当前位置:文档之家› 球面网壳结构类型和特点

球面网壳结构类型和特点

球面网壳结构类型和特点
球面网壳结构类型和特点

球面网壳结构类型和特点

球面网壳主要有交叉桁架体系和角锥体系两大类。

1交叉桁架体系

各种形式的单层球面网壳的网格形式均可适用于交叉桁架体系,只要将网壳中的每根杆件用平面网片来代替,即可形成双层球面网壳,注意网片竖杆方向是通过球心的。

单层球面网壳主要类型有:肋环型球面网壳(Ribbed Dome)、施威德勒型球面网壳(Schwedler Dome)、联方型球面网壳(Lamella Dome)、三向格子型球面网壳(three way grid Dome)、凯威特型球面网壳(Kiewitt Dome)和短程线球面网壳(Geodesic Dome)。双层球面网壳在单层的基础上且网壳上下两层同心进行杆件的交叉复制,使得双层球面网壳的下层杆件连接规律与上层球面一致,上层和下层通过交叉连接,形成交叉桁架体系,即双层球面网壳。

1.1肋环型球面网壳

它是由经向和纬向杆件组成,大部分网格呈梯形。具有网格划分简单,节点构造简单的特点。但是其杆件长短不一,内力分布不均匀,制作安装工作量相当大。杆件计算模型应按空间刚接梁单元考虑,一般适用于中、小跨度结构。

图1:勒环型单层球面网壳

1.2施威德勒型球面网壳

由经向杆、纬向杆和斜杆构成,是肋环型球面网壳的改进形式。加设斜杆的目的是为了提高结构刚度和其承受非对称荷载的能力。斜杆布置方法主要有:左向单斜杆、双斜杆、左右向单斜杆和无纬向杆的双斜杆。在具体工程设计时,应综合考虑荷载特点和支承方式以及材料等因素来确定选用结构布置形式。这种网壳刚度较大,一般适用于大、中型网壳结构。

图2:施威德勒型单层球面网壳

1.3联方型球面网壳

联方型球面网壳系德国工程师Zollinger首创,由左斜杆和右

斜杆组成菱形网格,两斜杆夹角为30~500之间,造型美观。为了增强网壳的刚度和稳定性,可在环向加设杆件,使网格成为三角形。适用于中、大跨度结构。

图3:联方型单层球面网壳

1.4三向格子型球面网壳

三向格子型是在球面上由三个方向相交成60度的大圆构成,或在球面的水平投影面上将跨度n等分,形成正三角形网格后再投影到球面上,即可得到三向网格型球面网壳。该网壳的每一杆件都是与球面有相同曲率中心的弧的一部分;其结构形式优美,受力性能较好,一般用于中、小跨度的网壳结构。

图4:三向格子型单层球面网壳

1.5凯威特型球面网壳

此球面网壳是凯威特为了改善施威德勒型和联方型球面网壳中网格大小不均而创造的。它是由n(n=6、8、12……)根通长的经

向杆先把球面分为n个对称扇形曲面,然后在每个扇形曲面内再由纬向杆系和斜向杆系将此曲面划分为大小比较匀称的三角形网格。在每个扇形面中左右斜杆都平行,故也将这种网壳称为平行联方型网壳。这种网格划分形式使得网格大小匀称,且内力分布均匀,常用于大、中跨度的网壳结构。

图5:凯威特型单层球面网壳

1.6短程线球面网壳

由美国工程师R.Fuller所创。这是一种被认为网格最为均匀的网壳结构形式,它是一种基于正多面体的网格划分方式。必须指出,在基于20面体的短程线球面网壳的网格划分中,规则的等边三角形最多为20个,而经过再划分的点不会相交于大圆,划分后的小三角形不都是相等的,它们大多数都有微小的差别,即多数杆件的长度都有微小差异,再划分的次数称为频率。网格划分方法常见的有交替划分法、面心划分法、等分弧边法等。这种网

壳杆件布置均匀、受力性能好,适用于矢高较大或超半球型的网壳。

图6:短程线型单层球面网壳

2角锥体系

角锥体系是由基本单元为四角锥或三角锥组成的双层球面网壳,在实际工程中以四角锥体系居多。为保证杆件具有合理加工长度且减少汇交于中心点的杆件数量,网格中也有过渡三角形。当跨度较大(一般40m以上)或有特殊技术要求(如在两层之间安装照明、音响和空调等设备)时,往往选用双层网壳或单双层混合网壳。双层网壳是由两个同心或不同心的单层网壳通过斜腹杆连接而的。

钢结构-工程施工难点及解决措施

钢构工程施工问题及解决方案 在钢结构施工过程中,需要加强对技术人员、工人对规范标准和操作规程的培训学习,切实做好开工前的准备,加强施工过程中质量的监督检查,积极发挥施工、监理等各方面的作用,切实做好各项工程的工序验收工作,才能保证钢结构工程的整体质量。以下是钢结构工程施工问题及解决方法: ????(一)构件的生产制作问题 门式钢架所用的板件很薄,最薄可用到4毫米。因为用火焰切割会使板边产生很大的波浪变形。目前H型钢的焊接大多数厂家均采用埋弧自动焊或半自动焊。如果控制不好宜发生焊接变形,使构件弯曲或扭曲。多薄板的下料应首选剪切方式而避免用火焰切割。 ??(二)钢结构安装问题 ?????(1)应用定型卡盘将预埋螺栓按设计位置卡住,以防浇灌混凝土时发生位移;柱低钢板预留孔应放大样,钢柱位移预控措施浇筑混凝土基础前,确定孔位后再作预留孔。 ?????(2)对垂直偏差,应在固定前予以修正。柱垂直偏差过大预控措施钢柱应按计算的吊挂点吊装就位,且必须采用二点以上的吊装方法,吊装时应进行临时固定,以防吊装变形;柱就位后应及时增设临时支撑。 ?????(3)如采用二次灌浆法,在柱脚底板开浇灌孔(兼作排气孔),利用钢垫板将钢柱底部不平处垫平,并预先按设计标高安置好柱脚支座钢板,然后采取二次灌浆。钢柱底脚有空隙预控措施钢柱吊装前,应严格控制基础标高,测量准确,并按其测量值对基础表面仔细找平。 ?????(三)柱脚安装问题 ?????(1)锚栓连接问题现象:部分未露2~3个丝扣的锚栓。柱脚锚栓未拧紧,垫板未与底板焊接。措施:应采取焊接锚杆与螺帽;以防失火时影响锚固性能,应补测基础沉降观测资料。在化学锚栓外部,应加厚防火涂料与隔热处理。 ?????(2)预埋件(锚栓)问题现象:直接造成钢柱底板螺栓孔不对位,造成丝扣长度不够。整体或布局偏移,标高有误,丝扣未采取保护措施。措施:必须复核相关尺寸及固定牢固。钢结构施工单位协同土建施工单位一起完成预埋件工作,混凝土浇捣之前。 ?????(3)锚栓不垂直现象:柱子安装后不在一条直线上,东倒西歪,使房屋外观很难看,给钢柱安装带来误差,结构受力受到影响,不符合施工验收规范要求。框架柱柱脚底板水平度差,锚栓不垂直,基础施工后预埋锚栓水平误差偏大。措施:焊成笼状,完善支撑,或采取其他一些有效措施,避免浇灌基础混凝土时锚栓移一位。锚栓安装应坚持先将底板用下部调整螺栓调平,再用无收缩砂浆二次灌浆填实,国外此法施工。所以锚栓施工时,可采用出钢筋或者角钢等固定锚栓。 ??????(四)连接问题 ?????(1)现场焊缝现象:设计要求全焊透的一、二级焊缝未采用超声波探伤;楼面主梁与柱未施焊;质量难以保证;未采用引弧板施焊。解决方法:不合格的焊缝不得擅自处理,定出修改工艺后再处

JGJ规范大全

JGJ1-91 装配式大板居住建筑设计和施工规程 JGJ1-79 2 JGJ2-79 工业厂房墙板设计与施工规程 13.00 3 JGJ3-2002 高层建筑混凝土结构技术规程条文说明 JGJ3-91 36.00 4 JGJ4-80 工业与民用建筑灌注桩基础设计与施工规程 5 JGJ5-80 中型砌块建筑设计与施工规程 11.00 6 JGJ6-99 高层建筑箱形与筏形基础技术规范 JGJ6-80 14.00 7 JGJ7-91 网架结构设计与施工规程 JGJ7-80 8 JGJ/T8-97 建筑变形测量规程 15.00 9 JGJ/T10-95 混凝土泵送施工技术规程 7.50 10 JGJ11-82 住宅隔声标准 11 JGJ12-89 钢筋轻骨料混凝土结构设计规程 JGJ12-82 22.00 12 JGJ/T13-94 设置钢筋混凝土构造柱多层砖房抗震技术规程 JGJ13-82 3.00 13 JGJ/T14-95 混凝土小型空心砌块建筑技术规程 JGJ14-82 6.00 14 JGJ15-83 早期推定混凝土强度试验方法 15 JGJ/T16-92 民用建筑电气设计规范及条文说明1 2 3 JGJ16-83 33.00 16 JGJ17-84 蒸压加气混凝土应用技术规程 17 JGJ18-2003 钢筋焊接及验收规程条文说明 JGJ18-96 12.00 18 JGJ19-92 冷拔钢丝预应力混凝土构件设计与施工规程 JGJ19-84 6.00 19 JGJ20-84 大模板多层住宅结构设计与施工规程 15.00 20 JGJ/T21-93 V型折板屋盖设计与施工规程 JGJ21-84 7.00 21 JGJ/T22-98 钢筋混凝土薄壳结构设计规程1 2 3 4 5 JGJ21-84 47.00 22 JGJ/T23-2001 回弹法检测混凝土抗压强度技术规程 JGJ/T23-92 7.00 23 JGJ24-86 民用建筑热工设计规程(试行) 24 JGJ25-2000 档案馆建筑设计规范 JGJ25-86 6.00 25 JGJ26-95 民用建筑节能设计标准(采暖居住建筑部分) JGJ26-86 6.00 26 JGJ/T27-2001 钢筋焊接接头试验方法标准 JGJ27-86 8.00 27 JGJ28-86 粉煤灰在混凝土和砂浆中应用技术规程 4.00 28 JGJ29-2003 建筑涂饰工程施工及验收规范 5.00 29 JGJ/T30-2003 房地产业基本术语标准条文说明 8.00 30 JGJ31-2003 体育建筑设计规范条文说明 19.00 31 JGJ33-2001 建筑机械使用安全技术规程条文说明 JGJ33-86 30.00 32 JGJ34-86 建筑机械技术试验规程 15.00 33 JGJ35-87 建筑气象参数标准(试行) 34 JGJ36-87 宿舍建筑设计规范(试行) 2.00 35 JGJ37-87 民用建筑设计通则(试行) 4.50 36 JGJ38-99 图书馆建筑设计规范(试行) JGJ38-87 12.00 37 JGJ39-87 托儿所、幼儿园建筑设计规范(试行) 38 JGJ40-87 疗养院建筑设计规范(试行) 3.00 39 JGJ41-87 文化馆建筑设计规范 40 JGJ46-2005 施工现场临时用电安全技术规范 5.50 41 JGJ47-88 住宅建筑技术经济评价标准 42 JGJ48-88 商店建筑设计规范(试行) 5.50 43 JGJ49-88 综合医院建筑设计规范(试行) 44 JGJ50-2001 城市道路和建筑物无障碍设计规范 JGJ50-88 18.00

单层球面网壳设计实例(已加密)

硕士研究生课程考试试卷 硕士研究生课程考试试卷 考试科目:大跨与空间钢结构 考生姓名:许爱国考生学号:20101602009 考生姓名:杨 丹考生学号:20101602024 考生姓名:张 长考生学号:20101602084 考生姓名:田真珍考生学号:20101602015 学院:土木工程学院专业:土木工程(结构工程方向)考生成绩:90 任课老师(签名) 崔佳 考试日期:2011 年9月5日

目 录 录 1设计资料 (1) 1.1 设计题目 (1) 1.2 设计参数 (1) 2 设计分析软件 (2) 2.1 分析软件简介 (2) 2.2 软件分析步骤 (2) 3 网壳结构设计计算 (3) 3.1 设计基本要求 (3) 3.2 计算分析方法 (3) 3.3 结构模型建立 (4) 3.4 节点与单元属性设置 (5) 3.5 材料参数设置 (6) 3.6 施加约束和荷载 (7) 3.7 软件初步分析设计 (11) 3.8 结构动力分析 (14) 3.9 竖向和水平地震作用抗震验算 (19) 3.10 结构风振系数计算 (21) 3.11 支座节点及檩条设计说明 (21) 4 网壳结构计算结果信息 (22) 4.1 网壳结构各杆件内力 (22) 4.2 网壳结构挠度验算 (23) 4.3 杆件与球节点配置及材料表 (25) 4.4 图纸生成说明 (25) 5 设计结果分析 (26) 5.1 单层球面网壳设计结果概述 (26) 5.2单层球面网壳整体稳定性分析简述 (27) 5.3 网壳结构设计中的几个问题 (29) 参考文献 (30) 附录 (31)

1 设计资料 1.1 设计题目 设计一单层球面网壳,网壳直径为20m,矢高7m,周边支承在钢筋混凝土柱及圈梁上,钢筋混凝土柱沿周边每20°一个均匀布置,柱截面尺寸为400mm×700mm,柱顶及圈梁顶标高为15.2m,圈梁截面尺寸为400mm×600mm。网壳上搭设檩条,屋面板采用压型钢板。 1.2 设计参数 1.2.1 静荷载 网壳自重:网壳结构的自重包括钢管杆件和焊接空心球节点(或螺栓球节点)的重量,可由计算机分析软件程序自动生成。 附加恒载:檩条、压型钢板和灯具重量取2 kN m。 0.65/ 1.2.2 活荷载 本工程屋面为不上人屋面,根据《建筑结构荷载规范》(GB50009-2001)(2006年版)第4.3.1条规定,屋面均布活荷载标准值取为2 kN m。屋面均布活荷载不应 0.5/ 与雪荷载同时考虑,取二者的较大值,此处不考虑雪荷载。基本风压取2 0.4/ kN m,本工程不考虑积灰荷载和吊车荷载。 1.2.3 温度作用 此处的温度作用仅指分析软件用到的温度差,即结构施工安装时的温度与使用过程中温度的最大差值,此处取为-25℃~25℃。 1.2.4 地震作用 本工程所在场地的抗震设防烈度为8度,场地类别为Ⅱ类,根据《空间网格结构技术规程》(JGJ7-2010)第4.4.2条规定,本工程单层球面网壳结构需要进行竖向和水平抗震验算。 1.2.5 结构材料 网壳结构杆件对钢材材质的要求与普通钢结构相同,本工程采用Q235B钢。网壳杆件截面形式有圆钢管、方钢管、角钢及H型钢等,由于圆钢管相对回转半径大和截面特性无方向性,对受压和受扭有利,一般情况下,圆钢管截面比其他型钢截面可节约20%的用钢量,当有条件时应优先采用薄壁圆管形截面,圆钢管可采用高频电焊钢管(即有缝管)或无缝钢管,其中高频电焊钢管较无缝钢管造价低且壁薄,设计时应优先使用,故本工程采用高频电焊圆钢管。网壳结构下部的钢筋混凝土柱及圈梁的混凝土强度等级采用C30。

单层球面网壳结构抗震性能研究

第7卷第4期空 间 结 构V ol.7N o.4 2001年12月SPA T I AL ST RU CT U RES Dec.2001 [文章编号]1006-6578(2001)04-0030-07 单层球面网壳结构抗震性能研究 陈军明, 陈应波, 吴代华 (武汉理工大学理学院结构工程与力学系, 湖北 武汉430070) [摘 要] 本文研究了单层网壳结构地震响应的计算理论和计算方法。以K8型单层球面网 壳为研究对象,得出了单层网壳在水平地震作用和竖向地震作用下的力学响应特性的一些重 要结论。进一步针对地震响应的主要影响参数,如结构几何参数、边界刚度、阻尼比等,对单层 球面网壳地震响应规律作了系统的研究,并提出了对单层网壳结构抗震设计有应用价值的结 论和建议。 [关键词] 单层网壳;地震响应;计算理论;参数分析;抗震设计 [中图分类号] T U311.3 [文献标识码] A 1 引 言 鉴于大跨建筑物的重要性,其地震作用效应引起了工程界的关注。近年来,许多学者对平板网架结构在地震作用下的反应及抗震计算方法进行了系统的研究,并制定了《网架结构设计与施工规范》。但国内外学者对单层网壳结构的研究主要集中在静力稳定性能研究,对其抗震性能研究进行较少。网壳结构的地震反应特征是否与网架结构相同?在各种结构参数影响下网壳结构地震内力响应规律如何?对罕遇地震作用下结构的弹塑性反应如何计算?这些都是急待解决的问题。研究网壳结构的抗震性能是其在地震地区广泛应用的前提和基础。 2 运动平衡方程 2.1 运动方程 从单层网壳结构的合理传力方式来看,一般认为空间刚接是其最佳节点形式。故可将网壳 [收稿日期] 2001-06-30 [基金项目] 高等学校博士后流动站科研基金资助。 [作者简介] 陈军明(1966—),女,湖南人,博士,主要从事大跨结构抗震性能的研究。

3D3S11网架网壳模块手册

网架网壳结构设计系统手册 钢结构设计软件V11 网架网壳结构设计系统手册 同济大学3D3S研发组上海同磊土木工程技术有限公司 2012年06月

版权声明 3D3S计算机程序以及全部相关文档是受专利权法和著作权法保护的产品,版权属于上海同磊土木工程技术有限公司。未经上海同磊土木工程技术有限公司的书面许可,不得以任何形式、任何手段复制本产品或文档的任何部分。 同济大学3D3S研发组 上海同磊土木工程技术有限公司 电话:021-65981466 传真:021—65985557 电子邮件:help_3d3s@https://www.doczj.com/doc/8b9548577.html,, support@https://www.doczj.com/doc/8b9548577.html, sales@https://www.doczj.com/doc/8b9548577.html, 网址:https://www.doczj.com/doc/8b9548577.html,

免责声明 3D3S软件的开发以及文档的编制投入了相当多的时间和努力,经过了严格的测试和使用。自1997年开发以来,众多用户的工程应用证明了软件的适用性和正确性。 但在程序使用方面,使用者接受并清楚地知道开发者或经销商在程序的准确性或可靠度上没有做任何直接或暗示的担保。使用者必须明确了解程序的假定并必须独立的核查结果。 同济大学3D3S研发组 上海同磊土木工程技术有限公司

目录 第一章快速入门 (4) 1.1操作顺序 (4) 1.2操作流程图 (6) 第二章网架模块菜单功能文字说明 (7) 2.1结构编辑 (7) 2.2显示查询 (17) 2.3构件属性 (17) 2.4荷载编辑 (17) 2.5内力线性及非线性分析 (17) 2.6设计验算 (17) 2.7 节点设计 (18) 2.8 施工图 (32) 第三章例题 (37) 3.1 螺栓球网架 (37) 3.2焊接球网架 (43) 3.3网架下部为橡胶支座带混凝土柱网架 (45) 3.4网架模块的加锥、及模型包络的功能例题 (49) 3.5网架模块加吊车、辅助孔以及基准孔拟合功能例题 (51) 主要拓展功能: 1.新增了螺栓球加辅助螺孔功能; 2.新增了添加悬挂吊车功能; 3.新增了不同支座刚度模型包络功能,以考虑同一工程中多种边界条件; 4.新增了将网架网壳实体模型转换为CAD实体的功能; 5.新增了网架网壳施工图中标注杆件最大轴力功能; 6.新增了螺栓和套筒强度咨询功能; 7.新增了杆件夹角查询功能及模型最小夹角查询功能; 8.螺栓球节点设计时用户可根据需要选择型号,不用删除库中型号,操作更方便; 9.螺栓球设计中的参数设置更为详细; 10.改进了网架网壳后处理出图功能。

钢结构工程焊接技术重点、难点及控制措施_secret

钢结构工程焊接技术重点、难点及控制措施本文针对钢结构工程焊接技术的重点和难点,按多年来的工程实践经验主要阐述十种实用焊接变形的控制措施和方法;焊接残余应力的控制措施;焊接裂纹的防治措施;焊接工艺评定的范围;焊缝质量检查;框架结构制作与安装焊接;安装焊接工艺;钢结构变形的预防等。 1、概述 钢结构焊接时,焊接热源对结构不均匀加热引起的结构形状和尺寸的变化,称为焊接变形。在变形的同时,结构内部还产生应力、应变,因为这时结构并未承受外载时,就存在这些应力,所以这些应力居于内应力范畴,称为焊接残余力。属于不均匀分布的自平衡内应力。 焊接变形及应力在焊接过程中往往是难以避免的。它们将影响到焊接结构尺寸精度和焊接接头的强度,轻者需耗费不少人力、物力去矫正、修理,严重的会使构件报废。此外,焊接变形和应力对焊接结构以后使用是的承载能力也产生不可低估的影响。焊接残余应力和焊接变形是能量存在同一构件的不同形式,服从于能量存在同一构件的不同形式,服从于能量守恒定律;它们相辅相成,并互相转化。减少一方必须增大一方: 设:焊缝的总能量为E总,E总=E有+E损+ρ残+ε=1 (1) (1)式中,E有—冶金反应时的有用能;E损---无用能,损耗能;ρ残--焊接残余应力;ε-焊接变形,当焊接完成后,构件中只存在两种能量形式; E残+ε=c<1 (2) c---常量 于是(2)式有了工程应用的价值,这就是我们在工程实际中控制焊接残余应力和焊接变形的基本观点。我们从事钢结构设计、制作安装的技术人员必须了解和掌握焊接变形及应力产生的原因及其基本规律、影响因素,以便在制作安装过程中能够控制焊接变形和应力。 2、焊接应变与变形的控制 2.1焊接变形的控制 (1)尽量减少焊缝的截面积,施焊量以满足连接需要即可,俗话说:“不过焊”,(对一般的角焊缝)是按照有效焊角尺寸来决定其焊缝强度的,所以对于凸出很高的焊缝,多出的焊缝金属,按规范作用并不能提高其许可强度,反而增大了应力集中系数,消弱了坡口的综合性能。对厚板,对接焊缝,可采用U型刨边形成U型坡口,可进一步减少焊缝金属量。 (2)焊缝的数量愈少愈好,每条焊缝尽量采用多层多道焊,厚板焊接特别要注意。 (3)焊缝尽可能称、布置要靠近中和轴施焊(由于收缩力引起钢板变形力臂小),因此减少变形。 (4)环绕中和轴的焊缝要平衡:应用对称施焊的原则,时一个收缩力对另一个收缩力相互平

单层球面网壳结构的稳定性分析

单层球面网壳结构的稳定性分析 摘要:网壳结构是近年来在建筑工程中广泛应用的一种空间结构形式,它受力合理,造型美观, 用料经济,施工简便。其结构形势多样,跨度较大,重量轻,因而网壳结构的稳定性问题是结构设计和施工安装中的十分重要。本文主要在国内外研究成果的基础上,介绍单层球面网壳结构的发展状况以及其非线性 稳定性分析方法,并得出相关结论。 关键词:单层球面网壳结构、非线性、稳定性 Abstract:In recent years latticed shell is a widespread spatial structure in the architectural engineering because of the reasonable stress, the beautiful modeling and convenient installation. Its structure diversifies , span is big and the weight is light. So the stability calculation problem on the latticed shell structure becomes important in the structure design and construction installment. Based on the recent research within and without , this paper mainly introduce the development and the nonlinear stability analysis methods of single-layer spherical lattice shells and draws some conclusions. Key words: single-layer spherical lattice shell、nonlinear、stability 1 网壳结构的发展概况 网壳结构是一种由杆件构成的曲面网格结构,可以看作是曲面状的网架结构,兼有杆系结构和薄壳 结构的固有特性。该结构形式受力合理、造型美观多样、跨度大、材料耗量低,现场安装简便,是非常 有发展前景的一类空间结构[1-2]。 网壳结构按照曲面外形可以分为:球面网壳、柱面网壳、双曲扁网壳、圆锥面网壳、单块扭网壳、扭曲面网壳、双曲抛物面网壳以及切割或组合形成面网壳等[3]。 国外最早网壳可追溯到1863年在德国建造的一个由凯威特设计的30m直径的钢穹顶,是作为储气罐的顶盖之用。由此命名的这种施威德勒形式的网状穹顶,至今仍作为球面网壳的一种主要形式。近二、 三十年来,国外尤其在美国、日本等国网壳结构发展迅速。我国网壳结构作为空间结构受力体系设计并 广泛应用,始于上世纪80年代末,近年来正蓬勃发展,国外很多网壳结构在建筑形体、结构跨度、加工精度、安装方法、网壳的开启技术等方面有独到之处,都值得我们学习和借鉴[4]。 近年来国内外不少的标志性建筑都采用了球面网壳这种空间结构。日本于1996年建成的名古屋体育馆(见图1)是世界上跨度最大的单层球面网壳。该体育馆整个圆形建筑直径为229.6m,支承在看台框架柱顶的屋盖直径则有187.2m。另外1993年建成的日本福冈体育馆(见图2)也为球面网壳,直径为222m,是目前世界上最大的可开合式球面网壳结构。 我国于1994年修建的天津市新体育中心体育馆的双层网状球壳结构(如图3),平面为圆形,直径108m,外悬挑部15.4m,厚度3.0m,整个球壳平面直径为135.0m,矢高13.5m,用钢指标为55kg/m2,

钢结构厂房的施工重难点分析及解决方案

钢结构施工难点、重点及解决方案 钢结构焊接最易出现的问题及解决措施 1、焊接施工不注意选择最佳电压 【现象】 焊接时无论是打底、填充、盖面,不管坡口尺寸大小,均选择同一电弧电压。这样有可能达不到要求的熔深、熔宽,出现咬边、气孔、飞溅等缺陷。 【措施】 一般针对不同情况应该分别选择相应长弧或短弧能得到较好的焊接质量和工作效率。例如打底焊接时为了能得到较好的熔深应该采用短弧操作,填充焊或盖面焊接时为了得到较高的效率和熔宽可以适当加大电弧电压。 2、焊接不控制焊接电流 【现象】 焊接时,为了抢进度,对于中厚板对接焊缝采取不开坡口。强度指标下降,甚至达不到标准要求,弯曲试验时出现裂纹,这样会使焊缝接头性能不能保证,对结构安全构成潜在危害。 【措施】 焊接时要按工艺评定中的焊接电流控制,允许有10~15%浮动。坡口的钝边尺寸不宜超过6mm。对接时,板厚超过6mm时,要开坡口进行焊接。 3、不注意焊接速度与焊接电流,焊条直径协调使用

【现象】 焊接时不注意控制焊接速度与焊接电流,焊条直径、焊接位置协调起来使用。如对全熔透的角缝进行打底焊时,由于根部尺寸窄,如焊接速度过快,根部气体、夹渣没有足够的时间排出,易使根部产生未熔透、夹渣、气孔等缺陷;盖面焊时,如焊接速度过快,也易产生气孔;焊接速度过慢,则焊缝余高会过高,外形不整齐;焊接薄板或钝边尺寸小的焊缝时,焊接速度太慢,易出现烧穿等情况。 【措施】 焊接速度对焊接质量和焊接生产效率有重大影响,选用时配合焊接电流、焊缝位置(打底焊,填充焊,盖面焊)、焊缝的厚薄、坡口尺寸选取适当的焊接速度,在保证熔透,气体、焊渣易排出,不烧穿,成形良好的前提下选用较大的焊接速度,以提高生产率效率。 4、施焊时不注意控制电弧长度 【现象】 施焊时不根据坡口形式、焊接层数、焊接形式、焊条型号等适当调整电弧长度。由于焊接电弧长度使用不当,较难得到高质量的焊缝。【措施】 为了保证焊缝质量,施焊时一般多采用短弧操作,但可以根据不同的情况选用合适的弧长以获得最优的焊接质量,如V形坡口对接、角接的第一层应使用短些的电弧,以保证焊透,且不发生咬边现象,第二层可以稍长,以填满焊缝。焊缝间隙小时宜用短弧,间隙大时电弧可稍长,焊接速度加快。仰焊电弧应最短,以防止铁水下流;立焊、

施工重点难点分析及解决方案.pdf

第二章施工特点、重点、难点分析及解决方案 第一节本工程施工的特点 第二节本工程施工的重点、难点分析 第三节工程重点和难点的施工保障措施

第二章工程特点、难点及项目管理重点 第一节本工程施工的特点 本工程属于中心区集办公、酒店及公寓为一体的超高层建筑群,地下室面积大,塔楼 高度高,裙楼层高大,结构设计复杂,大量使用钢结构,业主对施工总承包商工期、质量、 安全、文明施工、环境保护等有很高的要求和制约条件。概括看来,本工程的施工特点可 以归纳出以下几点: 1、本工程集办公、商业、酒店、公寓于一体,工程规模大,总建筑面积232045 m2。地下3层,地上裙楼4层,A座塔楼61层,B座塔楼36层,最高建筑高度达到300.8m。 2、本工程工期较紧,质量目标要求高,确保市优、争创鲁班奖。 3、本工程A栋结构形式为:型钢混凝土柱、钢梁-核心筒结构;梁板结构为钢梁+ 混凝土楼板,结构形式复杂,是本工程的特点之一。 4、对电气、给排水、空调专业要求高,并有较强的深化设计能力要求。 5、防水工程施工面积大,防水施工质量要求高。本工程靠海较近,地下水异常丰富, 在桩基础施工完毕后,防水施工即会成为难点。 第二节本工程施工的重点、难点分析 1、高强度混凝土施工 本工程结构混凝土设计等级高, A栋竖向构件至顶层砼强度全部为C70、C60,属于高强度混凝土施工。混凝土原材料的质量控制、配合比设计、运输、浇筑、养护都会影响 到主体质量、结构的安全性,是本工程的难点和重点。 2、大体量的钢结构工程施工 本工程大量采用了型钢结构,A栋周圈框架柱、核心筒剪力墙、楼层钢梁、屋面钢桁架;B栋避难层钢斜撑;裙楼屋面钢桁架结构等,均采用了大量钢结构施工。钢结构重量 大,体积大,不仅制作、安装精度要求高,而且机械设备的选择和布局直接关系到施工质 量和进度,因此,在施工中需要进行重点组织。 3、裙楼泳池的钢桁架施工 裙楼屋面设50×12.5m标准游泳池及戏水池,仅计算泳池内水体积将达到约1000吨,此荷载对屋面承载能力要求极高,因此结构采取了钢桁架的形式,在施工中属于重点控制 部分。

球面网壳结构类型和特点

球面网壳结构类型和特点 球面网壳主要有交叉桁架体系和角锥体系两大类。 1交叉桁架体系 各种形式的单层球面网壳的网格形式均可适用于交叉桁架体系,只要将网壳中的每根杆件用平面网片来代替,即可形成双层球面网壳,注意网片竖杆方向是通过球心的。 单层球面网壳主要类型有:肋环型球面网壳(Ribbed Dome)、施威德勒型球面网壳(Schwedler Dome)、联方型球面网壳(Lamella Dome)、三向格子型球面网壳(three way grid Dome)、凯威特型球面网壳(Kiewitt Dome)和短程线球面网壳(Geodesic Dome)。双层球面网壳在单层的基础上且网壳上下两层同心进行杆件的交叉复制,使得双层球面网壳的下层杆件连接规律与上层球面一致,上层和下层通过交叉连接,形成交叉桁架体系,即双层球面网壳。 1.1肋环型球面网壳 它是由经向和纬向杆件组成,大部分网格呈梯形。具有网格划分简单,节点构造简单的特点。但是其杆件长短不一,内力分布不均匀,制作安装工作量相当大。杆件计算模型应按空间刚接梁单元考虑,一般适用于中、小跨度结构。

图1:勒环型单层球面网壳 1.2施威德勒型球面网壳 由经向杆、纬向杆和斜杆构成,是肋环型球面网壳的改进形式。加设斜杆的目的是为了提高结构刚度和其承受非对称荷载的能力。斜杆布置方法主要有:左向单斜杆、双斜杆、左右向单斜杆和无纬向杆的双斜杆。在具体工程设计时,应综合考虑荷载特点和支承方式以及材料等因素来确定选用结构布置形式。这种网壳刚度较大,一般适用于大、中型网壳结构。 图2:施威德勒型单层球面网壳 1.3联方型球面网壳 联方型球面网壳系德国工程师Zollinger首创,由左斜杆和右

钢结构厂房重点难点,及解决措施

1)工程施工组织难度大 本工程为钢结构工程,其分项较多,存在我公司内部的组织与协调,还存在我公司与业主、监理、总包、设计院的协调与配合。 对策: 针对本工程施工组织难度大和本工程自身的特点,我公司拟在工程施工前编制合理的施工组织设计方案,并在工程前期调动资源的优势,采用先进数控设备保证加工精度,对现场的安装,针对本工程的特点编制详细的有针对性的安装方案,同时做好测量监测和精度控制,以便于后期的现场施工。 在现场施工组织方面,配合总包单位,加强与其它相关专业的协调与沟通,充分利用现场提供的场地,先期做好相关准备、拚装工作,现场工作面具备安装条件,组织有效的流水施工,同时,及时将已完工的工作面交付后续专业施工,与各专业协调统一,共同保证本工程的质量和进度。 (2)施工工期非常紧张 根据甲方及招标文件确定的工期,本工程施工工期较为紧张,尤其是加工工期。 对策: a、技术力量保证: 针对本工程特点,我公司拟在工程施工前期投入我公司有着丰富类似工程施工经验的工程师和管理人员,着重做好以下工作: ①根据各加工厂的加工能力及技术特点合理分配各加工厂的加工任务; ②对各加工厂派驻现场代表,监督其按照合理的加工工艺制作,并保证其施工质量满足相关规范和甲方的要求; ③现场各分区安装方案的确定; b、资源保证: 针对各分项的施工方案,在安装准备期间做好相关人力、机械、材料资源的准备工作: ①人力资源保证:本工程人力资源的投入分为两个阶段:加工阶段、现场安装阶段;在钢结构加工阶段,利用我公司山东地区长期合作加工厂强大的钢结构加工能力,投入相应人力资源,在现场达到安装条件前,完成相应部分钢结

组合多面体理论在球面网壳结构中的应用

第29卷第2期2008年 4月河南科技大学学报:自然科学版Journal of Henan University of Science and Technol ogy:Natural Science Vol .29No .2Ap r .2008 基金项目:河南省教育厅自然科学基金项目(200510464007) 作者简介:杜泽丽(1982-),女,河南信阳人,硕士生;周丰峻(1938-),男,山东黄县人,中国工程院院士,防护工程专家,近年从事 空间结构的研究. 收稿日期:2007-09-20 文章编号:1672-6871(2008)02-0062-03 组合多面体理论在球面网壳结构中的应用 杜泽丽1,周丰峻2,梁 斌1 (1.河南科技大学建筑工程学院,河南洛阳471003;2.总参工程兵三所,河南洛阳471000) 摘要:根据组合多面体理论及突角和理论,得出有12个正五边形和多个六边形构成的网壳,并计算了网壳中五边形边长与五边形外接球半径的比例关系,给出了相应的拟合公式,其相对误差不大于4.07%,据此,可根据工程需要进行多面体选型。 关键词:球面网壳结构;组合多面体;突角和;拟合公式 中图分类号:T U31文献标识码:A 0 前言 我国空间钢结构从20世纪60年代开始研制和应用,但扩大应用发展缓慢,自1982年空间结构委员会成立以后的二十年发展很快。特别是近十年来,钢产量占世界首位,各省市都在兴建体育馆、会议 展览馆、机场机库、大型娱乐场所、多功能厅等,结构跨度不断要求增大而且形式也不断创新[1]。 目前,国内外空间网壳大多由三角形、四边形或者组合而成的[2] 。本文介绍了根据组合多面体理论,得到的由12个五边形和六边形组合而成的球面网壳,它不仅具有优美的构型,而且其节点、杆件、构型的类型数降到最低,能有效的减少用材以及缩短工期[3]。并计算了12个五边形外接球半径和五边形边长的比例关系,给出了相应的拟合公式,据此,可以根据工程需要来选取合适的多面体及杆件。目前, 多面体理论首次在国家游泳中心“水立方”中得以应用[4-6],它不仅受力合理,而且造型优美。1 理论基础 1.1 组合多面体理论 组合多面体理论主要包括以下几个定理: 定理1:组合正五角形和正六角形多面体有无穷多个,面数最低的组合多面体为32面体。所有组合多面体面数(S )、节点数(J )和棱边数(L )满足欧拉拓扑定理,即S +J -L =2。 定理2:任意一个组合多面体有且只有12个五角形,当以任一五角形心为中心极点进行平面展开 时可以获得五个相同的分支展开图,每个分支展开图具有中心对称性[7-8]。 定理3:在所有五角形六角形组合多面体中,以五角形形心为顶点,可以构成正20面体。每3个五角形形心对应立体角范围,可构成一个单元体,单元体具有组合多面体的全部几何特征,正20面体为所有球内接组合多面体的对偶变换,是其研究的基本构形。 定理4:以正五角形形心为极点中心的组合多面体展开分支中,自极心点至赤道中心对称点每层面数满足递增关系,赤道两侧五角形间的每层面数不变。 定理5:组合多面体展开分支有沿五边形角展开和座边展开两种形式。两种展开同时满足上述定理,其性质是单元立体角内含1个或多个(非整数个)六角形,组合多面体沿角展开和沿边展开可以形成不同面数的多级组合多面体分支展开图形。 1.2 突角和理论 突角和理论:球面网壳的每个节点处,各突角之和均相等。

钢结构施工难点

钢结构施工难点、重点及处理办法 (1)工程施工组织难度大 本工程为钢结构工程,其分项较多,存在我公司内部的组织与协调,还存在我公司与业主、监理、总包、设计院的协调与配合。 对策: 针对本工程施工组织难度大和本工程自身的特点,我公司拟在工程施工前编制合理的施工组织设计方案,并在工程前期调动资源的优势,采用先进数控设备保证加工精度,对现场的安装,针对本工程的特点编制详细的有针对性的安装方案,同时做好测量监测和精度控制,以便于后期的现场施工。 在现场施工组织方面,配合总包单位,加强与其它相关专业的协调与沟通,充分利用现场提供的场地,先期做好相关准备、拚装工作,现场工作面具备安装条件,组织有效的流水施工,同时,及时将已完工的工作面交付后续专业施工,与各专业协调统一,共同保证本工程的质量和进度。 (2)施工工期非常紧张 根据甲方及招标文件确定的工期,本工程施工工期较为紧张,尤其是加工工期。 对策: a、技术力量保证: 针对本工程特点,我公司拟在工程施工前期投入我公司有着丰富类似工程施工经验的工程师和管理人员,着重做好以下工作: ①根据各加工厂的加工能力及技术特点合理分配各加工厂的加工任务; ②对各加工厂派驻现场代表,监督其按照合理的加工工艺制作,并保证其施工质量满足相关规范和甲方的要求; ③现场各分区安装方案的确定; b、资源保证: 针对各分项的施工方案,在安装准备期间做好相关人力、机械、材料资源的准备工作: ①人力资源保证:本工程人力资源的投入分为两个阶段:加工阶段、现场安装阶段;在钢结构加工阶段,利用我公司山东地区长期合作加工厂强大的钢结构

加工能力,投入相应人力资源,在现场达到安装条件前,完成相应部分钢结构制作;在钢结构安装阶段,利用充足的人力资源,根据工作面情况,组织流水作业,各分项独立完成,保证进度需要。 ②机械设备保证:我公司山东地区长期合作加工厂在2006年下半年,钢结构加工生产线任务不饱满,完全可满足本工程加工的需要。钢结构现场安装方面,拟用于本工程的安装机械一台80吨履带吊、一台50吨履带吊、四台25吨汽车吊,可按照现场安装进度的需要进场,保证本工程的施工。 C、施工组织保证 针对本工程特点,我公司拟建立一个有着丰富类似工程施工经验的工程项目部,下设若干工程队,每队设置若干的专业专项班组。组织流水作业,并按照工作情况调配施工人员,保证工程进度的需要,保证工程工期。 (3)质量要求高 由于本工程构件数量大,单重大,构件施工后承重大,施工工序多、配合紧密,如果一道工序存在质量问题,将对工程的总体施工质量产生重大影响,所以必须高质量、严要求、精心施工。 对策: 严格按照ISO9001-2000质量保证体系的要求,进行本工程加工到现场安装各环节的质量控制。在工程施工前编制好各主要关键点的技术方案,编制各阶段的质量控制点,并且严格按照创优的要求,进行自检、互检和专检,不合格产品不流入下一工序,确保本工程质量达到优良标准。

施工重点、难点分析及解决方案

第二章施工特点、重点、难点分析及解决方案第一节 第二节 第三节本工程施工的特点 本工程施工的重点、难点分析工程重点和难点的施工保障措施 第二章工程特点、难点及项目管理重点 第一节本工程施工的特点 本工程属于中心区集办公、酒店及公寓为一体的超高层建筑群,地下室面积大,塔楼高度高,裙楼层高大,结构设计复杂,大量使用钢结构,业主对施工总承包商工期、质量、安全、文明施工、环境保护等有很高的要求和制约条件。概括看来,本工程的施工特点可以归纳出以下几点: 1、本工程集办公、商业、酒店、公寓于一体,工程规模大,总建筑面积232045 m2。 地下3层,地上裙楼4层,A座塔楼61层,B座塔楼36层,最高建筑高度达到300.8m。 2、本工程工期较紧,质量目标要求高,确保市优、争创鲁班奖。 3、本工程A栋结构形式为:型钢混凝土柱、钢梁-核心筒结构;梁板结构为钢梁+混凝土楼板,结构形式复杂,是本工程的特点之一。 4、对电气、给排水、空调专业要求高,并有较强的深化设计能力要求。 5、防水工程施工面积大,防水施工质量要求高。本工程靠海较近,地下水异常丰富,在桩基础施工完毕后,防水施工即会成为难点。 第二节本工程施工的重点、难点分析 1、高强度混凝土施工

本工程结构混凝土设计等级高,A栋竖向构件至顶层砼强度全部为C70、C60,属于高强度混凝土施工。混凝土原材料的质量控制、配合比设计、运输、浇筑、养护都会影响到主体质量、结构的安全性,是本工程的难点和重点。 2、大体量的钢结构工程施工 本工程大量采用了型钢结构,A栋周圈框架柱、核心筒剪力墙、楼层钢梁、屋面钢桁架;B栋避难层钢斜撑;裙楼屋面钢桁架结构等,均采用了大量钢结构施工。钢结构重量大,体积大,不仅制作、安装精度要求高,而且机械设备的选择和布局直接关系到施工质量和进度,因此,在施工中需要进行重点组织。 3、裙楼泳池的钢桁架施工 裙楼屋面设50×12.5m标准游泳池及戏水池,仅计算泳池内水体积将达到约1000吨,此荷载对屋面承载能力要求极高,因此结构采取了钢桁架的形式,在施工中属于重点控制部分。4、A栋塔楼高空酒店大堂屋盖施工 A栋塔楼43层以上为酒店部分,为满足使用要求,建筑设计将此部分酒店大堂设计为中空式,中空高度达到了70.82m,顶部为钢梁混凝土板结构,此部分施工高度极高,属罕见高支模施工,因此,此部分施工是本工程的难点。 5、建筑节能暨玻璃幕墙施工 本工程采用了许多节能设计,比如采用挤塑板等材料进行节能保温,采用进口夹胶玻璃幕墙等,对节点施工和成品保护要求高。幕墙采用单元式幕墙,安装面积大,从幕墙的预埋到安装贯穿了整个结构施工的全过程,且对日后使用中抗渗漏的要求较高。 6、总包全面协调与管理难度大 本工程专业分包单位多,包括主体结构工程,钢结构工程,装饰、装修工程,建筑给排水工程,建筑电气工程,通风空调工程,屋面及防水工程,智能建筑工程,金属门窗工程,幕墙工程,消防工程,高低压配电工程,室外环境工程等,需要总包全面协调与管理的要求高,难度大。

钢结构加工专项施工方案

钢结构制作施工方案 一、工程概况 本工程位于~~~,共计6个单体,总建筑面积约46446.93㎡。其中生产车间A为单层厂房,建筑面积12706.2㎡,天然地基,基础形式为独立基础,地上主体为钢结构,檐高9.3米,砼强度为C30;生产车间B为单层厂房,建筑面积27459.25㎡,基础形式为独立承台基础,地上主体为钢结构,中间局部为框架结构,檐高9.3米,砼强度为C30。生产车间A、B工程为单层门刚结构,柱顶标高9.000米,A车间最大跨度为34米,B车间最大跨度为54.6米,主材均采用Q345-B钢,次结构采用Q235-B钢,屋面檩条采用Q345-B钢,为Z型檩条,檩条采用冷弯薄壁型钢。钢结构工程总量约1200t。 二、本工程的主要特点和难点: (1)屋面钢构件比较复杂,种类多、数量大、单体跨度大、加工难度增加。 (2)钢结构加工中详图设计与设计单位的协调配合工作量大,工程履约过程中必须协调好与指挥部、设计院和工程监理单位的关系,保证工程中发生的可能影响工程进度的问题,能够及时高效地解决。(3)本工程工期短,购买材料及加工周期仅25天,要在如此短的时间内完成近1200多吨钢结构的加工,需协调好人材机的配合。 三、适用规范及标准 设计图纸 《钢结构工程施工及验收规范》(GB50205-2003)

《钢结构工程质量检验评定标准》(GB50221-2003)《门式刚架轻型房屋钢结构技术规程》(CECS102-2002) 《建筑钢结构焊接规程》(JGJ81-91) 《钢焊缝手工超声波探伤方法和探伤结果分级》(JGJ11345-89)《低合金高强度结构钢》(GB/T1591-94) 《碳素结构钢》(GB700-88) 《碳钢焊条》(GB/T5117-85) 《低合金钢焊条》(GB/T5118-85) 《热轧钢板和钢带的尺寸、外形、重量及允许偏差》(GB708-89)《压型金属板设计施工规程》(YBJ216-88) 《涂装前钢材表面锈蚀等级和除锈等级》(GB8923-88) 《大六角头高强度螺栓连接副》(JB1228-91)《钢结构高强螺栓连接技术规程》 JGJ82-2011 四、钢构件加工前的生产准备 1、技术准备 (1)钢结构详图会审 我单位将组织钢结构专业人员进行图纸会审,提前发现问题,及时与设计沟通,解决问题 (2)制定原材料、半成品试验(检验)计划。 (3)制定各项工艺措施和进行详细的技术交底,对操作工人进行技术交底和再培训。 (4)搞好钢结构安装前的测量工作。

大跨度空间结构_网壳结构的历史与发展_符立勇

大跨度空间结构———网壳结构 的历史与发展 符立勇,杨从娟 (石家庄铁道学院力学与工程科学系,河北石家庄050043) [摘 要] 现代空间结构要求有最大的自由空间及最小的内支撑干扰。回顾空间结构的发展历史,网壳结构是能够很好满足上述要求的结构体系之一。本文较全面、系统地评述了国内外网壳结构发展历史和应用现状,并介绍了一些有代表性的工程实例。最后讨论了网壳结构进入21世纪的发展趋势,探讨了网壳结构的应用前景。 [关键词] 空间结构;网壳结构;历史;发展 [中图分类号]TU33 [文献标识码]B [文章编号]1007-9467(2002)05-0003-03 一、引言 随着人类物质文明和精神文明的发展与提高,人们需要更大的覆盖空间来满足社会活动和生产劳动的需要,而且要求有最大的自由空间及最小内支撑相互干扰的结构,如大型集会场所、体育馆、飞机库、会展中心、游泳池、餐厅、候车厅、工业厂房等。而一般的平面结构,如梁、刚架、桁架、拱、组合结构等,由于结构形式的限制,从技术经济方面讲已很难跨越更大的空间,来满足飞速发展的社会需求。人们通过实践发现,具有三维空间形状并且有三维受力特性、呈空间工作状态的空间结构,正好能满足大跨度建筑结构的要求。这是因为空间结构不仅仅依赖材料性能,而且更加充分利用自已合理的形体及不同材料特性,来适应不同建筑造型和功能的需要,从而可跨越更大空间。尤其近年来计算机技术的飞速发展,使空间结构在形体研究的计算方法上有了新的突破,使形体与受力完美组合成为可能。因此,空间结构对于现代建筑已产生重大影响,它不但被公认为社会文明的象征,而且由于采用了大量新材料、新技术和新工艺,空间结构还成为衡量一个国家建筑科学技术水平的标志之一。 二、网壳结构的历史 1.网壳结构的雏形———穹顶结构 在人类社会的发展历程中,大跨度空间结构常常是建筑人员追求的梦想和目标。其中,网壳结构的发展经历了一个漫长的历史演变过程。网壳结构的发展是和人类社会的生活、生产劳动密切相关的,并且与当时的科技水平及物质条件紧密相连。 古代的人类通过详细观察,发现自然界中存在大量受力特性良好、形式简洁美观的天然空间结构,如蛋壳、蜂窝、鸟类的头颅、肥皂泡、山洞等。利用仿生原理,人类得以更好地理解和发展空间结构。古代的人类为了有一个好的生存空间,常常以树枝为骨架、以稻草为蒙皮来建造穹顶结构,后来又以皮革或布匹代替稻草,即现在常见的帐篷。经过长期的工程实践,人类认识到穹顶能以最小的表面封闭最大的空间,而且所耗用的材料也比较经济。 穹顶的发展与建筑材料的发展是密切相关的。古代,穹顶用石料建造,后来逐渐被砖石结构取代。例如,古罗马人就利用石料或砖建造了大量圆形或圆柱形穹顶,用来作为宗教活动的场所。这些穹顶的跨度都不大,一般为30~40m左右,穹顶的厚度与跨度之比为1/10左右,因此早期的穹顶自重很大。其中,建于公元120~124年的罗马万神庙是早期穹顶的典型代表,该穹顶基面为44m的圆。中世纪,木材成为穹顶结构的主要覆盖材料;到19世纪,铁的应用为穹顶的发展开创了一个新纪元,使覆盖大跨度建筑物成为可能。近代,钢筋混凝土结构理论的出现及应用使穹顶的厚度大大降低,薄壳穹顶受到人们的极大关注,从而开辟了结构工程新领域。1922年在德国耶拿建造了土木工程史上第一座钢筋混凝土薄壳结构———耶拿天文馆,其净跨为25m,顶厚为60.3m m,厚跨比大约为1/400。薄壳穹顶以其结构自重较小,受力性能良好,可以覆盖大跨度空间和造型优美等优点,得到广泛应用和发展。现代,优质钢材的使用更是影响各种形式大跨穹顶网壳发展的一个重要因素。 2.网壳结构的诞生 钢筋混凝土薄壳结构尽管有诸多优点,但经过若干年工程实践,工程技术人员逐渐发现这种结构的缺点:钢筋混凝土薄壳施工时需要架设大量模板,工作量很大,施工速度较慢,工程造价高。因而人们对之逐渐丧失兴趣,开始寻求 3 钢结构设计专题 工程建设与设计 2002年第5期

相关主题
文本预览
相关文档 最新文档