均为44Be(波美度)。通电电压为20V,电流始终维持在0.9A~2.0A之间,通电10小时后结束。 2.4 试验结果分析 2.4.1 上层粉质黏土的加固:为了便于分析,将试验后的土体分为阳极区域、中间区域和阴极区域三个部分,如图3所示,试验后土体加固区域的大小Be约为整个宽度B的到之间。 图3 土体加固示意图 试验结束后,对粉质黏土进行了不同龄期的微型触探试验,试验结果见表1所示。图4为各区域承载力随龄期增长值。表1 电化学注浆加固后不同龄期承载力对比

铁路路基冻害防治之我见_0

铁路路基冻害防治之我见 青藏铁路,是实施西部大开发战略的标志性工程,是中国新世纪四大工程之一。青藏铁路是世界海拔最高、线路最长的高原铁路,东起青海西宁,西至拉萨,全长1956公里。其中,西宁至格尔木段814公里已于1979年铺通,1984年投入运营。由于地势高,大部分地区热量不足,高于4,500米的青藏高原最热月平均温度不足10℃(50),无绝对无霜期,铁路线路的冻害是分布很广和常见的病害。 摘要:铁路处在大自然中,气候、季节、地理、环境等条件的变化,都有可能使铁路设备受到影响或侵蚀,甚至破坏而酿成事故。青藏铁路处在青藏高原,青藏高原海拔平均高度在4000 m以上,而海拔每增高一千米,气温就下降6摄氏度,所以冻害一直是线路的一大危害,冻害防治工作是工务工作的一个重要方面。 关键词:水利论文期刊,铁路,路基,冻害,防治 青藏高原自然条件十分艰苦,突发性自然灾害时有发生。大自然的变化虽然不以人们的意志为转移,但是,它的变化还是有规律可循的,问题的关键是发现它、掌握它。因此,充分掌握所在地区大自然的变化规律,从预防入手,及时采取有效的对策措施,就能防患于未然,避免或减少自然灾害可能造成的危害。 一、冻害成因 青藏铁路是世界海拔最高、线路最长的高原铁路。青藏铁路沿线地区,几乎全部是在条件非常恶劣的高原缺氧、人迹稀少的高寒地区,平均海拔在4000米以上,年平均气温在-5.6℃―8.6℃。

在严寒地区,路基的冻结膨胀是一种不可避免的自然现象。造成冻害的主要因素是路基基床中水分迁移量,水分迁移是一种极其复杂的现象。影响水分迁移量的主要因素,通常归纳为土、水、温和力四个方面。即:严寒的气温、有冻胀敏感性的土、含有一定量的水和一定的压力,其中水分因素是影响冻胀的主要因素。 二、冻害的分类 在冬季,路基的冰冻,多数是形成较长距离内的均匀冻胀。但在个别地段,则由于局部水文、地质条件的不同,在短距离内产生不均匀的冻胀,这种不均匀的冻胀就会导致线路的不平顺或轨向不良,从而影响设备的使用安全。 不均匀冻胀所形成的局部差异,从线路纵断面上区分,其外部表现形式主要有三种: 1、驼峰状(冻峰):路基道床在较短距离内的冻胀高度,较大于相邻两地段的均匀冻胀高度,所形成的冻害,其最大凸起量甚至可达300mm。 2、凹谷状(冻谷):路基道床在较短距离内的冻胀高度,较小于相邻两地段的均匀冻胀高度,所形成的冻害,其最大凹陷量甚至可达160mm。 3、阶梯状(冻阶):路基道床的两相邻地段,其均匀冻胀高度不同,在两不同冻胀高度的交换点处所形成的冻害,其最大冻胀高度差甚至可达80mm。 三、冻害的防治 1、调查建档 冻害调查是防治工作的开始,调查工作的好坏,关系着冻害的防治

高三地理冻土问题精选

高三地理冻土问题 青藏铁路要穿越“千年冻土”区,必须攻克的难题之一是:只有设法保持该区域的冻土不受夏季高温影响,确保路基坚固、稳定.大家都知道:严寒的冬季,冻土是坚硬的,而外界气温升高时冻土会熔化,使路基硬度减弱,甚至变软,火车的重压会使路基及铁轨严重变形.因此,如何确保冻土的状态在夏季与冬季一样,就成了必须解决的难题.我国科技工作者创造性地解决了这一难题,并且,其中的三个关键措施都只运用了简单的物理知识. 一是“热棒”:被称为不用电的“冰箱”.在冻土区,路基两旁插有一排碗口粗细、看上去像护栏的金属棒,这就是“热棒”.它们的间隔为2m,高出路面2m,插入路基下5m.棒体是封闭中空的,里面灌有液态的氨,外表顶端有散热片.我们知道,酒精比水更容易变成气体,而液态氨变成气体比酒精还要容易.正是液态氨在“热棒”中默默无闻地工作,使它成了在夏季保持路基冻土的“冰箱”. 二是“抛石路基”,被称为天然的“空调”.在冻土区修筑路基时,其土层路基的中间,抛填了一定厚度的碎石块,碎石之间的空隙不填实,并且与外界空气相通.这样的结构具有“空调”的功能,使得冻土层的温度基本不随外界气温变化,能有效地保持冻土的稳定性. 三是“遮阳板路基”,又称旱桥:被称为隔热“外衣”.遮阳板路基,是在路基的边坡上架设一层遮挡太阳的板材,能有效地减弱太阳热对路基温度的影响. 热棒工作原理 在可可西里地区,在铁路和公路两旁可以看到很多竖立的“铁棒”,有关技术人员说,这其实是一种高效热导装置,叫做“热棒”.车站工作人员告诉记者,热棒是青藏铁路在运营过程中处理冻土病害、保护冻土的有效措施. 据了解,热棒是一种由碳素无缝钢管制成的高效热导装置,5米埋入地下,地面露出2米.具有独特的单向传热性能:热量只能从地面下端向地面上端

浅谈铁路工务线路冻害的常见问题及对策

浅谈铁路工务线路冻害的常见问题及对策 摘要:铁路一直是现阶段人们日常出行的主要方式之一,因此保证铁路使用质 量就显得尤为重要,日常工作中相关技术人员需要做好养护与检修工作。基于此,本文立足于线路检修与为维护角度,分析了线路冻害管理中的常见问题以及具体 解决方法。希望本文以下内容的论述可以促进铁路事业进一步发展。 关键词:冻害研判;整治;冻害检查;测量;冻害应急处置 引言 铁路线路冻害问题几乎每年都会发生,分析其形成的主要原因有两个方面: 温度、水,只有在二者共同作用下才会发生冻害问题,也正是因为此种形成因素,铁路线路的冻害问题多发在铁路涵洞中,又因线路所处地理位置不同,阴面和阳面,分单侧冻起和双股冻起,在严重情况下线路下沉几何尺寸变形甚至会引发安 全事故。因此,对铁路工务线路冻害的常见问题及对策研究有着鲜明现实意义。 1铁路工务线路冻害防治中的常见问题 现阶段的铁路冻害防治存在以下几个方面的问题:①冻害检查过程中,很多 检查人员的操作行为并不规范,致使检查结果不具代表性,并且检测过程中发现 的问题也没有做到及时上报。②检测与整治过程中,设备准备不够充分,很多设备没有根据轨道类型进行合理选择。③检测中对于台账的记录并不规范,容易产生数据漏记等问题。并且当年的防冻预防以及防冻检测并不注重往年的数据内容。 ④冻高的测量与整治过程存在问题,现实中很多施工人员没有按照具体规范进行操作。 2铁路工务线路冻害的整治对策 2.1加强既有线冻害的研判和前期准备工作(管内西安局集团公司包西线、甘钟线举例) 2.1.1 冻害的研判 2018年入冬,根据去年冻胀发生情况,结合冻胀迹象提前安排对冻胀情况进 行预判,确定冻胀地段91处,总体比去年增加了12处,包西线、甘钟线各增加 了6处。从以上分布数据分析看出,今年防冻害压力较大车间仍为延安地区的生 产车间。 2.1.2预防冻胀前期主要措施 做好冻害地段撒盐。各单位在10月底前完成91处冻害的撒盐工作。撒盐标准:冻起高度在5mm~10mm撒盐2kg/孔,冻起高度在10mm以上每增加5mm,每孔撒盐量增加1 kg。撒盐作业需提前准备量具,按标准撒盐。做好涵洞封堵保温。根据前期调查,确定需涵洞封堵16处、涵洞保温15处,对设备的全长、净高、净孔进行详细登记,建立相关台账,对封堵面积要进行明确。 2.2加强冻害检查监测 2.2.1动态监测 在铁路工务线路冻害监测过程中,需要进一步加强机车添乘的动态监测方式。轨控人员应该在检测过程中合理的应用车载晃车仪以及便携式添乘仪等相关仪器 进行数据测试,根据测试的实际数据进行分析,从而达到对治理工作的正确引导。检测过程中如果发现基冻害回落量较大的线路病害,需要及时向安全生产指挥中 心应急处置调度员进行通知,同时上报线路科。相关检测人员需要对包西、甘钟 线进行每天一检,同时将添乘时间设置在中午(K322/D5086、K321/D5083次),必要时夜间气温最低时加添一次,检测过程中需要注意铁路线的隧道内部检测以

相关主题
文本预览
相关文档 最新文档