当前位置:文档之家› 地震作用计算

地震作用计算

地震作用计算
地震作用计算

地震作用计算

一、确定计算前提:

烈度:甲类建筑按安评报告且应高于本地设防烈度,乙、丙类按本地设防烈度。(高层适用)方向:两个主轴方向+斜交抗侧力构件方向(斜交角度大于15度)

双向地震:质量刚度明显不对称

(1)从平面形状上判别:平面为L 形,T形等属于平面不规则的结构为明显不对称的结构,位移比无论为何值,均应考虑双向地震作用

(2)位移比大于1.2(或1.3,尚无定论)的结构属平面不规则中的扭转不规则,无论平面形状对称与否,均应考虑双向地震作用。

(3)从竖向形状上判别:大地盘结构为明显的质量及刚度竖向不对称应考虑双向地震作用(4)竖向质量和刚度明显不对称的结构,如上下刚度差别较大,或上下的质量差别较大的结构应考虑双向地震作用。

竖向地震:7度半(高层)、8度、9度的大跨度和长悬臂结构,9度时的高层考虑。

8、9度时的隔震结构

偶然偏心:(高层、单向地震考虑,多层不考虑,双向地震不考虑)

二、选择计算方法:

底部剪力法、振型分解反应谱发、时程分析法。

三、计算重力荷载代表值:

采用半层集中法,屋面活荷载和软钩吊车荷载不计入,书库、档案馆等活载组合系数取0.8

楼顶计算: 楼板+下半层墙体重力+活荷载×0+雪荷载×0.5+积灰荷载×0.5

每层计算:楼板+上下半墙重量+等效均布活载×0.5(书库、档案活载×0.8)+实际情况的楼活载×1.0

四、计算水平地震作用效应:

地震效应Fi计算

楼层剪力计算

考虑扭转耦联作用边榀构件地震效应放大(采用扭转耦联振型分解法的除外)考虑地基与结构相互作用地震效应折减

薄弱层放大系数1.25

剪重比调整

0.2V0调整(框剪)筒体结构调整。

框支柱调整(部分框支剪力墙)

地震作用标准值

五、计算竖向地震作用效应:

(1)9度高层:

Geq=0.75Ge (水平地震计算时,Geq=0.85Ge)

ɑvmax=0.65ɑmax

地震效应按各构件所承受的重力荷载代表值分配,并宜乘以1.5的放大系数。

(2)大跨度屋架、屋盖横梁及托架:

重力荷载代表值X竖向地震作用系数(《高规》推荐采用时程分析或振型分解法)

(3)长悬臂结构:

8度---0.1Ge 八度半---0.15Ge 九度--0.2Ge(《高规》推荐采用时程分析或振型分解法)

《高规》4.3.15规定了大跨度、长悬臂等结构的最小竖向地震作用标准值。(类似于剪重比)

7度半--0.08Ge 8度---0.1Ge 八度半---0.15Ge 九度--0.2Ge

5平地震作用下框架结构的位移和内力计算

第五章 横向地震作用下框架结构的位移和内力 5.1横向框架自振周期的计算 结构自震周期采用经验公式: 552.08.159.22035.022.0035.022.03 1=?+=?+=B H T s 5.2水平地震作用及楼层地震剪力的计算. 本办公楼楼的高度不超过40m ,质量和刚度沿高度分布比较均匀,变形以剪切变形为主,故可采用底部剪力法计算用。 结构等效总重力荷载为: kN 39485) 8259482825066(85.085.0eq =+?+?==∑i G G 兰州市,抗震设防烈度8度,设计基本地震加速度0.10g ,多遇地震下 08.0max =α。设计地震分组第一组,二类场地,场地特征周期为0.35s 053 .008 .01)55 .0035( )( 9 .0max 2g 1=??==αηαγT T 结构总水平地震作用标准值: kN 213839485 053.0eq 1Ek =?==G F α 因为:s 53.01=T >s 49.035.04.14.1g =?=T ,所以应考虑顶部附加水平地震作用。又因为:s 35.0g =T ≤0.35s ,故顶部附加地震作用系数为: 1142.007 .055.008.007.008.016=+?=+=T δ 顶部附加水平地震作用为: kN 24221381142.0Ek 66=?==?F F δ 各质点横向水平地震作用按下式计算:

()6Ek 6 1 1δ-= ∑=F H G H G F j j j i i i (=i 1,2, (6) 地震作用下各楼层水平地震层间剪力为: ∑==n i j j i F V (i =1,2, (6) 各质点的横向水平地震作用及楼层地震剪力计算见表12。 表5—1 楼层地震剪力计算表 图5-1水平地震作用分布图 图5-2楼层地震剪力剪力分布图

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

第八章水平地震作用下的内力和位移计算

第8章 水平地震作用下的内力和位移计算 8.1 重力荷载代表值计算 顶层重力荷载代表值包括:屋面恒载:纵、横梁自重,半层柱自重,女儿墙自重,半层墙体自重。其他层重力荷载代表值包括:楼面恒载,50%楼面活荷载,纵、横梁自重,楼面上、下各半层柱及纵、横墙体自重。 8.1.1第五层重力荷载代表值计算 层高H=3.9m ,屋面板厚h=120mm 8.1.1.1 半层柱自重 (b ×h=500mm ×500mm ):4×25×0.5×0.5×3.9/2=48.75KN 柱自重:48.75KN 8.1.1.2 屋面梁自重 ()()kN m m m kN m m m kN m m m kN 16.1472 )25.06.6(/495.145.06.616.3)3.03(/495.123.06.7/16.3=?-?+?-?+ +?+?-? 屋面梁自重:147.16KN 8.1.1.3 半层墙自重 顶层无窗墙(190厚):()KN 25.316.66.029.3202.02019.025.14=??? ? ??-???+? 带窗墙(190厚): ()()KN 98.82345.002.02019.025.1428.15.16.66.029.3202.02019.025.14=??? ??? ???????-?+???-???? ??-???+? 墙自重:114.23 KN 女儿墙:()KN 04.376.66.1202.02019.025.14=????+? 8.1.1.4 屋面板自重 kN m m m m kN 78.780)326.7(6.6/5.62=+???

8.1.1.5 第五层重量 48.75+147.16+114.23+37.04+780.78=1127.96 KN 8.1.1.6 顶层重力荷载代表值 G 5 =1127.96 KN 8.1.2 第二至四层重力荷载代表值计算 层高H=3.9m ,楼面板厚h=100mm 8.1.2.1半层柱自重:同第五层,为48.75 KN 则整层为48.75×2=97.5 KN 8.1.2.2 楼面梁自重: ()()kN m m m kN m m m kN m m m kN 3.1542)25.06.6(/6.145.06.63.3)3.03(/6.123.06.7/3.3=?-?+?-?+ +?+?-? 8.1.2.3半墙自重:同第五层,为27.66KN 则整层为2×27.66×4=221.28 KN 8.1.2.4楼面板自重:4×6.6×(7.6+3+7.6)=480.48 KN 8.1.2.5第二至四层各层重量=97.5+154.3+221.28+480.48=953.56 KN 8.1.2.6第二至四层各层重力荷载代表值为: ()KN G 61.111336.65.326.76.65.2%5056.9534-2=??+????+= 活载:Q 2-4=KN 05.160%5036.65.326.76.65.2=???+???)( 8.1.3 第一层重力荷载代表值计算 层高H=4.2m ,柱高H 2=4.2+0.45+0.55=5.2m ,楼面板厚h=100mm 8.1.3.1半层柱自重: (b ×h=500mm ×500mm ):4×25×0.5×0.5×5.2/2=65 KN 则柱自重:65+48.75=113.75 KN 8.1.3.2楼面梁自重:同第2层,为154.3 KN 8.1.3.3半层墙自重(190mm ): ()()KN 14.3145.002.02019.025.142 8 .15.16.66.02 2.4202.02019.025.14=-?+???-??? ? ??-???+? 二层半墙自重(190mm ):27.66 KN 则墙自重为:(31.14+27.66)×4=235.2 KN

6 水平地震作用下框架的内力分析

57 6 水平地震作用下横向框架的内力分析(以A4~D4榀框架为例) 6.1 楼层剪力 由表4.5.9得水平地震作用下横向框架各楼层剪力如表6.1.1所示。 6.2 各柱抗侧刚度D 由表4.5.7得各柱抗侧刚度如表6.2.1所示。 46.3 各层各柱剪力的计算 由D 值法, j ji ji V D D V ∑= 各层各柱剪力的计算如表6.3.1所示。 表6.3.1 各层各柱剪力的计算 单位:kN

58 6.4 各层各柱反弯点高度的计算 由D 值法,查表得出各层各柱反弯点高度的计算如表6.4.1所示。 表6.4.1 各层各柱反弯点高度的计算 6.5 柱端弯矩的计算 _ ji l C V M y =, ) (V M _ ji u C y h i -= , y h y i =_ 。各层各柱柱端弯矩计算如表6.5.1所示。

59 表6.5.1 水平地震作用下柱端弯矩计算 单位:m 、kN 、m kN . 6.6 梁端弯矩的计算 由节点平衡条件,*()l l u l b b c c l r b b i M M M i i =++,*()r r u l b b c c l r b b i M M M i i =++,式中M 、 M b r 、M b l 为节点处的梁端的弯矩,M c u 、M c l 为节点处柱上下端弯矩,i b r 、i b l 为节点处左右梁的线刚度。以各个梁为脱离体,将梁的左右端弯矩之和除以该梁的跨长,便得到梁内的剪力,计算过程如表6.6.1所示。

kN.表6.6.1 水平地震作用下梁端弯矩计算单位:m 6.7 绘制水平地震作用下A4~D4榀框架的弯矩图 如图6.7所示。 6.8 绘制水平地震作用下A4~D4榀框架的剪力图 如图6.8所示。 6.9 绘制水平地震作用下A4~D4榀框架的轴力图 如图6.9所示。 60

地震等级与设防烈度的关系

地震等级与设防烈度的关系 每次地震发生,可能很多人都会有类似的问题。有时候,有些媒体也会在这里犯一些错误,被大家诟病为「不专业」。当然,这些东西也挺复杂的,媒体搞混了也正常。 一地震震级 地震震级是某次地震的属性,某个地震只会有一个震级。比如1995年阪神大地震是矩震级6.8,2008年汶川大地震是矩震级是7.9。 注意到,可能对于某次地震,不同媒体的报道有所不同,那是因为他们采用了不同的震级标准。由于历史原因,不同的专家学者发明过不同的震级标准,比如里氏震级、面波震级、体波震级等等。比如说,有些国内官方媒体采用的就是面波震级,所以2008年汶川大地震的震级为面波震级8.0。目前大家认为比较合理的、应用较广泛的是矩震级。 震级是什么意思呢?简单说,震级衡量的是地震的大小,或者严谨一点,地震所释放的能量的大小。某次地震所释放的总能量是固定的,所以它的震级也是唯一的。 绝大多数地震是由断层引起的,地震所释放的能量的大小,取决于引发地震的断层的大小、断层两边相对运动的距离、断层处的岩石强度。断层的面积乘以断层移动的距离再乘以岩石的剪切模量,得到的就是Seismic

Moment,也就是所谓的地震矩。这个地震矩的数值,直接反映了地震释放能量的大小。 而矩震级就是对地震矩的衡量,这两者之间的关系是,其中地震矩 M0的单位为牛乘以米。注意到,地震矩和矩震级之间是三分之二 log 的关系。换言之,震级大一级,地震矩变为原来的10的1.5次方倍,也就是31.6倍;震级大两级,地震矩变为原来的31.6的平方倍,也就是 1000 倍。 简单说,8级地震释放的能量,是7级的31.6倍,6级的1000倍,5级的31623倍,4级的1000000倍。 二地震烈度 地震烈度衡量的是某次地震发生之后对某个地区的影响。比如说,1976 年唐山大地震,震中唐山的烈度为11度,天津的烈度为8度,北京为6度,石家庄为5度。通常情况下,越靠近震中最大,越远离震中越小。这也很好理解,越靠近震中受影响越大,越远离震中受影响越小。 你可以想象成一个靶子,震中就是靶心10环,外边一点9环,再靠外8环。同样的地震,震中烈度可能是9度,往外50公里可能降低到8度,再往外150公里可能降低到7度。由于地形地质的不同,所以烈度的分布并不是个完美的同心圆,只是大致上遵循着越靠近震中越大的规律。 烈度的大小与地震震级相关,但并没有明确的数值关系,而是因为其它条件的不同而不同。简单说,烈度是一个主观性比较强的参数,跟震源深浅、

(整理)地震作用下框架内力和侧移计算.

6 地震作用下框架内力和侧移计算 6.1刚度比计算 刚度比是指结构竖向不同楼层的侧向刚度的比值。为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。 7.0939.0/1136076/10669082 11 >== = ∑∑mm N mm N D D γ,满足规范要求; ()8.0939.0/113607611360761136076/1066908334 321 2>=++?=++=∑∑∑∑mm N mm N D D D D γ,满 足规范要求。 依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑i D ,见表6-4。 表5-4框架各层层间侧移刚度 楼层 1层 2层 3层 4层 5层 6层 突出屋面层 ∑i D 1066908 1136076 1136076 1136076 1136076 1136076 258396 6.2水平地震作用下的侧移计算 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。 T T T μψ7.11= (6-1) 式中:1T ——框架的基本自振周期; T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。

地震级别和地震烈度有什么区别

地震级别和地震烈度有什么区别 1、地震级别 地震的大小用地震级别来表示。如6级地震,7.6级地震,7.8级地震,8.9地震等。 地震的级别是根据地震时释放的能量的大小而定的。是鞭炮级的还是手榴弹级的还是炮弹级的,还是原子弹级的,还是氢弹级的,所释放的能量通过测定可以计算出来。一次地震释放的能量越多,地震级别就越大。目前人类有记录的地震的最高震级是8.9级,所释放的能量相当于一颗1800万吨炸药量的氢弹,或者相当于一个100千瓦的发电厂40年的发电量。这次汶川地震所释放的能量大约相当于90万吨炸药量的氢弹,或100千万发电厂2年的发电量(本人估算,仅供参考。)地震级别M与所释放的能量E的关系式如下: ㏒E=4.8+1.5M ; 1级地震所释放的能量为200万J;(J是能量单位)。每提高一级,能量大约增加31倍。 地震级别的测量与计算是美国地震学家里克特在1935年提出来的,所以在说地震级别时常说“里氏”多少多少级地震。 一般来说,3级以下的地震是微震,基本感觉不出来,与鞭炮差不多。

3级到5级的地震就能感觉出来了,称为弱震或小震或有感地震。 5级到7级就会造成破坏了,称为强震或中震或破坏性地震。 7级以上的地震就是大地震了。 2、地震烈度 地震烈度是用来反映地震时对地面和建筑物影响程度的一个概念。是指地震活动所造成的地面和建筑物的破坏程度。 同样是7.8级的地震,震源在地下深处,其破坏力就小,震源距离地表近,其破坏力就大。 从平面距离看,距离震中远的地方,破坏力就小,距离震中近的地方,破坏力就大。一次地震只有一个震级,但远近不同的位置却有不同的烈度。在汶川可能是9度,在西安可能是6度,到了北京就是4度了。 地震烈度不是通过仪器测定的。而是根据人对地震的感觉和地面及地面上建筑物等受到的破坏程度确定的。中国把地震烈度分成了12度。下表是不同地震烈度的大致描述。 地震烈度损坏与感觉 1度无损坏,无感觉。 2度无损坏,基本无感觉。

8 地震作用内力计算

八地震作用内力计算 (一)重力荷载代表值计算 1.屋面雪荷载标准值 Q sk=0.65×[7.8×6×(7.2×2+3.0)+3.9×(3.0+7.2)+7.8×7.2×2+10.1× 3.9+3.9×7.2]=0.65×1034=787kN 2.楼面活荷载标准值 Q1k=Q2k=2.5×[3.0×7.8×6+3.9×(3.0+7.2)+3.9×(7.2×3+10.1) +3.9× 7.2]+2.0×(7.8×7.2×12+3.9×7.2 +7.8×10.1)=2.5×332+2.0×781=2397kN Q3k=Q4k=2.5×332+2.0×(7.8×7.2×12+3.9×7.2)=2.5×332+2.0×702=2239kN 3.屋盖、楼盖自重 G5k=25×{1034×0.1+0.2×(0.6-0.1)×(7.2×12+3.9×2)+0.3×(0.8-0.1)×[3.9+(3.9×3+7.8×6)×2+(7.8×6+3.9)×2+3.9×3)+(7.2×5+10.1×2+(7.2 ×2+3.0)×7+3.0+7.2)]}+( 20×0.02+7×(0.08+0.16)/2+17×0.02)×1034=25 ×201.48+1.58×1034=6666kN G4k=25×201.48+(20×0.02+17×0.02+0.65)×1034=6470kN G1k=G2k=25×{(332+781)×0.1+0.2×(0.6-0.1)×(7.2×12+3.9×2+7.8×2) +0.3×(0.8-0.1)×[(3.9+(3.9×3+7.8×6)×2+(7.8×6+3.9)×2+3.9× 3)+(7.2×5+10.1×2+(7.2×2+3.0)×7+3.0+7.2)+10.1+7.8]}+ (20×0.02+17 ×0.02+0.65)×(332+781)=25×214.70+1.39×1113=6871kN 4.女儿墙自重 G’=1.0×[(3.9×3+7.8×6+3.9)×2+(10.1+7.2+3.0+7.2)×2]×(18×0.24+17 ×0.02×2)=179.8×4.66=835kN 5.三~五层墙柱等自重 柱自重 (0.6×0.6×3.6×25+4×0.6×3.6×0.02×17)×39=1378kN 门面积 2.6×1.0×25=65m2 窗面积 2.3×1.8×24+10.1×1.8×2=136m2 门窗自重 65×0.2+136×0.4=67kN 墙体自重 {3.6×[7.8×24+7.2×14+3.9×2+8.7+3.9×2+(7.8+7.2)×2+3.9× 2+4.2×2+10.1×2]-(136+65)}×0.24×18=(3.6×378.4-201)×4.32=5017kN 小计6462kN 6.二层墙柱等自重

地震等级计算方法是什么

地震等级计算方法是什么 一般情况下仅就烈度和震源、震级间的关系来说,震级越大震源越浅、烈度也越大。一般震中区的破坏最重,烈度最高,这个烈度称为震中烈度。从震中向四周扩展,地震烈度逐渐减小,不同级别地震的破坏力有多大呢?震级是表征地震强弱的量度,通常用字母M表示,它与地震所释放的能量有关。一个6级地震释放的能量相当于美国投掷在日本广岛的原子弹所具有的能量。震级每相差1.0级,能量相差大约32倍;每相差2.0级,能量相差约1000倍。也就是说,一个6级地震相当于32个5级地震,而1个7级地震则相当于1000个5级地震。目前世界上最大的地震的震级为9.5级, 计算公式为:M=lg(A/T)max+ σ ( Δ ) 式中:A ----地震面波最大地动位移,取两水平分向地动位移的矢量和,μm; T ----相应周期,S;

Δ----震中距,(度)。 测量最大地动位移的两水平分量时,要取同一时刻或周期相差在1/8周之内的震动。若两分量周期不一致时,则取加权和: T=(T N ×A N +T E× A E )/(A N +A E ) 式中:A N ------南北分量地动位移,μm; A E ------ 东西分量地动位移,μm; T N ------ A N 的相应周期,S; T E ------ A E 的相应周期,S;

量规函数σ(Δ)为:σ( Δ )=1.66lg Δ +3.5 不能使用与表一中给出的值相差很大的周期来测定地震震级M。地震震级M应根据多台的平均值确定。 中国使用的震级标准,是国际上通用的里氏分级表,共分9个等级,在实际测量中,由于其与震源的物理特性没有直接的联系,因此多用矩震级来表示。 二、震级认定 社会应用,应以国务院地震行政主管部门认定的地震震级M 为准。 表一不同震中距(Δ)选用地震面波周期(T)值

单质点地震作用计算的计算方法

单质点地震作用计算的计算方法 所谓单质点弹性体质,是指可以将结构参与振动的全部质量集中于一点,用无重量的弹性直杆支承于地面上的结构.例如水塔、单层房屋等建筑物,由于它们的质量大部分集中于结构的顶部,所以通常将这些结构简化成单质点体系.目前,计算弹性体系的反应时,一般假定地基不产生转动,而把地基的运动分解为一个竖向和两个水平向的分量,然后分别计算这些运动分量对结构的影响. 主要内容:1.单自由度弹性体系地震反应分析,主要是运动方程解的一般形式及水平地震作用的基本公式及计算方法。 2.计算水平地震作用关键在于求出地震系数k和动力系数β。 一、地震概述 地震是一种地质现象,就是人们常说的地动,它主要是由于地球的内力作用而产生的一种地壳振动现象。据统计,地球上每年约有15万次以上或大或小的地震。人们能感觉到的地震平均每年达三千次,具有很大破坏性的达100次。每次中等程度的地震就会造成重大损失和人员伤亡,研究地震的危害和抗震的方法极有必要,目前已经研究到了多质点体系地震作用和整体结构的地震作用,但这些研究都离不开单质点地震作用的计算,我们组准备理论研究并在现有的计算基础上做一点拓展。 二.地震危害直接 2005年2月15日新疆乌什发生6.2级地震,经济损失达15757.43万元,主要是土木结构的房屋破坏严重。近期,云南普洱发生严重的地震,震中位于人口稠密的县城,造成严重的财产损失和人员伤亡。目前,因灾受伤群众为300余人,其中3人死亡。全县各乡(镇)房屋受损严重,土木结构房屋墙体倒塌较多,砖混结构房屋普遍出现墙体开裂,承重柱移位。作为将来的结构工程师,抗震是我们拦路虎,必须加以重视,那我们先从基础理论着手。 三、单质点弹性体系的地震反应 目前,我国和其他许多国家的抗震设计规范都采用反应谱理论来确定地震作用。这种计算理论是根据地震时地面运动的实测纪录,通过计算分析所绘制的加速度(在计算中通常采用加速度相对值)反应谱曲线为依据的。所谓加速度反应谱曲线,就是单质点弹性体系在一定地震作用下,最大反应加速度与体系自振周期的函数曲线。如果已知体系的自振周期,那么利用加速度反应谱曲线或相应公式就可以很方便地确定体系的反应加速度,进而求出地震作用。 应用反应谱理论不仅可以解决单质点体系的地震反应计算问题,而且,在一定假设条件下,通过振型组合的方法还可以计算多质点体系的地震反应。 1.运动方程的建立 为了研究单质点弹性体系的地震反应,我们首先建立体系在地震作用下的运动方程。图2-1表示单质点弹性体系的计算简图。

地震震级与地震烈度的关系

地震震级与地震烈度的关系 地震震级是衡量地震大小的一种度量.每一次地震只有一个震级.它是根据地震时释放能量的多少来划分的,震级可以通过地震仪器的记录计算出来,震级越高,释放的能量也越多.我国使用的的震级标准是国际通用震级标准,叫“里氏震级”. 各国和各地区的地震分级标准不尽相同. 一般将小于1级的地震称为超微震:大于、等于1级,小于3级的称为弱震或微震;大于、等于3级,小于4.5级的称为有感地震;大于、等于4.5级,小于6级的称为中强震;大于、等于6级,小于7级的称为强震;大于、等于7级的称为大地震,其中8

级以及8级以上的称为巨大地震. 迄今为止,世界上记录到最大的地震为8.9级,是1960年发生在南美洲的智利地震. 地震烈度:地震烈度是指地面及房屋等建筑物受地震破坏的程度.对同一个地震,不同的地区,烈度大小是不一样的.距离震源近,破坏就大,烈度就高;距离震源远,破坏就小,烈度就低. 中国地震烈度表(简要) Ⅰ度;无感,仅仪器能记录到; Ⅱ度;个别敏感的人在完全静止中有感; Ⅲ度;室内少数人在静止中有感,悬挂物轻微摆动; Ⅳ度;室内大多数人,室外少数人有感,悬挂物摆动,不稳器皿作响; Ⅴ度;室外大多数人有感,家畜不宁门窗作响,墙壁表面出现裂纹Ⅵ度;人站立不稳,家畜外逃,器皿翻落,简陋棚舍损坏陡坎滑坡;Ⅶ度;房屋轻微损坏,牌坊,烟囱损坏,地表出现裂缝及喷沙冒水;Ⅷ度;房屋多有损坏,少数破坏路基塌方,地下管道破裂;

Ⅸ度;房屋大多数破坏,少数倾倒,牌坊,烟囱等崩塌,铁轨弯曲;Ⅹ度;房屋倾倒,道路毁坏,山石大量崩塌,水面大浪扑岸; Ⅺ度;房屋大量倒塌,路基堤岸大段崩毁,地表产生很大变化;ⅩⅡ度;一切建筑物普遍毁坏,地形剧烈变化动植物遭毁灭. 震级与烈度统计对应关系: 震中烈度ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪXⅡ 震级:1.92.53.13.74.34.95.56.16.77.37.98.5

2.7水平地震作用内力计算

2.7 水平地震作用内力计算 设计资料: 根据《建筑抗震设计规范》(GB50011—2001)第5.1.3条: 屋面重力荷载代表值Gi =屋面恒载+屋面活荷载+纵横梁自重+楼面下半层的柱及纵横墙 自重; 各楼层重力荷载代表值G i =楼面恒荷载+50%楼面活荷载+纵横梁自重+楼面上下各半层的 柱及纵横墙自重; 总重力荷载代表值∑== n i i G G 1 。 主梁与次梁截面尺寸估算: 主梁截面尺寸的确定:当跨度取8000L mm =,主梁高度应满足: 1111 (~)(~)8000667~1000812812 h L mm mm ==?=,考虑到跨度较大,取700h mm =, 则:1111 (~)(~)700233~3502323 b h mm mm ==?=,取350b mm =。 当跨度取6000L mm =,主梁高度应满足: 1111 (~)(~)6000500~750812812 h L mm mm ==?=,考虑到跨度较大,取500h mm =, 则:1111 (~)(~)500167~2502323 b h mm mm ==?=,取250b mm =。 一级次梁截面尺寸的确定:跨度取4800L mm =,次梁高度应满足: 1111 (~)(~)4800320~40012181218h L mm mm ==?=,考虑到跨度较大,取350h mm =,则: 1111 (~)(~)350117~1752323 b h mm mm ==?=,取200b mm =。 二级次梁截面尺寸的确定:跨度取3000L mm =,次梁高度应满足: 1111 (~)(~)3000167~25012181218h L mm mm ==?=,考虑到跨度较大,取300h mm =,则: 1111 (~)(~)300100~1502323 b h mm mm ==?=,取200b mm =。

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数

K K c +=2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层) ① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10=??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.01072.82102.345.42210 10 =???+?== ∑)(c b i i K

关于地震级别和地震烈度

引用关于地震级别和地震烈度 5.5-5.9级地震的震中烈度以七度为主,建筑物破坏现象为:Ⅰ类房屋大多数损坏,少数倾倒。Ⅱ类房屋多数损坏,少数破坏。Ⅲ类房屋大多数轻微损坏,许多损坏。不很坚固的院墙少数破坏,可能有些倒塌。牌坊、砖石砌塔和工厂烟囱可能损坏。 6.0-6.4级地震的震中烈度以八度为主,对建筑物造成如下破坏:Ⅰ类房屋大多数破坏,许多倾倒。Ⅱ类房屋许多破坏,少数倾倒。Ⅲ类房屋大多数损坏,少数破坏(可能有倾倒的)。院墙破坏,局部倒塌。石碑等多移转或倒下。个别地下管道接口处遭到破坏。 多层钢筋混凝土框架房屋,由于地基类别、房屋抗震设计标准和施工质量诸多因素的差别,目前对一个地震烈度八度的地震会造成什么程度的破坏,尚无一个统一标准可以借鉴,因此,据1975年辽宁海域7.3级地震时,营口市遭受地震烈度八度的破坏的调查结果表明,基本完好占50%,轻微损坏占17%,中等破坏占33%。 6.5-6.9级地震的震中烈度为八度和九度,如按九度考虑,建筑物遭到的破坏为:Ⅰ类房屋大多数倾倒。Ⅱ类房屋许多倾倒。Ⅲ类房屋许多破坏,少数倾倒。院墙大部倾倒,较坚固的亦局部倒塌。牌坊、塔及工厂烟囱多破坏甚至倾倒。石碑等多翻倒。地下管道有些破裂。 7.0-7.4级地震的震中烈度一般为九度,个别可达十度。九度的破坏如上述。十度对建筑物破坏很大,Ⅲ类房屋许多倾倒。铁轨轻度弯曲,地下管道破裂。 震级只跟地震释放的能量多少有关,是表示地震大小的度量,所以一次地震只有一个震级;而烈度表示地面受到的影响和破坏程度,则各地不同,但震中烈度只有一个。多数浅源地震的震中烈度与震级的关系如下表: 震级 2 3 4 5 6 7 ≥8 震中烈度1~2 3 4~5 6~7 7~8 9~10 11~12 地球上的地震有强有弱。用来衡量地震强度大小的尺子有两把,一把叫地震震级;另一把叫地震烈度。举个例子来说,地震震级好象不同瓦数的日光灯,瓦数越高能量越大,震级越高。烈度好象屋子里受光亮的程度,对同一盏日光灯来说,距离日光灯的远近不同,各处受光的照射也不同,所以各地的烈度也不一样。 地震震级是衡量地震大小的一种度量。每一次地震只有一个震级。它是根据地震时释放能量的多少来划分的,震级可以通过地震仪器的记录计算出来,震级越高,释放的能量也越多。我国使用的的震级标准是国际通用震级标准,叫“里氏震级”。 各国和各地区的地震分级标准不尽相同。 一般将小于1级的地震称为超微震:大于、等于1级,小于3级的称为弱震或微震;大于、等于3级,小于4.5级的称为有感地震;大于、等于4.5级,小于6级的称为中强震;大于、等于6级,小于7级的称为强震;大于、等于7级的称为大地震,其中8级以及8级以上的称为巨大地震。 迄今为止,世界上记录到最大的地震为8.9级,是1960年发生在南美洲的智利地震。 地震烈度:地震烈度是指地面及房屋等建筑物受地震破坏的程度。对同一个地震,不同的地区,烈度大小是不一样的。距离震源近,破坏就大,烈度就高;距离震源远,破坏就小,烈度就低。

框架在地震作用下内力计算

框架在地震和重力作用下内力计算 学生姓名:张育霜 学号:20120322029 指导老师:

目录 1建筑说明 (1) 1.1 工程概况 (1) 1.2 设计资料 (1) 1.3 总平面设计 (1) 1.4 主要房间设计 (1) 1.5 辅助房间设计 (1) 1.6 交通联系空间的平面设计 (2) 1.7 剖面设计 (2) 1.8 立面设计 (3) 1.9 构造设计 (3) 2 框架结构布置 (3) 2.1 计算单元 (4) 2.2 框架截面尺寸 (4) 2.3 梁柱的计算高度(跨度) (4) 2.4 框架计算简图 (5) 3 恒荷载及其内力分析 (6) 3.1 屋面恒荷载 (6) 3.2 楼面恒荷载 (7) 3.3 构件自重 (7) 3.4 固端弯矩计算 (8)

3.5 节点分配系数μ计算 (9) 3.6 恒荷载作用下内力分析 (10) 4 活荷载及其内力分析 (13) 4.1 屋面活荷载 (13) 4.2 楼面活荷载 (13) 4.3 内力分析 (13) 5 重力荷载及水平振动计算 (17) 5.1 重力荷载代表值计算 (17) 5.2 水平地震作用计算 (17) 6 内力组合计算 (22) 6.1 框架梁内力组合 (22) 6.2 框架柱内力组合 (25) 7 截面设计 (31) 7.1 框架梁的配筋计算 (31) 7.2 框架柱的配筋计算 (40) 7.3 框架梁、柱配筋图 (52) 8 基础设计 (55) 8.1 对A柱基础配筋计算 (55) 8.2 对B柱基础配筋计算........................................................... 错误!未定义书签。 9 双向板的设计.................................................................................... 错误!未定义书签。 9.1 设计资料................................................................................. 错误!未定义书签。 9.2 荷载设计值............................................................................. 错误!未定义书签。

(整理)六层框架建筑在水平地震作用下的内力计算

水平地震作用下的内力计算 § 1 各楼层重力荷载代表值的计算 由设计任务书要求可知,该工程考虑地震作用,抗震设防烈度为7度,设计基本地震加速度为0.1g,设计地震分组为第三组。以板的中线为界,取上层下半段和下层上半段。 顶层: 板自重: kN m kN m m 8.6789/59.69.1508.642=??= 梁自重: kN m kN m m m m m kN m kN m 9.1746/2548.643.012.06.0(186.6/55.220/87.36.63=????-+??+??=)柱自重: kN m m m kN 32.3044 10)6.02 6.3(/34.6=??-?= 墙自重: kN m kN m m m m m m m kN m m kN m m kN 7.1907/251.52.06.14)7.226.6282.64(/45.3)206.6/66.628.64/58.52m 8.64kN/m 585.32 1 3=???++?+??+??+??+???=( 活荷载: kN m m m kN 64.20609.158.64/0.22=??= kN kN kN kN kN kN 04.117795.064.20607.190732.3049.17468.6789G 1=?++++= 标准层: 板自重: kN m kN m m m kN m m 056.4372/82.38.647.2/33.426.68.6422=??+???= 梁自重: kN m kN m m m m m kN m kN m 9.1746/2548.643.012.06.0(186.6/55.220/87.36.63=????-+??+??=)柱自重: kN m m m kN 8.7604 10)6.06.3(/34.6=??-?=

单质点地震作用计算计算方法

单质点地震作用计算的计算方法 主要内容:1.单自由度弹性体系地震反应分析,主要是运动方程解的一般形式及水 平地震作用的基本公式及计算方法。 2.计算水平地震作用关键在于求出地震系数k 和动力系数β。 一、地震概述 地震是一种地质现象,就是人们常说的地动,它主要是由于地球的内力作用而产生的一种地壳振动现象。据统计,地球上每年约有15万次以上或大或小的地震。人们能感觉到的地震平均每年达三千次,具有很大破坏性的达100次。每次中等程度的地震就会造成重大损失和人员伤亡,研究地震的危害和抗震的方法极有必要,目前已经研究到了多质点体系地震作用和整体结构的地震作用,但这些研究都离不开单质点地震作用的计算,我们组准备理论研究并在现有的计算基础上做一点拓展。 二.地震危害直接 2005年2月15日新疆乌什发生6.2级地震,经济损失达15757.43万元,主要是土木结构的房屋破坏严重。近期,云南普洱发生严重的地震,震中位于人口稠密的县城,造成严重的财产损失和人员伤亡。目前,因灾受伤群众为300余人,其中3人死亡。全县各乡(镇)房屋受损严重,土木结构房屋墙体倒塌较多,砖混结构房屋普遍出现墙体开裂,承重柱移位。 作为将来的结构工程师,抗震是我们拦路虎,必须加以重视,那我们先从基础理论着手。 三、单质点弹性体系的地震反应 目前,我国和其他许多国家的抗震设计规范都采用反应谱理论来确定地震作用。这种计算理论是根据地震时地面运动的实测纪录,通过计算分析所绘制的加速度(在计算中通常采用加速度相对值)反应谱曲线为依据的。所谓加速度反应谱曲线,就是单质点弹性体系在一定地震作用下,最大反应加速度与体系自振周期的函数曲线。如果已知体系的自振周期,那么利用加速度反应谱曲线或相应公式就可以很方便地确定体系的反应加速度,进而求出地震作用。 应用反应谱理论不仅可以解决单质点体系的地震反应计算问题,而且,在一定假设条件下,通过振型组合的方法还可以计算多质点体系的地震反应。 1.运动方程的建立 为了研究单质点弹性体系的地震反应,我们首先建立体系在地震作用下的运动方程。图2-1表示单质点弹性体系的计算简图。 由结构动力学 方法可得到单质点弹 性体系运动方程: )()()()(t x m t kx t x c t x m g ?????=++ (2-3) 其中g x (t)表示地面水平位移,是时间t 的函数,它的变化规律可自地震时地面运动实测记录求得;x (t)表示质点对于地面的相对弹性位移或相对位移反应,它也是时间t 的函数,是待求的未知量。 若将式(2-3)与动力学中单质点弹性体系在动荷载)(t F 作用下的运动方程 )()()()(t F t kx t x c t x m =++??? (2-4) 进行比较,不难发现两个运动方程基本相同,其区别仅在于式(2-3)等号右边为地震时地面运动加速度与质量的乘积;而式(2-4) 等号右边为作用在质点上的动荷载。由此可见,地面

仪器地震烈度计算编制说明

地震行业标准《仪器地震烈度计算》 征求意见稿编制说明 一、任务来源、计划编号等基本情况 地震烈度速报可在地震发生后通过观测仪器直接提供地震烈度,快速生成地震影响强度和范围,为人员伤亡估计、经济损失评估、应急救援决策和工程抢险修复决策提供依据。地震监测台站越密集,对地震影响场的了解就越全面和详细。仪器地震烈度计算规程是规范、科学进行地震烈度速报工作的基础。目前,日本、美国等国家及我国台湾地区都已经建立了地震烈度速报系统,并制订了统一的仪器地震烈度计算方法。 2011年5月15日,依据中震法函…2011?14号“关于征集2011年地震标准制修订项目立项建议的通知”,编写组提交了地震行业标准项目建议书“地震仪器烈度”。2011年9月26日,中震函…2011?351号“关于下达2011年地震行业标准制修订计划的通知”批准制订工作立项,项目“地震仪器烈度”由工程力学研究所负责。 二、标准编制的背景、目的和意义 《国家地震科学技术发展纲要(2007-2020年)》重点领域及优先主题“地震应急响应与处臵技术”方面,明确指出发展“地震和地震烈度的速报”、“重要工程设施预警与

紧急处臵”;《中华人民共和国防震减灾法》明确提出“国家支持全国地震烈度速报系统的建设”,“应当通过全国地震烈度速报系统快速判断致灾程度,为指挥抗震救灾工作提供依据”。《国家防震减灾规划(2006-2020年)》提出我国2020年防震减灾总体目标,并明确将“建设地震预警技术系统,为重大基础设施和生命线工程地震紧急自动处臵提供实时地震信息服务”作为防震减灾工作的一项主要任务。2010年《国务院关于进一步加强防震减灾工作的意见》明确提出,到2015年,要“在人口稠密经济发达地区初步建成地震烈度速报网,20分钟内完成地震烈度速报”;到2020年,要“建成较为完善的地震预警系统,地震监测能力、速报能力、预测预警能力显著增强”。本项工作是落实《防震减灾法》及国家和行业相关规划的一项重要举措。 目前我国地震观测台网发展迅速,基于实际地震观测地震动记录的仪器烈度速报已经开展,但缺少统一的计算方法和计算标准。而日本、美国等国家及我国台湾地区都已经建立了地震烈度速报系统,并制订了统一的仪器地震烈度计算方法。如日本自上世纪90年代初开始建设密集的强震动观测台网和烈度计网,1996年正式启动地震烈度速报系统,可以在中强以上地震发生后2—3分钟给出各地的仪器地震烈度和地震动峰值等,并通过网络、电视、广播等向政府有关部门和公众发布。2011年日本3.11特大地震中,日本分别在震后2分钟和7分钟在网站上发布了详细的烈度速报分布图,并在15分钟给出了更详细的推测烈度分布图。美国自

相关主题
文本预览
相关文档 最新文档