当前位置:文档之家› 基于FCV声固耦合模型的车内噪声预测

基于FCV声固耦合模型的车内噪声预测

基于FCV声固耦合模型的车内噪声预测
基于FCV声固耦合模型的车内噪声预测

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

GB 1495-2002汽车加速行驶车外噪声限值及测量方法.doc

个人护理品用的有机硅 章基凯 上海高分子材料研究开发中心 1前言 随着日化工业的发展和人民消费水平日益提高,对个人护理产品提出更广泛的要求。由于工业发展,空气污染程度增加,洗涤剂、增白剂、农药、化肥等化工产品的广泛使用,使人的皮肤接触越来越多的化学物质。因此,要求个人护理品不仅能修饰脸部、头发和手部,而且要求能够保护皮肤健康。 有机硅(特别是硅油)以优异的综合性能和生理隋性,十多年来已进入销售额大产品升级换代快的个人护理品行业。它具有与皮肤相容性和与基材的配位性、疏水透气性好、耐化学介质侵蚀、润而不腻等独特性能,它作为个人护理品的组份,在改进个人护理品、提高使用性能和开发新品种方面必将起到举足轻重的作用。 2有机硅的特性和毒性 2.1结构特征 有机硅具有以下的结构特征: (1)结合能量大的SiOSi主链(Si-O,106Kcal/mol); (2)分子间相对弱的亲和力(硅油20~25达因/厘米); (3)形成螺旋分子能力大。 2.2有机硅生理毒性 以硅油为例,具有对称分子结构,无极性基团,整个分子呈隋性分子。根据国外资料报导和北京首都医院、中国医学卫生研究院和原上海第一医学院等单位所进行毒性试验,证实硅油无毒,具有生理隋性,在个人护理品行业使用是绝对安全的。 (1)皮肤相容性-赖皮症试验 硅油的皮肤相容性可通过实验动物皮肤上没有上皮增厚作用而得到证明。所谓“赖皮症试验”即在皮肤的表面分别给以石蜡、凡士林和硅油,10天后观察到涂有石蜡、凡士林的皮肤上皮的所谓赖细胞层显著地促成播散,而涂以硅油的皮肤则无此现象。这就说明硅油对于皮肤的惰性甚至胜过化妆品中常用的石蜡、凡士林等材料。

动态矩阵和模型预测控制的半自动驾驶汽车(自动控制论文)

Dhaval Shroff1, Harsh Nangalia1, Akash Metawala1, Mayur Parulekar1, Viraj Padte1 Research and Innovation Center Dwarkadas J. Sanghvi College of Engineering Mumbai, India. dhaval92shroff@https://www.doczj.com/doc/9714463029.html,; mvparulekar@https://www.doczj.com/doc/9714463029.html, Abstract—Dynamic matrix and model predictive control in a car aims at vehicle localization in order to avoid collisions by providing computational control for driver assistance whichprevents car crashes by taking control of the car away from the driver on incidences of driver’s negligence or distraction. This paper provides ways in which the vehicle’s position with reference to the surrounding objects and the vehicle’s dynamic movement parameters are synchronized and stored in dynamic matrices with samples at regular instants and hence predict the behavior of the car’s surrounding to provide the drivers and the passengers with a driving experience that eliminates any reflex braking or steering reactions and tedious driving in traffic conditions or at junctions.It aims at taking corrective action based on the feedback available from the closed loop system which is recursively accessed by the central controller of the car and it controls the propulsion and steeringand provides a greater restoring force to move the vehicle to a safer region.Our work is towards the development of an application for the DSRC framework (Dedicated Short Range Communication for Inter-Vehicular Communication) by US Department of Traffic (DoT) and DARPA (Defense Advanced Research Projects Agency) and European Commission- funded Project SAVE-U (Sensors and System Architecture for Vulnerable road Users Protection) and is a step towards Intelligent Transportation Systems such as Autonomous Unmanned Ground and Aerial Vehicular systems. Keywords-Driver assist, Model predictive control, Multi-vehicle co-operation, Dynamic matrix control, Self-mapping I.INTRODUCTION Driver assist technologies aim at reducing the driver stress and fatigue, enhance his/her vigilance, and perception of the environment around the vehicle. It compensates for the driver’s ability to react [6].In this paper, we present experimental results obtained in the process of developing a consumer car based on the initiative of US DoT for the need for safe vehicular movement to reduce fatalities due to accidents [5]. We aim at developing computational assist for the car using the surrounding map data obtained by the LiDAR (Light Detection and Ranging) sensors which is evaluated and specific commands are issued to the vehicle’s propellers to avoid static and dynamic obstacles. This is also an initiative by the Volvo car company [1] where they plan to drive some of these control systems in their cars and trucks by 2020 and by General Motors, which aims to implement semi-autonomous control in cars for consumers by the end of this decade [18].Developments in wireless and mobile communication technologies are advancing methods for ex- changing driving information between vehicles and roadside infrastructures to improve driving safety and efficiency [3]. We attempt to implement multi-vehicle co-operative communication using the principle of swarm robotics, which will not only prevent collisions but also define specific patterns, which the nearby cars can form and pass through any patch of road without causing traffic jams. The position of the car and the position of the obstacles in its path, static or moving, will be updated in real time for every sampling point and stored in constantly updated matrices using the algorithm of dynamic matrix control. Comparing the sequence of previous outputs available with change in time and the inputs given to the car, we can predict its non-linear behavior with the help of model predictive control. One of the advantages of predictive control is that if the future evolution of the reference is known priori, the system can react before the change has effectively been made, thus avoiding the effects of delay in the process response [16]. We propose an approach in which human driving behavior is modeled as a hybrid automation, in which the mode is unknown and represents primitive driving dynamics such as braking and acceleration. On the basis of this hybrid model, the vehicles equipped with the cooperative active safety system estimate in real-time the current driving mode of non-communicating human-driven vehicles and exploit this information to establish least restrictive safe control actions [13].For each current mode uncertainty, a mode dependent dynamic matrix is constructed, which determines the set of all continuous states that lead to an unsafe configuration for the given mode uncertainty. Then a feedback is obtained for different uncertainties and corrective action is applied accordingly [7].This ITS (Intelligent Transport System) -equipped car engages in a sort of game-theoretic decision, in which it uses information from its onboard sensors as well as roadside and traffic-light sensors to try to predict what the other car will do, reacting accordingly to prevent a crash.When both cars are ITS-equipped, the “game” becomes a cooperative one, with both cars communicating their positions and working together to avoid a collision [19]. The focus is to improve the reaction time and the speed of communication along with more accurate vehicle localization. In this paper, we concentrate on improving vehicle localization using model predictive control and dynamic matrix control algorithm by sampling inputs of the car such as velocity, steering frame angle, self-created maps Dynamic Matrix and Model Predictive Control for a Semi-Auto Pilot Car

噪声模型

噪声模型 数字图像的噪声主要来源于图像的获取(数字化过程)和传输过程。图像传感器的工作情况受各种因素的影响,如图像获取中的环境条件和传感元器件自身的质量。例如,使用CCD 摄像机获取图像,光照程度和传感器温度是生成图像中产生大量噪声的主要因素。图像在传输过程中主要由于所用的传输信道的干扰受到噪声污染。比如,通过无线网络传输的图像可能会因为光或其他大气因素的干扰被污染。 一.噪声的空间和频率特性 相关的讨论是定义噪声空间特性的参数和这些噪声是否与图像相关。频率特性是指噪声在傅里叶域的频率内容(即,相对于电磁波谱),例如,当噪声的傅里叶谱是常量时,噪声通常称为白噪声。这个术语是从白光的物理特性派生出来的,它将以相等的比例包含可见光谱中所有的频率。从第4章的讨论中不难看出,以等比例包含所有频率的函数的傅里叶谱是一个常量。 由于空间的周期噪声的异常(5.2.3节),在本章中假设噪声独立于空间坐标,并且它与图像本身无关联(简言之,噪声分量值和像素值之间不相关)。这些假设至少在某些应用中(有限量子成像,例如X光和核医学成像就是一个很好的例子)是无效的,但复杂的处理空间非独立和相关噪声的情况不在我们所讨论的范围。 二.一些重要噪声的概率密度和函数 基于前面章节的假设,所关心的空间噪声描述符是5.1节中所提及模型的噪声分量灰度值的统计特性。它们可以被认为是由概率密度函数(PDF)表示的随机变量,下面是在图像处理应用中最常见的PDF。 高斯噪声 由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。事实上,这种易处理性非常方便,使高斯模型经常用于临界情况下。 高斯随机变量z的PDF由下式给出: (5.2.1) 其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。高斯函数的曲线如图5.2(a)所示。当z服从式(5.2.1)的分布时候,其值有70%落在[(μ-σ),(μ+σ)]内,且有95%落在[(μ-2σ),( μ+2σ)]范围内。 瑞利噪声 瑞利噪声的概率密度函数由下式给出: (5.2.2)概率密度的均值和方差由下式给出:

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

多工况加速行驶车外噪声测量评价方法

V ol 35No.4 Aug.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第4期2015年8月 文章编号:1006-1355(2015)04-0183-06 多工况加速行驶车外噪声测量评价方法 谢东明,张振鼎,郭 勇 (中国汽车技术研究中心,天津300300) 摘要:欧洲经济委员会正在起草修订的新噪声法规ECE R5103系列,要求对M1、N1类汽车进行多工况下的加速行驶车外噪声测量。阐述其测量方法产生的背景、发展过程及适用范围;结合验证试验解析多工况加速行驶车外噪声测量的试验流程,以及相应的三种评价方式。为汽车企业、大学及科研机构研究多工况下的加速行驶车外噪声测量与控制提供技术参考。 关键词:声学;多工况加速行驶车外噪声;测量方法;试验流程;评价方式中图分类号:O422.6 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.04.040 Summary of Measurement and Evaluation Methods for Additional Sound Emission Provisions XIE Dong-ming ,ZHANG Zhen-ding ,GUO Yong (China Automotive Technology and Research Center,Tianjin 300300,China ) Abstract :In the draft of UN ECE R5103series,the M1and N1categories of vehicles are required to carry out the measurement of the Additional Sound Emission Provisions (ASEP).In this paper,the background knowledge,developing process and scope of the measurement method were introduced.According to the proof tests,the test procedure and three evaluation methods were analyzed.This summary provides a technical reference for the automobile companies,universities and research organizations for the purpose of measuring and controlling the Additional Sound Emission. Key words :acoustics ;ASEP ;measurement method ;test process ;evaluation method 现行欧盟噪声法规ECE R5102系列以及即将实施的ECE R5103系列在汽车加速行驶车外噪声认证试验过程中,均只对汽车特定工况(特定发动机转速、车速)条件下的噪声进行测量[1],而随着发动机及变速箱电控技术的发展,汽车生产厂商可能为了单纯满足特定工况下的噪声认证试验,而将车辆动力系统调整到非正常的状态或模式[2]。为了防止汽车生产厂商专门针对认证试验特定工况对汽车进行特殊调整,更加准确、全面控制M1、N1类汽车在各个档位,不同发动机转速、车速、不同加速度条件下的噪声,产生了一种新的方法—多工况加速行驶车外噪声测量方法。 对车速20km/h ~80km/h 范围内,发动机怠速 收稿日期:2014-12-25基金项目:环境保护部项目《汽车加速行驶外噪声限值及测 量方法(修订GB 1495-2002)》,项目统一编号464 作者简介:谢东明(1985-),男,四川大竹县人,目前从事整 车道路试验和道路试验标准工作。E-mail:xdongming@https://www.doczj.com/doc/9714463029.html, ~90%额定转速范围内,多档位多工况条件下的加 速行驶车外噪声值进行测量。并采用噪声与发动机转速对应关系,噪声与车速、加速度对应关系两套理论,三种方法评价汽车在各车速、转速、加速度条件下的噪声水平,防止汽车使用过程中异常噪声的发出,严格控制汽车正常使用过程中多种工况条件下的噪声水平。 1ASEP 测量方法产生背景 现行的加速行驶车外噪声欧盟法规ECE R5102系列及对应的国标GB 1495-2002标准已实施多年[3],对于M1、N1类汽车,均采用2、3档全油门加速行驶的极端工况噪声(方法A )进行噪声试验结果评价。 极端工况噪声(方法A )与城市实际行驶工况存在较大差异,并直接导致噪声限值的降低与城市声学环境改善无法同步,1992年开始这一问题开始逐渐引起关注。1996—2000年,德国汽车技术研究机构TUV FIGE ,美国联邦环境保护局EPA 等机构采集了欧洲、亚洲、美国等地的汽车城市工况,并从

车室内部声场的声振耦合分析

2007年第九届全国振动理论及应用学术会议论文集 杭州,2007.10.17-19 车室内部声场的声—振耦合分析 左言言 张焱 刘海波 (江苏大学振动噪声研究所 江苏 镇江 212013) 摘 要:本文首先建立了汽车车身结构的有限元模型,对车身进行了有限元计算模态分析;然后建立了 车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,计算出车室空腔声场的声学模态,对该 车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声—振耦合系统在发动 机激励下的声学响应,为控制车内的低频噪声指明了方向。 关键词:声场;有限元分析;模态分析;声学响应 Sound-vibration Coupling Analysis on the Interior Sound Field of Vehicle Cabin ZUO Yan-yan ,Zhang Yan ,Liu Hai-bo (Institute of Noise and Vibration, Jiangsu University, China 212013) Abstract: The finite element model was established of a vehicle body at first, and the computed modal analysis was conducted. Then the acoustical finite element model of the vehicle cabin cavity was also established, and its acoustical modal was computed with dynamical analysis techniques on structure and acoustics. The dynamic characteristics of the vehicle structure and the acoustic features of the vehicle cabin cavity were studied here at same time. Based on the analysis above, acoustical response analysis of the sound –vibration coupling system of the cabin cavity was carried out, the results could be valuable for the low frequency noise control of the vehicle interior sound field. Key words : sound field; finite element analysis; modal analysis; acoustical response 1 有限空间声-振耦合基本理论 在充满介质的有限空间中,有一振动物体向周围辐射噪声,由牛顿定律可知,周围介质 也对这一物体也产生反作用,这种相互作用的综合影响称为耦合作用。其数学形式可表述为: 假设体积为V 的任意形状空间,包围该空间的结构总面积为A ,其中弹性、吸收、刚性表面 分别为r A 、αA 、s A ,根据波动理论,该空间内的声压波动方程和边界条件分别为 [1,2]: 012222=????t p c p (1) ????????????=?????=??=??(吸收表面)(弹性表面)(刚性表面)t p Z n p t n p n p a f f ρωρ220 (2) 其中2?为Laplace 算子,p 为声压,c 为介质中的声速,t 为时间,n 为壁面单位外法

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

相关主题
文本预览
相关文档 最新文档