当前位置:文档之家› 某双层球面网壳结构设计

某双层球面网壳结构设计

某双层球面网壳结构设计
某双层球面网壳结构设计

可靠性和双层球面网壳的敏感性分析 (2)

可靠性和双层球面网壳的敏感性分析 (2)

可靠性和双层球面网壳的敏感性分析 李会军,刘春光,贾玲玲 基建工程学院,大连理工大学,,大连116024,海岸及近海工程学院,大连理工大学,大连116024,土木工程学院,河南工业大学,郑州450052,中国国家重点实验室 (提交2010.3.5,接收修订文件,2010 .9.27,接受2010.11.30) 摘要: 在可靠性和空间结构的敏感性分析方面,传统的可靠性指标的方法(RIA)在某些情况下变得更加难以收敛,甚至发散。为了克服这些缺点,性能测量方法(PMA)引入到处理空间网格结构的上述问题中。对四个双层球面网壳的可靠性和灵敏度进行了讨论。计算结果表明,PMA是强大的,高效的。随着网壳的高度与跨度比的降低,最大竖向变形逐渐增大,这就是为什么可靠性指标明显倾斜的原因。环绕其中发生最大变形的节点的集中荷载,显著影响着最大变形。 关键词:双层球面网壳,可靠性,性能度量法,灵敏度,高度与跨度比。 1引言 近年来,空间结构得到了迅猛发展。越来越多的空间结构由于其优良的结构特性已经在公共和工业建筑得到了应用。随着设计理论和施工技术的发展,空间钢结构的跨度近期明显增加。不过,也有损坏,世界各地的许多大跨度钢结构倒塌。例如,1978年1月18日哈特福德文娱中心体育馆的屋檐在一场大雪后瘫倒[1?4]。1961年由于暴风雪罗马尼亚布加勒斯特的一个单层圆顶壳(直径93.5米)倒塌,此后,大跨度单层网壳结构一直被视为禁区[5]。7月3日,屋面施工的重要组成部分在正常天气下倒塌,包括上面的皇家包厢的部分(参见图1(a)条)。温哥华BC Place体育场的巨型空中支持的圆顶,为2010年冬季奥运会的开幕式和闭幕式场地,由于恶劣的天气条件倒塌,主要原因为屋顶倒塌所使用的设计和材料的破坏。(见图1(b)条)。因此,大跨度空间结构的可靠性和安全性已受到越来越多的工程师,学者和投资者的关注。 有许多方法来处理的可靠性问题。例如,被称为简单随机抽样的方法或统计试验方法的蒙特卡罗模拟(MCS)使基于对随机生成的采样变为不确定变量,。MCS的计算过程很简单,但计算的代价也很大[6,7]。所谓HLRF算法,最初由Hasofer和Lind开发[8]后来由Rackwitz的和Fiessler扩展到非正态随机变量[9],由于其效率和简单性,此算法是使用的最广的可靠性分析算法。一般来说,如果极限状态函数的非线性度低,近似解可成功地通过迭代的数字实现,但是,如果极限状态函数围绕检查曲率点(设计点)为大,计算可能不收敛。因此通过一些改进,已经考虑到了这个障碍。刘,张和DerKiureghian[10,11],增加了线性搜索方式改进了这一算法。通过记iHLRF张和DerKiureghian 开发的算法[11],,在OpenSees实施。 然而,所有这些改进的方法都有它们自己的缺点[6?11]。基于这些缺点,PMA被引入到对大跨度空间钢结构的有限元可靠度分析中。J. Tu等[12]提出了性能度量法(PMA),并提出了PMA本质上对评估无效的概率约束是强大的和更有效的,而RIA在违反概率约束方面更有效。此外,基于可靠性的优化设计往往产生比用PMA更高的收敛速率,而RIA产生奇异点的情况。Lee等[13]讨论了两种方法对概率约束进行评比。一种是传统的以可靠性指标为基础的方法,另一种是以目标绩效为基础的方法。Byeng D.youn等人[14]提出了RIA

双层网壳结构的静力分析与设计

双层网壳结构的静力分析与设计 摘要:本文简述了双层网壳的静力设计过程,并通过对杆件内力的分析和变形能力的探讨得出如下结论:双层网壳这种结构型式具有有较强的承载能力,良好的稳定性和优越的协调变形性能,是各种大跨度建筑值得采用的一种屋盖型式。 关键词:双层网壳,柱壳,大跨度空间结构。 设计概况:某展览馆主展厅屋面为弧线形,跨度27m,结合使用要求,拟采用双层网壳的屋盖结构型式。该结构不仅具有有较高的承载能力,且当在屋顶安装照明、空调等各种设备及管道时,它还能有效地利用空间,方便吊顶构造,经济合理。 一、柱壳结构的型式与分析 1 柱壳结构型式 本设计所用柱壳采用正放四角锥体系,柱壳跨度27m,矢高4.5m,纵向长度42m。杆件长度控制在3m~3.5m之间。 2 柱壳结构分析 结构分析的核心问题是计算模型的确定。本设计中柱壳结构的计算模型为空 图1 柱壳上弦支座图 图1中,a点为二向支承(约束x,z方向位移),d点为二向支承(约束y,z方向位移),c点为三向支承(约束x,y,z方向位移),其余带×号的各点均设置单向支承(只约束z方向的位移)。 柱壳结构为大型复杂结构,因此采用有限元分析软件SAP2000对其进行结构分析,并结合我国钢结构设计规范对各杆件进行截面设计和验算。 二、静力设计 1、荷载计算 1)恒载标准值计算

2 /375 m KN 2/5m KN 2 /m KN 屋面构件及网壳自重恒载: 0.752/m KN 灯具: 0.052/m KN 2)活载标准值计算 屋面活载:0.52/m KN ; 雪荷载:375.05.075.00=?=?=s s r k μ2/m KN ; 风荷载: C 类地貌,风压高度变化系数查表得74.0=z μ,风振系数 0.1=z β 2所示: 因此,有:21/0789.0m KN w -=,22/237.0m KN w -= ,23/148.0m KN w -= 2○ 1。 ○ 2 ○ 3 6/127/5.4/==l f 15 4)2.06/1(1.02.0-=-?-=s μl f /s μ 0.10.8 -0.20 0.50.6 +

大跨空间结构认知总结

钢结构参观认知 课程名称:钢结构-房屋建筑钢结构设计 题目:大跨空间结构认知 院(系):西建大华清学院 专业班级:土木1306班 姓名:张茂晨 学号: 41号 2016年5月7日

大跨空间结构认知 2016年4月29日早上10点30分,在钢结构老师的带领下参观了大跨空间结构体系中的网架结构模型,首先说说大框结构概念,国际壳体结构与空间结构协会的创始人,已故著名薄壳结构专家托罗哈有一句名言:“最佳结构有赖于其自身受力之形体,而非材料制潜在强度”。所谓空间结构是指:具有不易分解为平面结构体系的三维形体,具有三维受力特性,在荷载作用下呈空间工作的结构。刚架结构和排架结构(单层工业厂房),钢筋混凝土框架结构,桁架结构,拱结构都是平面结构,网架结构是典型的三维受力体系结构。 大跨结构空间结构发展历程,在无力学与结构理论情况,凭借经验与大胆的探索,古罗马最著名的穹顶是万神殿,也是建筑史 上最早,最大跨度的拱结构,万神殿的底 平面直径也为43.4米,与高度相等。万神 殿下半部为空心圆柱形,从高度一半的地 方开始,上半部为半球形的穹顶,穹顶的 墙面厚度逐渐减小,其下方墙厚6米,与 万神殿下半部墙壁等厚,到顶部则递减为 1.5米。为使穹顶墙厚的递减更有利于万 神殿整体建筑的稳固,万神殿穹顶内壁被 整齐划分为5排28格,每一格皆被由上而下雕凿凹陷,不仅使墙厚的递减更为合理,也增加了万神殿内部的美观性。还有公元前537年东罗马帝国的圣索菲亚教堂(砌体结构),中央大厅32.6m×68.6m,由一个整园穹拱和两个半圆穹顶覆盖,穹窿之下,柱拱之间,推力逐步传给更小的半圆穹顶。随着19世纪工业革命的发展,材料的进步,生铁出现,当时铁价比木材低廉,采用铁方便灵活又具有截面小等特点,在欧洲兴盛起来,1851年伦敦海德公园举行首届国际博览会的展览馆水晶宫,用的是钢材和玻璃建造的第一栋房屋,中央大厅采用了筒拱顶,支撑在空心铸铁柱上。随着钢结构快速的发展,钢筋混凝土结构也开始成熟起来,1886年英国阿士普丁发明混凝土。1886年德国冠农通过圆拱和平板荷载试验确定了钢筋受拉,混凝土受压的理论。1892年法国亨奈比克用钢筋植入混凝土中,渐渐的运用在房屋建筑中。空间结构理论研究也在同步发展,1826~1831年法国人首创薄壳理论及周边支撑筒壳近似分析法,1892年的径向剪力与弯矩理论为以后壳体结构发展打下基础。1924年天象仪概念创始人鲍尔斯费尔德教授非结构专业,用纯数学计算出自己提出的用15m直径的半圆形网壳结构的每根杆的位置和长度,建成了公认的真正意义上的空间结构的德国耶拿市蔡斯工厂的天文馆。该结构以网壳与薄壳的组合结构。其表面用钢丝覆盖后喷浆,钢的求网壳在施工中当了模架,水泥硬化后成为球壳的配筋。1925年第一个真正薄壳诞生于德国耶拿Schiff玻璃工厂厂房的旋转对称的球壳屋顶。 分类:①实体结构薄壳结构主要形式:圆柱面壳,圆球壳,双曲扁壳,双曲抛物面扭壳,与传统平面结构相比,薄壳结构造型优美,传力路线直接,受力性能好,既是承重结构又是围屋结构材料节约。案列罗马小体育馆,美国西雅图金郡体育馆,北京网球馆;折板结构主要形式:V,II,Z形,折线形横截面,大大增加了空间刚度,能做梁受弯,拱受压,便于制作。案列美国伊利诺大学会堂,武钢外国专家招待所文娱室。 ②网格结构杆件空间会交于节点,形成一个高次超静定结构。平板网架:外观为平板,多向传力,空间刚度大,整体性好,有良好的抗震性能,及适用大跨度建筑,也适用中小跨度房屋,能覆盖各种形状的平面;网壳:外观为曲面状,有单层和双层两类,主要承受压力,稳定问题比较突出,跨度较大时,不能充分发挥材料强度,杆件和节点的几何偏差,曲面偏离等初始缺陷对网壳内力和整体稳定影响较大。

单层球面网壳设计实例(已加密)

硕士研究生课程考试试卷 硕士研究生课程考试试卷 考试科目:大跨与空间钢结构 考生姓名:许爱国考生学号:20101602009 考生姓名:杨 丹考生学号:20101602024 考生姓名:张 长考生学号:20101602084 考生姓名:田真珍考生学号:20101602015 学院:土木工程学院专业:土木工程(结构工程方向)考生成绩:90 任课老师(签名) 崔佳 考试日期:2011 年9月5日

目 录 录 1设计资料 (1) 1.1 设计题目 (1) 1.2 设计参数 (1) 2 设计分析软件 (2) 2.1 分析软件简介 (2) 2.2 软件分析步骤 (2) 3 网壳结构设计计算 (3) 3.1 设计基本要求 (3) 3.2 计算分析方法 (3) 3.3 结构模型建立 (4) 3.4 节点与单元属性设置 (5) 3.5 材料参数设置 (6) 3.6 施加约束和荷载 (7) 3.7 软件初步分析设计 (11) 3.8 结构动力分析 (14) 3.9 竖向和水平地震作用抗震验算 (19) 3.10 结构风振系数计算 (21) 3.11 支座节点及檩条设计说明 (21) 4 网壳结构计算结果信息 (22) 4.1 网壳结构各杆件内力 (22) 4.2 网壳结构挠度验算 (23) 4.3 杆件与球节点配置及材料表 (25) 4.4 图纸生成说明 (25) 5 设计结果分析 (26) 5.1 单层球面网壳设计结果概述 (26) 5.2单层球面网壳整体稳定性分析简述 (27) 5.3 网壳结构设计中的几个问题 (29) 参考文献 (30) 附录 (31)

1 设计资料 1.1 设计题目 设计一单层球面网壳,网壳直径为20m,矢高7m,周边支承在钢筋混凝土柱及圈梁上,钢筋混凝土柱沿周边每20°一个均匀布置,柱截面尺寸为400mm×700mm,柱顶及圈梁顶标高为15.2m,圈梁截面尺寸为400mm×600mm。网壳上搭设檩条,屋面板采用压型钢板。 1.2 设计参数 1.2.1 静荷载 网壳自重:网壳结构的自重包括钢管杆件和焊接空心球节点(或螺栓球节点)的重量,可由计算机分析软件程序自动生成。 附加恒载:檩条、压型钢板和灯具重量取2 kN m。 0.65/ 1.2.2 活荷载 本工程屋面为不上人屋面,根据《建筑结构荷载规范》(GB50009-2001)(2006年版)第4.3.1条规定,屋面均布活荷载标准值取为2 kN m。屋面均布活荷载不应 0.5/ 与雪荷载同时考虑,取二者的较大值,此处不考虑雪荷载。基本风压取2 0.4/ kN m,本工程不考虑积灰荷载和吊车荷载。 1.2.3 温度作用 此处的温度作用仅指分析软件用到的温度差,即结构施工安装时的温度与使用过程中温度的最大差值,此处取为-25℃~25℃。 1.2.4 地震作用 本工程所在场地的抗震设防烈度为8度,场地类别为Ⅱ类,根据《空间网格结构技术规程》(JGJ7-2010)第4.4.2条规定,本工程单层球面网壳结构需要进行竖向和水平抗震验算。 1.2.5 结构材料 网壳结构杆件对钢材材质的要求与普通钢结构相同,本工程采用Q235B钢。网壳杆件截面形式有圆钢管、方钢管、角钢及H型钢等,由于圆钢管相对回转半径大和截面特性无方向性,对受压和受扭有利,一般情况下,圆钢管截面比其他型钢截面可节约20%的用钢量,当有条件时应优先采用薄壁圆管形截面,圆钢管可采用高频电焊钢管(即有缝管)或无缝钢管,其中高频电焊钢管较无缝钢管造价低且壁薄,设计时应优先使用,故本工程采用高频电焊圆钢管。网壳结构下部的钢筋混凝土柱及圈梁的混凝土强度等级采用C30。

凯威特型局部双层球面网壳参数化建模及静力分析

凯威特型局部双层球面网壳参数化建模及静力分析 摘要:以凯威特型局部双层球面网壳为研究对象,应用大型有限元软件ansys 的apdl编程语言,编制相应的宏程序,对这种常见的局部双层球面网壳进行参数化建模。对比分析了相同条件时凯威特型单层与局部双层球面网壳的最大位移。该建模方法简单、快捷、高效,能为凯威特型局部双层球面网壳的研究工作提供方便;静力分析结果表明,相对于相同条件下的单层球面网壳,局部双层球面网壳能够明显减小网壳的。 Abstract: By studying Kai Weite type partial double spherical shell, the application of finite element software ansys apdl programming language, preparation of the corresponding macro for this common partial double spherical shell for parametric modeling. Comparative analysis of the same conditions Kaiwei Te single layer spherical shell with partial double the maximum displacement. The modeling method is simple, fast, efficient, and being able to Kaiwei Te-based double-layer spherical shell of local research to facilitate the work; static analysis results show that under the same conditions as opposed to single-layer spherical shell, partial double spherical shell can significantly reduce the shell 关键词:局部双层球面网壳;参数化建模;apdl语言;ansys软件 Key Words: regional double-layer spherical shell, parameter modeling, apdl language, ansys software 中图分类号:TU393 文献标示码:A文章编号: 0引言 根据网格划分形式不同,常见的球面网壳有:肋环球面网壳、施威德勒球面网壳、联方球面网壳、凯威特球面网壳、三向格子球面网壳和短程线球面网壳等。根据其结构形式可分为单层球面网壳、双层球面网壳等[1]。 局部双层网壳是在结合单层与双层球面网壳的基础上发展起来的一种新型球面网壳形式,它结合了单层与双层球面网壳的特点。凯威特型局部双层球面网壳是应用最多的球面网壳之一,但由于结构形式比较复杂,建模比较困难,本文通过有限元软件ansys的apdl编程语言,编制参数化建模程序,从而实现自动建模。 1. 几何描述 描述凯威特型局部双层球面网壳的主要几何参数有跨度S、矢高F、环向对称循环区域个kn、径向节点圈数Nx,双层区厚度T[2]。则球面曲率半径为:

单层球面网壳结构抗震性能研究

第7卷第4期空 间 结 构V ol.7N o.4 2001年12月SPA T I AL ST RU CT U RES Dec.2001 [文章编号]1006-6578(2001)04-0030-07 单层球面网壳结构抗震性能研究 陈军明, 陈应波, 吴代华 (武汉理工大学理学院结构工程与力学系, 湖北 武汉430070) [摘 要] 本文研究了单层网壳结构地震响应的计算理论和计算方法。以K8型单层球面网 壳为研究对象,得出了单层网壳在水平地震作用和竖向地震作用下的力学响应特性的一些重 要结论。进一步针对地震响应的主要影响参数,如结构几何参数、边界刚度、阻尼比等,对单层 球面网壳地震响应规律作了系统的研究,并提出了对单层网壳结构抗震设计有应用价值的结 论和建议。 [关键词] 单层网壳;地震响应;计算理论;参数分析;抗震设计 [中图分类号] T U311.3 [文献标识码] A 1 引 言 鉴于大跨建筑物的重要性,其地震作用效应引起了工程界的关注。近年来,许多学者对平板网架结构在地震作用下的反应及抗震计算方法进行了系统的研究,并制定了《网架结构设计与施工规范》。但国内外学者对单层网壳结构的研究主要集中在静力稳定性能研究,对其抗震性能研究进行较少。网壳结构的地震反应特征是否与网架结构相同?在各种结构参数影响下网壳结构地震内力响应规律如何?对罕遇地震作用下结构的弹塑性反应如何计算?这些都是急待解决的问题。研究网壳结构的抗震性能是其在地震地区广泛应用的前提和基础。 2 运动平衡方程 2.1 运动方程 从单层网壳结构的合理传力方式来看,一般认为空间刚接是其最佳节点形式。故可将网壳 [收稿日期] 2001-06-30 [基金项目] 高等学校博士后流动站科研基金资助。 [作者简介] 陈军明(1966—),女,湖南人,博士,主要从事大跨结构抗震性能的研究。

3D3S11网架网壳模块手册

网架网壳结构设计系统手册 钢结构设计软件V11 网架网壳结构设计系统手册 同济大学3D3S研发组上海同磊土木工程技术有限公司 2012年06月

版权声明 3D3S计算机程序以及全部相关文档是受专利权法和著作权法保护的产品,版权属于上海同磊土木工程技术有限公司。未经上海同磊土木工程技术有限公司的书面许可,不得以任何形式、任何手段复制本产品或文档的任何部分。 同济大学3D3S研发组 上海同磊土木工程技术有限公司 电话:021-65981466 传真:021—65985557 电子邮件:help_3d3s@https://www.doczj.com/doc/9a15072946.html,, support@https://www.doczj.com/doc/9a15072946.html, sales@https://www.doczj.com/doc/9a15072946.html, 网址:https://www.doczj.com/doc/9a15072946.html,

免责声明 3D3S软件的开发以及文档的编制投入了相当多的时间和努力,经过了严格的测试和使用。自1997年开发以来,众多用户的工程应用证明了软件的适用性和正确性。 但在程序使用方面,使用者接受并清楚地知道开发者或经销商在程序的准确性或可靠度上没有做任何直接或暗示的担保。使用者必须明确了解程序的假定并必须独立的核查结果。 同济大学3D3S研发组 上海同磊土木工程技术有限公司

目录 第一章快速入门 (4) 1.1操作顺序 (4) 1.2操作流程图 (6) 第二章网架模块菜单功能文字说明 (7) 2.1结构编辑 (7) 2.2显示查询 (17) 2.3构件属性 (17) 2.4荷载编辑 (17) 2.5内力线性及非线性分析 (17) 2.6设计验算 (17) 2.7 节点设计 (18) 2.8 施工图 (32) 第三章例题 (37) 3.1 螺栓球网架 (37) 3.2焊接球网架 (43) 3.3网架下部为橡胶支座带混凝土柱网架 (45) 3.4网架模块的加锥、及模型包络的功能例题 (49) 3.5网架模块加吊车、辅助孔以及基准孔拟合功能例题 (51) 主要拓展功能: 1.新增了螺栓球加辅助螺孔功能; 2.新增了添加悬挂吊车功能; 3.新增了不同支座刚度模型包络功能,以考虑同一工程中多种边界条件; 4.新增了将网架网壳实体模型转换为CAD实体的功能; 5.新增了网架网壳施工图中标注杆件最大轴力功能; 6.新增了螺栓和套筒强度咨询功能; 7.新增了杆件夹角查询功能及模型最小夹角查询功能; 8.螺栓球节点设计时用户可根据需要选择型号,不用删除库中型号,操作更方便; 9.螺栓球设计中的参数设置更为详细; 10.改进了网架网壳后处理出图功能。

我国钢结构建筑发展历史

我国钢结构建筑发展历史 钢结构包括房屋钢结构、桥梁、塔桅、容器及水工钢结构等多领域。本文仅谈房屋钢结构的60年发展历程。 房屋钢结构发展可分为四个阶段:初盛阶段(上世纪50年代至60年代)、低潮阶段(上世纪60年代中后期至70年代)、发展时期(上世纪80年代至90年代)、强盛阶段(2000年至2010年)。 初盛阶段(上世纪50年代至60年代) 1949年新中国刚成立,百废待兴,当时钢产量很低,每年仅135万吨(现已达5亿吨以上)。钢结构建设只有依靠苏联经济及技术援助,当时苏联援建156项重型工业工厂,包括冶金、重型机械、飞机汽车等工业,如鞍山钢铁厂,武汉钢铁厂、大连造船厂、哈尔滨飞机制造厂等。当时还派来一大批苏联专家指导工作。与此同时还在北京、沈阳、华东、华南、中南、西南、西北等地成立6大工业设计院,在北京、武汉、鞍山、重庆、包头、上海成立了6个钢铁设计院,先后成立了22个冶金建设部门及钢结构制造安装公司等。短短几年建设了不少钢结构工业厂房(钢柱、钢屋架、吊车梁),培养一大批设计、制造、安装方面的人才,为今后发展打下了坚实基础。当时,民用建筑钢结构工程不多,值得提出的有:1954年北京体育馆(57米跨两铰落地拱)、1954年重庆人民礼堂(40.6米肋环形钢穹顶)、1956年天津体育馆(50米柱面联方钢网壳)、1959年北京人民大会万人礼堂(60.9米大钢桁架)等。当今的日本教授首创的弦支梁、弦支桁架以及弦支穹顶等,这种弦支概念在上世纪50年代就已经有了,如大跨度下撑式吊车梁以及预应力输煤栈桥等。 低潮阶段(上世纪60年代中后期至70年代) 这个时期国家各部门钢材需求量增大了,但钢产量仍然不多,每年也只有2000万吨,国家提出节约钢材的政策,当时有人片面理解为不用钢结构,于是钢结构工程数量少了。在文化大革命时期更是一切都停了下来。通过教授及工程技术人员的积极努力,才把使用多年的1955年版《钢结构规范》用自己编写的1974年版《钢结构规范》代替。同时,也建造了一些大型的钢结构工程,当然和当前相比数量少多了。在提倡节约钢材的同时,国家又提出取消肥梁、胖柱、深基础的方针,于是出现了一批冷弯薄壁型钢的工程:如上海、韶关、桂林、十堰等地建造了数十万平方米的厂房、仓库等。由于节约钢材政策,平板网架工程得到了推广应用,特别是焊接空心球节点研究成功,全国各地中小跨度的焊接球节点平板网架比比皆是,与此同时,螺栓球节点钢结构网架也推广起来了。

单层球面网壳结构的稳定性分析

单层球面网壳结构的稳定性分析 摘要:网壳结构是近年来在建筑工程中广泛应用的一种空间结构形式,它受力合理,造型美观, 用料经济,施工简便。其结构形势多样,跨度较大,重量轻,因而网壳结构的稳定性问题是结构设计和施工安装中的十分重要。本文主要在国内外研究成果的基础上,介绍单层球面网壳结构的发展状况以及其非线性 稳定性分析方法,并得出相关结论。 关键词:单层球面网壳结构、非线性、稳定性 Abstract:In recent years latticed shell is a widespread spatial structure in the architectural engineering because of the reasonable stress, the beautiful modeling and convenient installation. Its structure diversifies , span is big and the weight is light. So the stability calculation problem on the latticed shell structure becomes important in the structure design and construction installment. Based on the recent research within and without , this paper mainly introduce the development and the nonlinear stability analysis methods of single-layer spherical lattice shells and draws some conclusions. Key words: single-layer spherical lattice shell、nonlinear、stability 1 网壳结构的发展概况 网壳结构是一种由杆件构成的曲面网格结构,可以看作是曲面状的网架结构,兼有杆系结构和薄壳 结构的固有特性。该结构形式受力合理、造型美观多样、跨度大、材料耗量低,现场安装简便,是非常 有发展前景的一类空间结构[1-2]。 网壳结构按照曲面外形可以分为:球面网壳、柱面网壳、双曲扁网壳、圆锥面网壳、单块扭网壳、扭曲面网壳、双曲抛物面网壳以及切割或组合形成面网壳等[3]。 国外最早网壳可追溯到1863年在德国建造的一个由凯威特设计的30m直径的钢穹顶,是作为储气罐的顶盖之用。由此命名的这种施威德勒形式的网状穹顶,至今仍作为球面网壳的一种主要形式。近二、 三十年来,国外尤其在美国、日本等国网壳结构发展迅速。我国网壳结构作为空间结构受力体系设计并 广泛应用,始于上世纪80年代末,近年来正蓬勃发展,国外很多网壳结构在建筑形体、结构跨度、加工精度、安装方法、网壳的开启技术等方面有独到之处,都值得我们学习和借鉴[4]。 近年来国内外不少的标志性建筑都采用了球面网壳这种空间结构。日本于1996年建成的名古屋体育馆(见图1)是世界上跨度最大的单层球面网壳。该体育馆整个圆形建筑直径为229.6m,支承在看台框架柱顶的屋盖直径则有187.2m。另外1993年建成的日本福冈体育馆(见图2)也为球面网壳,直径为222m,是目前世界上最大的可开合式球面网壳结构。 我国于1994年修建的天津市新体育中心体育馆的双层网状球壳结构(如图3),平面为圆形,直径108m,外悬挑部15.4m,厚度3.0m,整个球壳平面直径为135.0m,矢高13.5m,用钢指标为55kg/m2,

球面网壳结构类型和特点

球面网壳结构类型和特点 球面网壳主要有交叉桁架体系和角锥体系两大类。 1交叉桁架体系 各种形式的单层球面网壳的网格形式均可适用于交叉桁架体系,只要将网壳中的每根杆件用平面网片来代替,即可形成双层球面网壳,注意网片竖杆方向是通过球心的。 单层球面网壳主要类型有:肋环型球面网壳(Ribbed Dome)、施威德勒型球面网壳(Schwedler Dome)、联方型球面网壳(Lamella Dome)、三向格子型球面网壳(three way grid Dome)、凯威特型球面网壳(Kiewitt Dome)和短程线球面网壳(Geodesic Dome)。双层球面网壳在单层的基础上且网壳上下两层同心进行杆件的交叉复制,使得双层球面网壳的下层杆件连接规律与上层球面一致,上层和下层通过交叉连接,形成交叉桁架体系,即双层球面网壳。 1.1肋环型球面网壳 它是由经向和纬向杆件组成,大部分网格呈梯形。具有网格划分简单,节点构造简单的特点。但是其杆件长短不一,内力分布不均匀,制作安装工作量相当大。杆件计算模型应按空间刚接梁单元考虑,一般适用于中、小跨度结构。

图1:勒环型单层球面网壳 1.2施威德勒型球面网壳 由经向杆、纬向杆和斜杆构成,是肋环型球面网壳的改进形式。加设斜杆的目的是为了提高结构刚度和其承受非对称荷载的能力。斜杆布置方法主要有:左向单斜杆、双斜杆、左右向单斜杆和无纬向杆的双斜杆。在具体工程设计时,应综合考虑荷载特点和支承方式以及材料等因素来确定选用结构布置形式。这种网壳刚度较大,一般适用于大、中型网壳结构。 图2:施威德勒型单层球面网壳 1.3联方型球面网壳 联方型球面网壳系德国工程师Zollinger首创,由左斜杆和右

组合多面体理论在球面网壳结构中的应用

第29卷第2期2008年 4月河南科技大学学报:自然科学版Journal of Henan University of Science and Technol ogy:Natural Science Vol .29No .2Ap r .2008 基金项目:河南省教育厅自然科学基金项目(200510464007) 作者简介:杜泽丽(1982-),女,河南信阳人,硕士生;周丰峻(1938-),男,山东黄县人,中国工程院院士,防护工程专家,近年从事 空间结构的研究. 收稿日期:2007-09-20 文章编号:1672-6871(2008)02-0062-03 组合多面体理论在球面网壳结构中的应用 杜泽丽1,周丰峻2,梁 斌1 (1.河南科技大学建筑工程学院,河南洛阳471003;2.总参工程兵三所,河南洛阳471000) 摘要:根据组合多面体理论及突角和理论,得出有12个正五边形和多个六边形构成的网壳,并计算了网壳中五边形边长与五边形外接球半径的比例关系,给出了相应的拟合公式,其相对误差不大于4.07%,据此,可根据工程需要进行多面体选型。 关键词:球面网壳结构;组合多面体;突角和;拟合公式 中图分类号:T U31文献标识码:A 0 前言 我国空间钢结构从20世纪60年代开始研制和应用,但扩大应用发展缓慢,自1982年空间结构委员会成立以后的二十年发展很快。特别是近十年来,钢产量占世界首位,各省市都在兴建体育馆、会议 展览馆、机场机库、大型娱乐场所、多功能厅等,结构跨度不断要求增大而且形式也不断创新[1]。 目前,国内外空间网壳大多由三角形、四边形或者组合而成的[2] 。本文介绍了根据组合多面体理论,得到的由12个五边形和六边形组合而成的球面网壳,它不仅具有优美的构型,而且其节点、杆件、构型的类型数降到最低,能有效的减少用材以及缩短工期[3]。并计算了12个五边形外接球半径和五边形边长的比例关系,给出了相应的拟合公式,据此,可以根据工程需要来选取合适的多面体及杆件。目前, 多面体理论首次在国家游泳中心“水立方”中得以应用[4-6],它不仅受力合理,而且造型优美。1 理论基础 1.1 组合多面体理论 组合多面体理论主要包括以下几个定理: 定理1:组合正五角形和正六角形多面体有无穷多个,面数最低的组合多面体为32面体。所有组合多面体面数(S )、节点数(J )和棱边数(L )满足欧拉拓扑定理,即S +J -L =2。 定理2:任意一个组合多面体有且只有12个五角形,当以任一五角形心为中心极点进行平面展开 时可以获得五个相同的分支展开图,每个分支展开图具有中心对称性[7-8]。 定理3:在所有五角形六角形组合多面体中,以五角形形心为顶点,可以构成正20面体。每3个五角形形心对应立体角范围,可构成一个单元体,单元体具有组合多面体的全部几何特征,正20面体为所有球内接组合多面体的对偶变换,是其研究的基本构形。 定理4:以正五角形形心为极点中心的组合多面体展开分支中,自极心点至赤道中心对称点每层面数满足递增关系,赤道两侧五角形间的每层面数不变。 定理5:组合多面体展开分支有沿五边形角展开和座边展开两种形式。两种展开同时满足上述定理,其性质是单元立体角内含1个或多个(非整数个)六角形,组合多面体沿角展开和沿边展开可以形成不同面数的多级组合多面体分支展开图形。 1.2 突角和理论 突角和理论:球面网壳的每个节点处,各突角之和均相等。

凯威特型局部双层球面网壳参数化建模静力分析

凯威特型局部双层球面网壳参数化建模及静力分析摘要:以凯威特型局部双层球面网壳为研究对象,应用大型有限元软件ansys的apdl编程语言,编制相应的宏程序,对这种常见的局部双层球面网壳进行参数化建模。对比分析了相同条件时凯威特型单层与局部双层球面网壳的最大位移。该建模方法简单、快捷、高效,能为凯威特型局部双层球面网壳的研究工作提供方便;静力分析结果表明,相对于相同条件下的单层球面网壳,局部双层球面网壳能够明显减小网壳的。 abstract: by studying kai weite type partial double spherical shell, the application of finite element software ansys apdl programming language, preparation of the corresponding macro for this common partial double spherical shell for parametric modeling. comparative analysis of the same conditions kaiwei te single layer spherical shell with partial double the maximum displacement. the modeling method is simple, fast, efficient, and being able to kaiwei te-based double-layer spherical shell of local research to facilitate the work; static analysis results show that under the same conditions as opposed to single-layer spherical shell, partial double spherical shell can significantly reduce the shell 关键词:局部双层球面网壳;参数化建模;apdl语言;ansys

大跨度空间结构_网壳结构的历史与发展_符立勇

大跨度空间结构———网壳结构 的历史与发展 符立勇,杨从娟 (石家庄铁道学院力学与工程科学系,河北石家庄050043) [摘 要] 现代空间结构要求有最大的自由空间及最小的内支撑干扰。回顾空间结构的发展历史,网壳结构是能够很好满足上述要求的结构体系之一。本文较全面、系统地评述了国内外网壳结构发展历史和应用现状,并介绍了一些有代表性的工程实例。最后讨论了网壳结构进入21世纪的发展趋势,探讨了网壳结构的应用前景。 [关键词] 空间结构;网壳结构;历史;发展 [中图分类号]TU33 [文献标识码]B [文章编号]1007-9467(2002)05-0003-03 一、引言 随着人类物质文明和精神文明的发展与提高,人们需要更大的覆盖空间来满足社会活动和生产劳动的需要,而且要求有最大的自由空间及最小内支撑相互干扰的结构,如大型集会场所、体育馆、飞机库、会展中心、游泳池、餐厅、候车厅、工业厂房等。而一般的平面结构,如梁、刚架、桁架、拱、组合结构等,由于结构形式的限制,从技术经济方面讲已很难跨越更大的空间,来满足飞速发展的社会需求。人们通过实践发现,具有三维空间形状并且有三维受力特性、呈空间工作状态的空间结构,正好能满足大跨度建筑结构的要求。这是因为空间结构不仅仅依赖材料性能,而且更加充分利用自已合理的形体及不同材料特性,来适应不同建筑造型和功能的需要,从而可跨越更大空间。尤其近年来计算机技术的飞速发展,使空间结构在形体研究的计算方法上有了新的突破,使形体与受力完美组合成为可能。因此,空间结构对于现代建筑已产生重大影响,它不但被公认为社会文明的象征,而且由于采用了大量新材料、新技术和新工艺,空间结构还成为衡量一个国家建筑科学技术水平的标志之一。 二、网壳结构的历史 1.网壳结构的雏形———穹顶结构 在人类社会的发展历程中,大跨度空间结构常常是建筑人员追求的梦想和目标。其中,网壳结构的发展经历了一个漫长的历史演变过程。网壳结构的发展是和人类社会的生活、生产劳动密切相关的,并且与当时的科技水平及物质条件紧密相连。 古代的人类通过详细观察,发现自然界中存在大量受力特性良好、形式简洁美观的天然空间结构,如蛋壳、蜂窝、鸟类的头颅、肥皂泡、山洞等。利用仿生原理,人类得以更好地理解和发展空间结构。古代的人类为了有一个好的生存空间,常常以树枝为骨架、以稻草为蒙皮来建造穹顶结构,后来又以皮革或布匹代替稻草,即现在常见的帐篷。经过长期的工程实践,人类认识到穹顶能以最小的表面封闭最大的空间,而且所耗用的材料也比较经济。 穹顶的发展与建筑材料的发展是密切相关的。古代,穹顶用石料建造,后来逐渐被砖石结构取代。例如,古罗马人就利用石料或砖建造了大量圆形或圆柱形穹顶,用来作为宗教活动的场所。这些穹顶的跨度都不大,一般为30~40m左右,穹顶的厚度与跨度之比为1/10左右,因此早期的穹顶自重很大。其中,建于公元120~124年的罗马万神庙是早期穹顶的典型代表,该穹顶基面为44m的圆。中世纪,木材成为穹顶结构的主要覆盖材料;到19世纪,铁的应用为穹顶的发展开创了一个新纪元,使覆盖大跨度建筑物成为可能。近代,钢筋混凝土结构理论的出现及应用使穹顶的厚度大大降低,薄壳穹顶受到人们的极大关注,从而开辟了结构工程新领域。1922年在德国耶拿建造了土木工程史上第一座钢筋混凝土薄壳结构———耶拿天文馆,其净跨为25m,顶厚为60.3m m,厚跨比大约为1/400。薄壳穹顶以其结构自重较小,受力性能良好,可以覆盖大跨度空间和造型优美等优点,得到广泛应用和发展。现代,优质钢材的使用更是影响各种形式大跨穹顶网壳发展的一个重要因素。 2.网壳结构的诞生 钢筋混凝土薄壳结构尽管有诸多优点,但经过若干年工程实践,工程技术人员逐渐发现这种结构的缺点:钢筋混凝土薄壳施工时需要架设大量模板,工作量很大,施工速度较慢,工程造价高。因而人们对之逐渐丧失兴趣,开始寻求 3 钢结构设计专题 工程建设与设计 2002年第5期

施威德勒型球面网壳的建模过程详解

施威德勒型球面网壳的建模过程详解 1、问题描述:一球面半径20.0m,跨度35m,矢跨比1:3.5的单层球面网壳。网桥结构所有杆件均采用Φ114.0×4.0的Φ235钢管。建模过程中所有数据单位统一为N-mm制。 模型侧视图 模型俯视图 模型轴测图

2、此问题拟采用ANSYS建模和受力分析。 3、施威德勒型球面网壳建模及分析命令流。! 结构建模 finish /clear /filename,schwedler /title,analysis of spherical reticulated-shell /prep7 et,1,beam4 r,1,1382,2093500,2093500,114,114,, rmore,,4187000,,,,, mp,dens,1,7.85e-9 mp,ex,1,2.06e5 mp,nuxy,1,0.3 local,11,2,0,0,0 cscir,11,1 n,1,20000,0,30 n,10,20000,180,30 n,18,20000,340,30 fill,1,10 fill,10,18 ngen,6,18,1,18,1,0,0,10 n,109,20000,0,90 *do,i,1,91,18 e,i,i+1 egen,17,1,i,i,1 e,i+17,i *enddo e,1,19 egen,5,18,109,109,1 egen,18,1,109,113,1 *do,i,91,108,1 e,i,109 *enddo *do,i,1,73,18 e,i,i+19 *enddo egen,17,1,217,221,1 *do,i,18,90,18 e,i,i+1 *enddo csys,0 nsel,s,loc,z,9900,10100

凯威特型单层球面网壳的静力及屈曲分析

凯威特型单层球面网壳的静力及屈曲分析 【摘要】目的:研究静力与屈曲分析对凯威特型单层球面网壳设计的影响。方法: 结合静力及屈曲分析的基本原理和方法,基于ANSYS对某凯威特型单层球面网壳进行静力和屈曲分析。结果:得到了所选网壳的静力模态和第一阶弹性屈曲临界荷载,线弹性屈曲分析得到的一阶屈曲荷载是几何非线性屈曲分析的得到的屈曲荷载的上限。结论:在线弹性范围内仍然具有较大的富裕强度,具有较高的弹性强度贮备。分析给出了具体结论,为工程结构设计与监测提供了理论依据。 【关键词】球面网壳;ANSYS;静力分析;屈曲分析;线弹性;几何非线性 1 前言 网壳结构设计中要考虑的一个重要问题是结构的稳定性,对于跨度越来越大的网壳结构来说,对其屈曲问题的研究已经成为重要的研究课题。基于此,本文先介绍了网壳结构的计算方法,进而运用大型有限元软件ANSYS数值模拟的方法对凯威特型单层网壳进行了静力与屈曲分析,得出结论为工程结构设计与监测提供了理论依据。如何分析单层球面网壳在荷载作用下的非线性屈曲变形情况,保证其设计的安全性是网壳结构设计工作面临的问题。 2 分析原理及方法 采用几何非线性有限元分析,能更加准确地得到结构变形和内力分布情况,因此对网壳结构的设计和分析等工作有着重要的意义。实际上,几何非线性分析不仅仅用来做大变形分析,还可以把几何非线性分析用于稳定性分析。非线性屈曲分析是一种逐渐增加载荷的非线性静力分析技术来求解使得结构开始变得不稳定的临界载荷,该方法比线性屈曲分析更加精确,一般在实际的设计和计算中比较常用。屈曲分析是一种用于确定结构开始变得不稳定时的临界荷载和结构发生屈曲响应时的的技术。特征值屈曲载荷是预期的线性屈曲载荷的上限,可以作为非线性屈曲分析的给定载荷,在渐进加载达到此载荷前,非线性求解应该发散,特征矢量屈曲形状可以作为施加初始缺陷或扰动载荷的根据。 3 计算模型及分析过程 3.1 模型工况 某凯威特型单层球面网壳结构位于沈阳地区,属于C类地区,抗震设防烈度7度,底平面的直径为40 m,矢高为5.4 m,圆心角为60度。 (1)模型的静力分析 只需要对模型施加一个单位荷载,进而进行静力求解。开始阶段的静力分析前5阶模态频率,且图1-2显示了前的静力模态。

凯威特单层球面网壳结构隔震分析

23卷4期 2007年12月世 界 地 震 工 程W ORLD EARTHQUAKE ENG I N EER I NG V o.l 23,N o .4D ec .,2007收稿日期:2007-03-16; 修订日期:2007-07-23 基金项目:国家自然科学基金重点项目(项目编号:50338010) 作者简介:杨飏(1975-),女,副教授,主要从事结构振动控制的研究. 文章编号:1007-6069(2007)04-0025-05 凯威特单层球面网壳结构隔震分析 杨 飏1范 峰2沈世钊2 (1.东北大学资源与土木工程学院,辽宁沈阳110004; 2.哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090) 摘要:将凯威特网壳结构的固定支座设置成隔震支座,分别采用弹簧支座和粘弹阻尼支座对结构进行 了隔震控制。在有控和无控状态下,计算了凯威特网壳结构的自振频率,初步分析了凯威特网壳结构 的隔震控制机理。分别在常遇和罕遇各三种地震作用下,对网壳结构进行了时程分析,对网壳结构的 最大水平位移、隔震支座的最大水平位移、最大支座反力和网壳结构的杆件轴力进行了数值计算。研 究结果表明:两种隔震装置均有效地控制了凯威特网壳结构的支座反力和杆件轴力,粘弹阻尼支座还 明显地减少了隔震支座的水平位移和隔震结构的水平位移。隔震方法对于大跨网壳结构的减振是有 效的。 关键词:凯威特型网壳;隔震控制;动力响应;弹簧支座;粘弹阻尼支座 中图分类号:TU 393.3 文献标识码:A Isol ati on anal ysis of singl e layer K e w itte l atticed spherical shell YANG Yang 1FAN Feng 2SHEN Sh-i zhao 2 (1.C oll ege of Resou rces and C i vilEng i neeri ng ,Nort h eas t ern Un i versit y ,Sh enyang 110004,Ch i na ; 2.Schoo l ofC i vil Engi n eeri ng ,H arb i n Insti tute of Technology ,H arb i n 150090,Ch i n a) Abst ract :Iso lation con tro l analysis is carried ou t for K e w itte latticed shell i n w h i c h all hor izontal p i n suppo rtsw ere replaced by spring supports or da m ped spring supports .The d ifferences o f the v ibration m odes and t h e frequenc i e s bet w een uncontr o lled and contro lled structure are studied by ana l y zi n g the i s o lation m echan is m of iso lated K e w itte latticed shel.l For the iso lated K e w itte structure ,its m ax i m um horizonta l d isplace m en,t the m ax i m um horizonta l disp lace m ent of isolato rs ,the m ax i m um reacti o ns of supports and the struct u ra l ele m ent ax ial f o rces are calcu lated under the action of frequent earthquakes and rare earthquakes ,respecti v e l y .The resu lts have i n dicated that t w o ki n ds of the iso lati o n devices can con tro l the reactions of Ke w itte latticed she ll effective l y .Da mped spri n g supports can a lso reduce the displace m ents of the iso lated supports and the displace m ents of the iso lated she ll sign ificantly .Iso lation is effecti v e for reduci n g the v ibrati o n of large span shel.l K ey w ords :Ke w itte latticed shel;l isolati o n contro;l dyna m i c response ;spring suppor;t da mped spri n g support 1 引言 结构振动控制就是通过在结构上安装耗能或减振装置以减轻或抑制结构由于动力荷载引起的响应,在土木工程结构中的应用始于1972年[1]。在此之后,结构振动控制技术得到了迅速发展,目前已经成为结构工程学科中一个十分活跃的研究领域,三十年的理论和实践表明:结构振动控制可以有效地减轻结构在风和

相关主题
文本预览
相关文档 最新文档