当前位置:文档之家› 纳米二氧化钛光催化

纳米二氧化钛光催化

纳米二氧化钛光催化

纳米二氧化钛光催化是一种新型的环保技术,它利用纳米二氧化钛的光催化性质,将光能转化为化学能,从而实现对有害物质的降解和清除。这种技术具有高效、低成本、易操作等优点,被广泛应用于环境治理、能源开发等领域。

纳米二氧化钛的光催化性质是指在光照下,纳米二氧化钛表面会产生电子和空穴,这些电子和空穴可以参与化学反应,从而实现对有害物质的降解。这种光催化反应的原理类似于光合作用,但是它不需要光合色素和光合酶等复杂的生物分子,因此具有更高的效率和更广泛的适用性。

纳米二氧化钛光催化技术可以应用于水处理、空气净化、废气治理等领域。例如,在水处理中,纳米二氧化钛可以将有机物、重金属等有害物质降解为无害的物质,从而实现水的净化和回收利用。在空气净化中,纳米二氧化钛可以将空气中的有害气体如甲醛、苯等降解为二氧化碳和水,从而净化空气。在废气治理中,纳米二氧化钛可以将废气中的有害物质如二氧化硫、氮氧化物等降解为无害物质,从而减少环境污染。

纳米二氧化钛光催化技术的应用还不仅限于环境治理领域,它还可以应用于能源开发领域。例如,纳米二氧化钛可以作为太阳能电池的光敏材料,将太阳能转化为电能。此外,纳米二氧化钛还可以应用于光催化水分解,将水分解为氢气和氧气,从而实现清洁能源的

生产。

纳米二氧化钛光催化技术是一种具有广泛应用前景的环保技术,它可以实现对有害物质的高效降解和清除,同时还可以应用于能源开发领域。随着技术的不断发展和完善,相信纳米二氧化钛光催化技术将会在未来的环保和能源领域发挥越来越重要的作用。

(精选)纳米二氧化钛在物体表面的抗菌作用

纳米二氧化钛在物体表面的抗菌作用 纳米TiO 2 问世于20世纪80年代后期,是一种有着普遍用途的无机材料。因其独特的紫外线 屏蔽、光催化作用、颜色效应等性能,在高级涂料、化妆品、废水处置、空气净化、杀菌和高效 太阳能电池等方面有着广漠的应用前景。纳米二氧化钛(TiO 2 )作为光催化半导体无机抗菌剂,具有广谱抗菌功能,能抑制和杀灭微生物,并有除臭、防霉、消毒的作用,其本身化学性质稳固且对人体和环境无害,光催化作用持久,因此愈来愈取得世人青睐。 纳米TiO 2 的结晶有两种晶态:即金红石型和锐钛型。通常,金红石型的二氧化钛光催化能力差, 而锐钛型的二氧化钛具有强光催化能力。锐钛型纳米TiO 2在H 2 O、O 2 体系中发生光催化反映,产生 的羟基自由基(HO·),能和多种细菌和臭体反映,而有效地灭菌和排除臭味,因此能够制成纳米 TiO 2抗菌剂。纳米TiO 2 抗菌剂具有将细菌及其残骸一路杀灭清除的能力,同时还能将细菌分泌的 毒素也分解掉。而且纳米TiO 2 作为杀菌剂还具有以下几个特点:一是即效性好,如银系列抗菌剂 的成效约在24h左右发生,而纳米TiO 2仅需1h左右;二是TiO 2 是一种半永久维持抗菌成效的抗 菌剂,不像其它抗菌剂会随着抗菌剂的溶出而成效慢慢下降;三是有专门好的平安性,与皮肤接 触无不良阻碍。 本实验采纳了四种新型的纳米TiO 2 喷液(原液、复合液1#、复合液2斡、复合液3#)喷涂在 瓷片和纸片上,并对其在瓷片和纸片应用中的杀菌成效进行了实验观看;同时咱们对涂有纳米TiO 2喷液的部份瓷片通太高温预处置以后对其灭菌成效进行了观看实验。 1 材料与方式 菌种来源 大肠杆菌华南理工大学食物科学与工程学院实验室提供。 材料 培育基 营养肉汤培育基(g/100mL):酪蛋白胨,牛肉浸膏,。 MR-VP培育基(g/100mL):(月示)胨,葡萄糖,K 2HPO 4 ,pH值。 瓷片和纸片 瓷片:3cm×3cm的干净瓷片。 纸片:白度为85(%,ISO)的针叶木浆抄成定量为60g/m2的纸片,其中不加任何化学药品。 纳米TiO 2 :漪丽科技(深圳)提供的漪丽纳米净,黄色透明液体。 大肠杆菌菌液制备及测定方式 大肠杆菌制备 250mL三角瓶中装50mL营养肉汤培育基,接种大肠杆菌,28℃,THZ-C恒温旋转遥床振荡培育24h。将培育出的大肠杆菌稀释10倍后备用(菌含量为14500个/mL)。

纳米TiO2材料的制备及其光催化性能研究

纳米TiO2材料的制备及其光催化性能研究 随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。环境问题已严重影响现代文明的发展,有机污染物具有持久性的特点而长期威胁人类健康,开发和设计仅利用太阳能即可完成对有机污染物降解的新材料将会是解决环境问题的有效方法之一。纳米TiO2作为一种光催化材料,具有优异的物理和化学性质,因而被广泛应用和重点研究。本文就纳米TiO2材料的制备及其光催化性能展开探讨。 标签:纳米TiO2;光催化;制备方法;光催化效能 引言 半导体光催化技术是解决环境污染与能源短缺等问题的有效途径之一。以二氧化钛为代表的光催化剂在染料敏化太阳能电池、锂离子电池、光伏器件以及光催化领域表现出明显的使用优势.但是TiO2本身的弱可见光吸收、低电导率、高载流子复合速率限制了其在工业生产中的进一步使用。科技工作者一般通过掺杂、半导体复合、燃料敏化、表界面性质改性等方法提高TiO2的光电化学性能,使其能在生产实践中广泛应用。 1、TiO2材料简介 TiO2在自然界中的主要存在形态为金红石、锐钛矿和板钛矿三种晶型,其中金红石是TiO2的高温相,锐钛矿和板钛矿两种形态是TiO2的低温相。在三种晶型中光催化活性最好的为锐钛矿型TiO2。锐钛矿型TiO2的禁带宽度为3.2eV 与之对应的激发波长为387nm。所以,TiO2作为光催化剂在紫外光条件下具有催化活性,在可见光下一般没有活性。只有对它的结构进行改性,使它的禁带宽度得以缩小,才可以实现材料在可见光条件下的催化降解反应。改性的方式目前主要有以下几种方法:通过改变晶体内部结构来改变催化剂禁带宽度的离子掺杂方法,通过形成异质结改变能带结构的半导体复合法,提高催化剂对光的吸收能力的表面光敏化法,增大催化剂比表面积使晶粒细化的负载载体法等。光催化材料中电子e一和空穴h十的浓度会影响有机物的降解速度。粒径的减小能够使表面原子增加,使光催化剂吸收光的效率显著提高,使其表面e一和h十的浓度增大,从而提高光催化剂的催化活性。纳米材料不仅仅具备粒径小的优点,而且还具备了小尺寸所带来的特殊的性质,这些特性将在未来的绿色革命中大展拳脚,给环境保护带来巨大的进展。纳米TiO2能够光催化降解水中多种污染物,对染料、卤代烃、多环芳烃、酚类、表面活性剂和农药等都具有降解能力。用TiO2作为光催化剂,可以使多达60多种含氯化合物在光照条件下氧化还原而生成COa和H20等物质。纳米尺度的TiO2相比与普通二氧化钛具有更好的光催化性能,但由于粒径细小在反应过程中容易流失,而且大量的悬浮纳米级光催化剂会阻挡光的吸收也给废水处理后的分离造成极大的困难。由于这些应用中的困难,近年来固定相纳米光催化技术成为了热点研究,进行TiO2纳米膜及其负载技术的催化氧化实验成为主流。在TiO2光催化氧化处理有机污染物方面,国内现在

二氧化钛光催化原理

TiO2光催化氧化机理 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。 如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染 物,将其矿化为无机小分子、CO 2和H 2 O等无害物质。 反应过程如下: 反应过程如下: TiO2+ hv → h+ +e- (3) h+ +e-→热能(4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+(6) e- +O2→ O2- (7)O2 + H+ → HO2·(8) 2 H2O·→ O2 + H2O2(9) H2O2+ O2 →·OH + H+ + O2(10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye→···→ CO2 + H2O (12) 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。 Ti02光催化氧化的影响因素 1、试剂的制备方法 常用Ti02光催化剂制备方法有溶胶一凝胶法、沉淀法、水解法等。不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。Ti02的制备方法在许多文献上都有详细的报道,这里就不再赘述。

二氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全,2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为3.2 eV,当纳米TiO2接受波长为387.5 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为387.5 nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1:

纳米TiO2光催化性能lx

纳米二氧化钛光催化性能的研究 内容摘要 纳米二氧化钛(TiO2)作为一种光催化剂,是一种性能优良的N型半导体材料,在发生反应时表现出较好的光稳定性和较高的反应活性,并且无二次污染,是当前应用前景最为广阔的一种纳米功能材料。本文首先介绍了纳米TiO2的性质及光催化机理,讨论了各种因素对纳米TiO2光催化性能的影响,如晶格缺陷、温度、pH、光照条件以及TiO2的量等。介绍了液相沉淀法,溶胶-凝胶法,微乳液法三种常用的制备纳米二氧化钛的方法及其光催化性能。另外,还介绍了关于纳米二氧化钛的改性方面的成就和几种常见的表征手段。最后简要介绍了光催化技术在环境保护、卫生保健,特别是在光催化功能型材料等方面的贡献,并对其今后的研究进展和应用前景进行了总结和展望。 【关键词】纳米TiO2光催化性能

Study On Photocatalytic Property Of Nano-TiO 2 Abstract Nano-titanium dioxide (TiO2) as a kind of photocatalysts, is a kind of n-type of semiconductor materials, with good light stability and high reactivity and has no secondary pollution, is the current potential applications of the most extensive functional nanomaterials.This article describes the nature and nano-TiO2 photocatalytic mechanism to discuss the various factors on TiO2 photocatalytic effects, such as the performance of lattice defects, temperature, pH, illumination conditions and the dosage of TiO2, etc.Describes performance liquid precipitation, sol-gel, MicroEmulsion preparation of three kinds of titanium dioxide nanoparticles method, and photocatalytic properties.Also, presents of titanium dioxide nanoparticles modifing the achievement and characterization of a few familiar.Finally the photocatalytic technology in environmental protection, health care, especially in the photocatalytic functional materials in the areas of contribution, and on its future progress and application of the summarized and prospects. 【Key Words】Nano-TiO2photocatalysis property

纳米二氧化钛的制备及其应用研究进展

纳米二氧化钛的制备及其应用研究进展 纳米二氧化钛是一种具有广泛应用潜力的纳米材料。它具有高比表面积、优异的光催化性能以及良好的化学稳定性,因而在光催化、防污涂料、太阳能电池、化妆品等领域有着广泛的应用。本文将介绍纳米二氧化钛的制备方法及其在各个领域的应用研究进展。 首先,从制备方法角度来看,纳米二氧化钛可以通过物理法、化学法以及生物法等多种方法得到。其中,物理法包括气相法、溶胶凝胶法、机械法等,化学法主要包括水热法、溶剂热法、水热法等,生物法则是通过利用生物体或其提取物来合成纳米颗粒。每种方法都有其优缺点,研究者可以根据具体需求选择适合的制备方法。 其次,纳米二氧化钛在光催化领域的应用研究较为广泛。纳米二氧化钛可以通过光催化过程将光能转化为化学能,用于降解废水中的有机污染物。研究发现,添加一些能够吸收可见光的材料,如碳量子点、半导体量子点等,可以提高纳米二氧化钛的光催化活性。此外,光催化技术也可以应用于空气净化、自洁涂料等领域。 在防污涂料领域,纳米二氧化钛的应用也备受关注。纳米二氧化钛具有超疏水性和自洁性,可以防止油污、水渍等附着在表面上,使涂层具有良好的自洁效果。此外,纳米二氧化钛还可以通过光催化分解有机污染物,达到净化空气的目的。防污涂料的应用不仅可以提高建筑物外墙的清洁度,还可以延长建筑物的使用寿命。 太阳能电池也是纳米二氧化钛的一个重要应用领域。纳米二氧化钛具有优异的光催化性能和电化学性质,可以作为太阳

能电池中的电极材料。目前,纳米二氧化钛主要应用于染料敏化太阳能电池(DSSC)和钙钛矿太阳能电池(PSC)中。通过 纳米二氧化钛的光催化作用,可以有效提高太阳能电池的光电转换效率。 此外,纳米二氧化钛在化妆品领域的应用也日益增多。纳米二氧化钛可以作为防晒剂,有效抵御紫外线的伤害。同时,纳米二氧化钛还具有抗菌作用,可以用于制备抗菌化妆品。然而,由于纳米二氧化钛对人体的潜在风险,其在化妆品中的应用仍需谨慎。 综上所述,纳米二氧化钛是一种具有广泛应用潜力的纳米材料。它的制备方法及其在光催化、防污涂料、太阳能电池、化妆品等领域的应用研究进展正在不断推进。随着研究的深入,相信纳米二氧化钛将会在更多领域发挥作用,为人们的生活带来更多的便利和改善 纳米二氧化钛(Nano-TiO2)作为一种具有广泛应用潜力 的纳米材料,其制备方法及在光催化、防污涂料、太阳能电池和化妆品领域的应用研究已经取得了显著的进展。随着科技的发展,人们对纳米二氧化钛的研究兴趣日益高涨,相信在未来,纳米二氧化钛将会在更多领域发挥重要作用,为人们的生活带来更多便利和改善。 首先,纳米二氧化钛在光催化领域有着重要应用。纳米二氧化钛具有优异的光催化性能,能够通过吸收紫外光使电荷产生分离,从而引发一系列光催化反应。这使得纳米二氧化钛成为一种有效的光催化剂,可以广泛应用于水处理、空气净化、有机废物降解等领域。例如,纳米二氧化钛可以通过光催化分解有机污染物,如苯、甲醛等,有效净化空气。此外,纳米二

二氧化钛光催化分解甲醛原理

二氧化钛光催化分解甲醛原理

纳米二氧化钛光催化分解甲醛原理 1. 光催化剂的发现历史 自从1972年Fujishima和Honda[2]发现TiO2在受到紫外光照射时可以将水氧化还原生成氢,光催化材料就引起了科研人员的关注。而1976年Carey等[3]将TiO2的光催化作用应用于水中多氯联苯化合物脱氯去毒并取得了成功,从此TiO2作为一种去除有机物的一种有效方法应用到了水和空气的清洁净化领域。1985年,日本科学家Tadashi Matsunaga等[4]第一个发现了TiO2在紫外光下有杀菌作用。近年来科学家们又对TiO2进行了深入的研究,并取得了很大的进步。但是以前的研究多数是用溶胶凝胶负载在基材上,这样的负载量有限,所以对空气的净化的速率较慢。如何能够快速、便捷、安全、有效的除去室内的各种污染物及病菌成为一个亟待解决的问题。纳米TiO2良好的光催化性能使它成为了解决这一问的热点研究方向。纳米TiO2以其催化活性高、化学稳定性好、使用安全, 2. 纳米TiO2光催化机理 纳米TiO2是一种n型半导体氧化物,其光催化原理可以用半导体的能带理论来解释[5]。由于TiO2纳米粒子的粒径在1~100 nm,所以其电子的Fermi能级是分立的,而不是像金属导体中的能级是连续的,在纳米TiO2半导体氧化物的原子或分子轨道中具有一个空的能量区域,它介于导带与价带之间,称为禁带[6],其宽度为3.2 eV,当纳米TiO2接受波长为387.5 nm以下的光线照射时,其内部价带的电子由于吸收光子跃迁到导带,从而产生空穴-电子对,即光生载流子,然后迅速迁移到其表面并激活被吸附的O2和H2O,产生高活性羟基自由基(·OH)和超氧离子自由基(·O2- )[7],当污染物以及细菌吸附其表面时,会发生两个步骤:(1)吸收相波长为387.5 nm以下的光能,使表面发生光激发而产生光致电子和正的空穴。 (2)在受光照射而产生的电子-空穴中,电子消耗于空气中氧的还原,空穴则将吸附物质氧化,分解这些吸附物质的作用。如下图1:

TiO2光催化

二氧化钛(TiO2)由于其优异的光电转换及物化性能成为半导体光催化材料中的研究热点。二氧化钛纳米晶半导体太阳能电池,就是利用纳晶多孔薄膜电极,通过增大其表面积来提高电池的光电转换效率,该项技术无论在理论基础及应用技术上都有一定的发展潜力,具有取代硅太阳能电池及传统的太阳能电池发电的可能性,对TiO2纳米晶半导体太阳能电池的深入研究,大大促进纳米结构半导体光电化学新兴学科领域的发展。在环境污染的治理,TiO2在能量大于其禁带宽度的光照射下,产生电子与空穴对,然后光生电子迁移至催化剂表面实现光生载流子的有效分离,光生空穴的强氧化能力以及导带电子的还原能力使其能有效地氧化还原大部分有机物及一些金属离子,基于这一点,在环境污染的治理方面具有重大意义,因而制备性能优良的二氧化钛光催化剂成为一项有意义的工作。 TiO2就是一种价格便宜、无毒、稳定且抗腐蚀性良好的半导体材料。但就是,由于纳米尺度的TiO2能带间隙较宽(锐钛矿3、23eV,金红石型3、02eV),对太阳光的吸收效率很低,只能吸收太阳光中4%的紫外光部分,所以必须对其进行改性,扩宽其吸收利用的波段。一般有以下三种方法:一就是通过与能带间隙较窄的半导体复合;二就是通过掺杂其她元素;三就是利用染料进行TiO2的敏化。 TiO2通常有三种晶型,板钛矿(brookite)在自然界中量很少而研究极少;在这三种晶型中,锐钛矿(anatase)的催化活性最高。锐钛矿与金红石的结构可以用一个Ti06八面体链来表示,不同之处在于二种晶型的变形程度与八面体链的连结方式不同,每个Ti4+被6个O2-包围,形成一个八面体。金红石八面体结构并不规则,呈现轻微的正交晶系变形;锐钛矿八面体变形程度更大,因此对称性减小。 板钛矿属斜方晶系,性质不稳定,在650℃时转化成金红石结构,其应用的不就是很多;锐钛矿比较稳定,在800℃时转化成金红石结构,金红石不可转化成锐钛矿与板钛矿,金红石与锐钛矿都属于四方晶系,TiO2晶体中Ti4+离子位于相邻的六个O2-离子所形成的八面体中心。每个氧原子周围有三个钛原子,这三个钛原子位于不同的八面体中心,TiO2之所以存在三个不同的晶型主要就是因为八面体结构中内部的扭曲与互相连接的方式就是不同 一般认为,锐钛矿型TiO2催化剂光催化活性较高,而金红石型TiO2无催化活性或者催化性能差,原因就是金红石型TiO2禁带宽度为3、0eV(相当于410nm),导带电位就是-0、3eV,而O2/O2-的标准氧化还原电位为-0、33V,因此导带电子不可能通过TiO2表面的O2捕获从而加速导带电子与价带空穴的复合以至于降低催化活性;而锐钛矿型TiO2的禁带宽度为3、2eV,导带电位为-0、5eV,O2很容易得到导带电子使导带电子与价带空穴有效地分离从而提高催化活性。 二氧化钛催化剂技术的应用现状与前景 锐钛矿型TiO2在受到太阳光或荧光灯的紫外线的照射后,内部的电子发生激励,产生带负电的电子与带正电的空穴。电子使空气或水中的氧还原,生成双氧水,而空穴则向氧化表面水分子的方向起作用,产生氢氧(羟)基原子团。这些都就是活性氧,有着很强的氧化分解能力,从而能够分解、清除附着在氧化钛表面的各种有机物。二氧化钛不仅具有较强的氧化分解能力,而且自身不分解、几乎可永久性地起作用以及可以利用阳光与荧光灯的光线等优点。目前,二氧化钛的用途集中在

纳米二氧化钛的制备及光催化分析

苏州科技大学 材料科技进展 化学生物与材料工程学院 材料化学专业 题目:纳米二氧化钛的制备及光催化 *名:** 学号:********** 指导老师:*** 起止时间:5月20日——6月8日

纳米二氧化钛的制备及光催化 吕岩 (苏州科技学院,化学与生物工程材料学院,江苏,苏州,215009) 摘要:纳米二氧化钛是种重要的纳米材料,其在众多领域有着广泛的应用。本文主要介绍纳米二氧化钛的多种制备方法,包括化学气相法(化学气相沉积法、化学气相水解法等)、液相法( 溶胶凝胶法、沉淀法、水热合成法等)两大类,并分析了各种工艺的优劣。并介绍纳米二氧化钛光催化反应原理,基本方法,影响因素,及其广泛的应用。通过介绍纳米二氧化钛的制备及光催化的研究,更深刻理解其在生产生活中应用。 关键词:纳米TiO2,制备方法,光催化. The study on preparation of nanometer TiO 2 and photocatalytic Lv Yan (University of Science and Technology of Suzhou,School of Chemical and Biological Engineering Materials,Jiangsu,Suzhou,215009) Abstract: A s an important nanomaterial nanometer TiO2 has wide app lications in many fields, such as environmental production. Preparation methods of nanomaterial TiO2w ere briefly summarized, including chemical gas phase method( CVD and chem ical gas phase hydro lysis method etc. ) and liquid phase method( sol- gelmethod, precipitation method, hydrothermal synthesismethod etc. ). The advan tages and disadvanges o f everym ethod w ere analyzed. Introduce nano TiO2reaction principle, basic method, influence factors, and its wide application. Through the introduction of the preparation of nano TiO2 research, a deeper understanding of its application in the production and living. Key words: nanometer T iO2; preparation method, photocatalysis 引言: 纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。本文将对纳米二氧化钛的制备及光催化在做一些简单介绍。 1.纳米TiO2的制备 纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等,

二氧化钛光催化原理

二氧化钛光催化原理 一、引言 二氧化钛光催化技术是一种新型的环境保护技术,它通过利用光催化剂二氧化钛的特殊性质,将光能转化为化学能,实现对有害气体和污染物的高效降解。本文将从二氧化钛光催化原理的基础开始,分析其反应机理、影响因素以及未来发展方向。 二、二氧化钛光催化原理 1. 光催化剂 光催化剂是指在光照下产生电子-空穴对并参与反应过程的物质。目前常用的光催化剂主要有铜铟镓硫系列(CIGS)、纳米金属颗粒、半导体量子点等。其中,二氧化钛(TiO2)作为一种广泛应用于环境保护领域的光催化剂,由于其稳定性好、价格低廉等特点而备受关注。 2. 光生电子-空穴对 当TiO2被紫外线照射时,其价带中会产生电子(E-),同时其导带中会产生空穴(H+)。这些电子和空穴在TiO2表面上发生反应,从而促进

化学反应的进行。在光照下,TiO2表面电子和空穴的生成速率与消耗速率相等,形成了稳定的电子-空穴对。 3. 光催化反应 当有污染物或有害气体进入TiO2表面时,它们会被吸附在TiO2表面,并与光生电子-空穴对发生反应。以VOCs为例,其分解机理如下: (1) VOCs + hν → VOCs* (激发态) (2) VOCs* → VOCs + e^- (电子) (3) TiO2 + h+ → TiO2+H (空穴) (4) H2O + e^- → H+OH^- (羟基自由基) (5) VOCs + OH· → CO2 + H2O 其中,hν表示光子能量,VOCs表示挥发性有机化合物。 4. 反应速率 二氧化钛光催化反应速率受到多种因素的影响,主要包括光源强度、

污染物浓度、温度、湿度等因素。其中,光源强度是影响反应速率最 为显著的因素之一。当光源强度增加时,TiO2表面上的电子-空穴对 生成速率也会随之增加,从而加快反应速率。 三、影响因素 1. 光源强度 光源强度是影响二氧化钛光催化反应速率的最为显著的因素之一。当 光源强度增加时,TiO2表面上的电子-空穴对生成速率也会随之增加,从而加快反应速率。 2. 污染物浓度 污染物浓度是影响二氧化钛光催化反应速率的另一个重要因素。当污 染物浓度较低时,TiO2表面上的反应位点容易被占据,导致反应速率降低;当污染物浓度过高时,TiO2表面上的反应位点已经饱和,进一步增加污染物浓度对反应速率没有明显影响。 3. 温度和湿度 温度和湿度也会对二氧化钛光催化反应产生一定影响。通常情况下, 在较高温度下进行光催化反应可以提高其效果;而在较高湿度下进行

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界范围内每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在内世界范围内广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用范围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太阳光的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太阳光作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

二氧化钛光催化技术介绍

纳米二氧化缺光催化技荷介^ 纳米光催化探用二氧化金太(TiO2)半^髓的效鹿启攵勤材料表面吸附氧和水分,走生活性氢氧自由基(OH.)和超氧陪雕子自由基(02-), ^而^化舄一希重具有安全化孥能的活性物筲起到碳化降解璞境污染物和抑菌杀殳菌的作用。 纳米二氧化金太(TiO2)光催化利用自然光即可催化分解^菌和污染物,具有高催化活性、良好的化孥穗定性、照二次污染、照刺激性、安全照毒等特黑占,且能畏期有益於生熊自然璞境,是最具有^畿前景的^色璞保催化蒯之一。 然毒害的纳米TiO2催化材料,充分畿撞抗菌、降解有^污染物、除臭、自浮化的功能,是^璞保型功能材料^施方便、雁用性弓鱼,能^ 用到生活空^的多重埸合,畿撞其多功能效废,成舄我仍生活璞境中起畏期浮化作用的璞保材料。 光催化原理 -什麽是光催化光催化[Photocatalyst ]是 光[Photo二Light] +催化蒯[catalyst] 的合成羞司。主要成分是二氧化金太(Ti02), 二氧化金太本身照毒照害,已腐泛用於食品, 髻桑,化片攵品等各希重令臭域。光催化在光 的照射下畲走生^似光合作用的光催化反雁(氧化-遢原反雁,走生出氧化能力桎弓鱼的自由氢氧基和活性氧,是些走物可^M^菌和分解有檄污染物。亚

且把有檄污染物分解成照污染的水(H20)和二氧化碳(C02),同畤它具有杀殳菌、除臭、防汗、^水、防紫外^泉等功能。光催化在微弱的光%泉下也能做反底若在紫外#泉的照射下光催化的活性畲加逾近来,光催化被餐舄未来走棠之一的纳米技彳桁走品。 -光催化反雁原理 TiO2富吸收光能量之彳爰,僵带中的雷子就畲被激畿到^带,形成带^雷的高活性雷子e-,同畤在僵带上走生带正雷的空穴h+。在雷埸的作用下,雷子典空穴畿生分雕,暹移到粒子表面的不同位置。熟力孥理言禽表明,分怖在表面的h+可以将吸附在TiO2表面OH-和H2O 分子氧化成(OH.)自由基,而OH.自由基的氧化能力是水髓中存在的氧化蒯中最弓鱼的,能氧化亚分解各重有^污染物(甲醛、苯、TVOC等)和^菌及部分照檄污染物(氨、NOX 等),亚将最^降解舄CO2、H2O 等照害物鼻由於OH自由基封反废物^乎MB®性,因而在光催化中起著〉夬定性的作用。此外,言午多有檄物的氧化雷位蛟TiO2的僵带雷位更^―些,能直接舄h+所氧化。而TiO2表面高活性的e-倒具有很弓鱼的遢原能力,可以遢原去除水髓中金屠雕子。雁用以上原理光催化腐泛雁用於杀殳菌、除臭、空标浮化、汗水虔理等令臭域。 光催化侵势 光催化的空麻浮化技荷僵黠 1、光催化的僵黑占 -高效杀殳菌(杀殳菌率建到99.99%)

TiO2光催化原理及应用

TiO2光催化原理及应用LT

H2O2 + e- → ·OH+OH- H2O2 + ·O2-→ ·OH+H+ ·OH + dye →···→ CO2 + H2O ·O2-+ dye →···→ CO2 + H2O 当然也会发生,光生电子与空穴的复合: h+ + e-→ 热能 由机理反应可知,TiO2光催化降解有机物,实质上是一种自由基反应。羟基自由基是含有一个未成对电子自由基,这使得它几乎能跟水中的几乎所有机污染物和大部分的无机污染物反应。它与污染物的反应速度非常快,反应速度仅仅受限于羟基自由基在水中的扩散速度。羟基自由基与污染物的反应机理主要包括在不饱和的双键、三键上的加成反应,氢取代和电子的转移。很多研究表明,羟基自由基在光催化降解的过程中起主导作用。虽然超氧自由基、单基态氧和双氧水的氧化电位低于羟基自由基,但是他们在降解的过程中也起到不可或缺的作用。TiO2光催化主要通过生成的含氧自由基与水中的污染物反应,达到降解的目的,并且最终产生对环境无害的水、二氧化碳、氮气等。TiO2光催化可以同时产生带正电荷的空穴以及带有负电荷的电子,这使得催化体系既有氧化能力又有还原能力。所以剧毒的三价砷(砒霜的有效成分就是三价砷)可以被氧化成低毒的五价砷,对人有害的六价铬被还原成无毒的三价铬。 TiO2作为光催化剂它具有以下几个优点: 1. 把太阳能转化为化学能加以利用。 2. 降解速度快,光激发空穴产生的·OH是强氧化自由基,可以在较短的时间内成功的分解包括难降解有机物在内的大多数有机物。 3. 降解无选择性,几乎能降解任何有机污染物。 4. 降解范围广,几乎对所有的污水都可以采用。 5. 具有高稳定性、耐光腐蚀、无毒等特点,并且在处理过程中不产生二次污染;有机污染物能被氧化降解为CO2和H2O,并且其对人体无毒。 6. 反应条件温和,投资少,能耗低,用紫外光照射或暴露在太阳光下即可发生光催化化学反应。 7. 反应设备简单,易于操作控制。光催化反应具有稳定性,一般情况下,负载TiO2光催化剂能多次使用,不影响反应效果,催化作用持久长效。 三.TiO2的应用领域 TiO2能有效的将废水中的有机物、无机物氧化或还原为CO2、PO43-、SO42-、NO3-、卤素离子等无机小分子,达到完全无机化的目的。染料废水、农药废水、表面活性剂、氯代物、氟里昂、含油废水等都可以被TiO2催化降解。而且TiO2具有杀菌效果,这种特性几乎是无选择性的,包括各种细菌和病毒。

纳米二氧化钛(光催化专用)

光催化专用纳米二氧化钛 杭州万景新材料有限公司0571-8892 0936 本品光催化纳米二氧化钛外观为白色疏松粉末。在可见光或紫外光的作用下具有很强的氧化还原能力,化学性能稳定,能将甲醛、甲苯、二甲苯、氨、氡、TVOC等有害有机物、污染物、臭气、细菌、病毒、微生物等有害有机物彻底分解成无害的CO2 和H2O,并具有去除污染物、亲水性、自洁性等特性,性能持久,不产生二次污染。 本品适合于各种空气污染治理的光触媒喷剂、纳米抗菌涂料、污水处理(可将造纸厂、印染厂、酒精厂和化工厂等废水中的大分子有机物进行降解,使之变成CO2、H2O。)、纳米抗菌自洁纤维、电子材料等产品,产品比表面积大!光催化效率高!分解有害气体速度快!本品吸收紫外线能力强范围广(280nm-460nm)。 主要技术指标: 型号VK-TG01 外观白色粉末 晶形锐钛 水份%(105,2hr干燥失重)≤0.5 纳米二氧化钛平均原级粒径,nm 5 比表面积,m2/g 100-220 纯度,% > 99.5 表面处理剂无 应用特性: 1、光催化纳米二氧化钛在陶瓷方面的应用:添加0.5%的光催化纳米二氧化钛制做成的陶瓷,具有高催化活性,抗菌、自洁、防污、除臭功能。 2、光催化纳米二氧化钛在废水处理的应用:加入0.5%的光催化纳米二氧化钛,具有强氧化还原能力,可以将污水中汞、铬、铅、以及氧化物等降解为无毒物质。绿色环保! 3、光催化纳米二氧化钛在涂料中的应用:制备光催化涂料,高催化性,杀菌,分解有害物质和油污。可使用在家居装修,汽车高档涂料。 4、光催化纳米二氧化钛在其他建材玻璃的应用:如玻璃、水泥、混凝土、金属板材、墙纸、塑料门等。具有自洁、抗菌、除臭、防污、防雾等功能 5、光催化纳米二氧化钛在饮用水处理中的应用:在近紫外线区吸光系数大、光催化作用持久、化学性质稳定、对人和环境无害,可使水中大部分微生物灭活和有机污染物分解。 建议添加量:0.5%-2% 包装:10公斤/袋

二氧化钛作为光催化剂的研究

二氧化钛作为光催化剂的研究 近年来,人们对于环境污染问题的关注度越来越高,特别是光污染和 空气污染。为了减少环境污染,开发一种高效、经济、环保的技术成为迫 切需求。二氧化钛(TiO2)作为一种光催化剂,因其卓越的光电化学性能 和化学稳定性,吸引了广泛的研究兴趣。 二氧化钛作为一种常用的光催化剂,具有以下几个重要的优点。首先,二氧化钛是一种廉价、可再生的材料,易于生产和大规模应用。其次,二 氧化钛具有较高的光催化活性和化学稳定性,在常温下就可以进行光催化 反应。再次,二氧化钛对可见光的利用效率较低,可有效抑制光生电子- 空穴对的复合,提高光催化反应的效率。最后,二氧化钛的表面可以通过 改性来调控其光催化性能,使其适应不同环境下的需求。 然而,二氧化钛的光催化活性主要局限于紫外光区域,且光生电子- 空穴对的复合速度较快,影响了光催化反应的效率。因此,提高二氧化钛 的光催化活性和抑制复合效应是当前研究的重点。 为了提高二氧化钛的光催化活性,一种常用的策略是通过合成纳米结 构的二氧化钛。纳米结构的二氧化钛具有较大的比表面积和量子尺寸效应,可以增加光吸收量和光生电子-空穴对的生成量。此外,通过调控和表面 修饰,可以进一步提高纳米结构二氧化钛的光催化活性。例如,金属减数剂、杂化材料和共掺杂等方法都可以有效地改善二氧化钛的光催化性能。 另外,金属氧化物或其他半导体材料与二氧化钛的复合也是提高光催 化活性的一种重要策略。这种复合材料能够充分利用不同材料的优点,实 现光催化性能的协同增强。例如,二氧化钛与锌氧化物、硫化物或硝酸铋 复合,能够扩展光吸收范围和提高光催化活性。

除了以上策略,应用外界电场或磁场也能提高二氧化钛的光催化性能。外部电场和磁场可以改变电子和空穴的传输行为,促进光生电子-空穴对 的分离,并减缓其复合速度。这种方法尚需进一步研究和优化,以实现在 实际应用中的可行性。 综上所述,二氧化钛作为一种光催化剂,在环境污染治理和可持续发 展方面具有巨大潜力。未来的研究应该着重于进一步改进和优化二氧化钛 的光催化性能,以满足不同环境下的需求。同时,将二氧化钛光催化技术 与其他先进技术相结合,可以实现更高效、经济、环保的环境治理方案。

纳米二氧化钛催化剂选择性光还原NO生成N2:氧空位和铁掺杂的角色

纳米二氧化钛催化剂选择性光还原NO生成N2: 氧空位和铁掺杂的角色 摘要 传统的以TiO2为载基的光催化剂由于氧化氮氧化物生成硝酸盐并且不易自发的解除吸附,因此容易导致催化剂失活。我们在一个还原性气氛中通过热还原法在TiO2纳米粒子中产生更大浓度的氧空位来改变选择性还原反应。结果表明:在光致还原过程中,NO被氧化成N2和O2,并且催化剂在室温下能够自发的解除吸附。通过在TiO2中掺杂Fe3+来大大提高光还原反应的活性,其中Fe3+作为一个受体型的掺杂剂用以稳定氧空位。而且,光诱导还原Fe3+生成Fe2+提供了一种重组的途径:几乎完全抑制了NO2的形成,因此提高了还原反应生成N2的选择性。气相色谱分析证实,N2和O2以化学计量比生成,并且发现氧空位的浓度限制了NO分解反应的活性。我们提出一系列内部一致的反应方程来描述所有的实验观察到的光催化过程特性。观察到氧空位对光诱导反应的活性和选择性的影响可能为设计高选择性的光催化剂提供新的路径。 引言 世界上大部分的能源消耗主要是在空气中燃烧化石燃料。主要的例子是汽车中内燃发动机和发电厂中的涡轮机。这些过程产生大量的温室气体,例如CO2和NO x。在燃料燃烧的过程中产生较高的温度使空气中N2和O2反应生成NO x (NO和NO2的混合物)。在过去的几十年,由于越来越多的汽车和日益增长的工业活动,导致大气中NO x的浓度迅速增加。关注的主要原因是排放的氮氧化物对人类的肺组织有害并且有助于形成酸雨。TiO2,一种著名的半导体催化剂,能够在室温和常压下分解NO x,已经被广泛的研究。当入射光的能量超过TiO2半导体的带隙3.2eV时,价带上的电子吸收光子被激发,从价带跃迁到导带,结果产生电子-空穴对。部分电荷载流子到达TiO2表面并且被Ti上的表面吸附剂捕获形成超氧阴离子和羟基自由基。生成的自由基非常活跃能够和NO反应形成硝酸盐。然而,这种方法的主要问题就是形成的硝酸盐不能自发地使解除吸附。而硝酸盐能够使光催化剂表面失活,降低了材料消除空气中NO x的能力。为了避免催化剂失活,硝酸盐需要被雨水冲走,然而产生的硝酸具有腐蚀性并且当其浓度很高时污染土壤。因此从空气中消除氮氧化物不使催化剂失活并且不造成二次污染是一项紧迫而艰巨的挑战。 一个最有希望的方法来解决这个问题:改变的光催化反应的选择性使NO x 转化为N2和O2。由于N2和O2易从催化剂表面逸出因而在光还原反应中不会导致催化剂失活。正如Anpo et al报道:通过平常的六价(TiO6正八面体)到四价(TiO4正六面体)来减少Ti4+的配位数能够大大提高NO光致还原反应的选择性。已经成功实现在zeolite-Y沸石内部利用离子束注入沉淀分离TiO4。然而,在经济上大规模的应用离子束沸石注入技术缺乏吸引力。 在这篇文章中,我们提出一个新的策略:通过创造一个大的和稳定的氧空位浓度来改变TiO2基光催化剂的选择性。我们将展示真实的光还原NO到N2和O2过程,并且光氧化过程将被大大的抑制。我们将用一系列的反应机理来解释所观察到的现象。

相关主题
文本预览
相关文档 最新文档