当前位置:文档之家› 第4章内力计算

第4章内力计算

第4章内力计算
第4章内力计算

第4章内力计算

4.1风荷载作用下框架内力计算

由D值法计算结构在风荷载作用下的内力,计算过程及结果见表4-1。

表4-1风荷载作用下柱端弯矩表(kN·m)

梁端风荷载弯矩、剪力、轴力见表4-2,其中λ=K R/(K R+K L)。

4.2水平地震作用下框架内力计算

以12轴横向框架为例进行计算,在水平地震作用下的框架住弯矩计算采用D值法,其计算过程见表4-3。

表4-2梁端风荷载弯矩(kN·m)、剪力(kN)、轴力(kN)

层次边柱处中柱处剪力轴力

∑M c∑M c1-λλ

∑M c

∑M c

AB BC边柱中柱

5 3.27 3.72 0.31 0.69 2.57 1.15 0.82 2.14 0.82 1.32

4 9.74 10.4

5 0.31 0.69 7.21 3.24 2.40 6.01 3.22 4.93

3 12.59 18.60 0.31 0.69 12.83 5.77 3.40 10.69 6.62 12.22

2 22.56 25.85 0.31 0.69 17.84 8.01 5.66 14.87 12.28 21.43

1 34.68 38.00 0.31 0.69 26.2

2 11.78 8.60 21.85 20.88 34.68 风荷载作用下框架的弯矩、剪力、轴力图见图4-1,4-2。

图4-1风荷载作用下的框架弯矩(单位KN.m)图4-2风荷载作用下的剪力、轴力(单位KNm)

表4-3水平地震作用下框架柱弯矩计算

次层剪力总刚度

各柱刚

D/∑D Vi k yh M下M上

边柱5 748.61 1102920 16870 0.0153 11.45 2.93 0.447 15.34 19.01 4 1366.51 1102920 16870 0.0153 20.91 2.93 0.45 28.23 34.50 3 1847.60 1102920 16870 0.0153 28.27 2.93 0.5 42.41 42.41

续表4-3 2 2191.89 1102920 16870 0.0153 33.54 2.93 0.5 50.31 50.31 1 2470.07 409920 6230 0.0152 37.55 4.46 0.55 93.97 76.88

中柱5 748.61 1102920 19280 0.0175 13.10 4.24 0.4517.69 21.62 4 1366.51 1102920 19280 0.0175 23.91 4.24 0.5 35.87 35.87 3 1847.60 1102920 19280 0.0175 32.33 4.24 0.5 48.50 48.50 2 2191.89 1102920 19280 0.0175 38.36 4.24 0.5 57.54 57.54 1 2470.07 409920 6670 0.0163 40.26 6.45 0.55 100.75 82.43

水平地震作用下框架剪力、轴力计算见表4-4。

表4-4水平地震作用下框架剪力、轴力

层次边柱中柱剪力轴力Mc梁端λMc Mr Ml ab bc边柱中柱519.01 -19.01 0.69 21.62 14.92 6.70 4.76 12.43 4.76 7.67 449.84 -49.84 0.69 53.56 36.96 16.60 12.30 30.8 17.06 26.17 370.64 -70.64 0.69 84.37 58.22 26.15 17.92 48.52 34.98 56.77 292.72 -92.72 0.69 106.04 73.17 32.87 23.26 60.98 58.24 94.49 1127.19 -127.19 0.69 139.97 96.58 43.39 31.59 80.48 89.83 143.38 地震作用下框架的弯矩、剪力、轴力图见图4-3,4-4。

图4-3水平地震作用下的框架弯矩图(单位kN·m)

图4-4水平地震作用下的剪力、轴力图(单位kN )

4.3 恒载作用下框架内力计算

4.3.1 计算方法选用

本工程荷载作用下的内力计算采用分层法 4.3.2 用弯矩分配法计算梁柱端弯矩

注意:除底层外柱的线刚度需要乘以修正系数0.9,并且除底层柱外其它各层的弯矩传递系数取1/3。

修正后的梁柱线刚度见表4-5。

表4-5 梁柱线刚度表(10-

43)

层次

柱 i AB (i CD )

i BC i C 2-5 6.95 20.83 7.11 1

6.95

20.83

4.22

中间层A 点分配系数

336.095

.6411.7411.7411

.744444=?+?+??=++=

AB i i i i 下上上上μ

336.0==上下μμ

328.01=--=下上μμμAB

中间节点B 节点分配系数

225..083

.20295.6411.7411.7411

.7424444=?+?+?+??=+++=

BC AB i i i i i 下上上上μ

225.0==上下μμ

22.083

.20295.6411.7411.7495

.6424444=?+?+?+??=+++=

BC AB AB AB i i i i i 下上μ

33.01=---=AB BC μμμμ下上 底层A 点分配系数

389.095

.6422.4411.7411

.744444=?+?+??=++=

AB i i i i 下上上上μ

231..095

.6422.4411.7422

.444444=?+?+??=++=

AB i i i i 下上下下μ

380.01=--=下上μμμAB 底层B 点分配系数

248.083.20295.6422.4411.7411

.7424444=?+?+?+??=+++=BC AB i i i i i 下上上上μ

147.083

.20295.6422.4411.7422

.4424444=?+?+?+??=+++=

BC AB i i i i i 下上下下μ

242.083

.20295.6422.4411.7495

.6424444=?+?+?+??=+++=

BC AB AB AB i i i i i 下上μ

363.01=---=AB BC μμμμ下上 顶层A 点分配系数

506.095

.6411.7411

.74444=?+??=+=

AB i i i 下下下μ

494.01=-=下μμAB 顶层B 点分配系数

291.083

.20295.6411.7411

.742444=?+?+??=

++=

BC

AB i i i i 下下μ

284.083

.20295.6411.7495

.642444=?+?+??=++=

BC AB AB AB i i i i 下μ

425.01=--=AB BC μμμ下

固端弯矩及弯矩分配系数见表4-6。

表4-6分层法分配系数及恒载作用下的固端弯矩计算结果

分配法计算过程见图4-5~图4-7。

4.3.3 跨中弯矩计算

根据求得的支座处弯矩,按平衡条件计算,框架梁在实际荷载作用下按简支梁计算的跨中弯矩M 0,并查静力手册,在实际荷载分布下,框架的跨中弯矩计算按M =M 0-(M

+M 右)/2。结果见表4-7。

表4-7实际荷载分布下分层法各单元跨中弯矩计算表(kN ·m )

图4-5顶层弯矩分配法计算过程(单位kN·m)

图4-6中间层弯矩分配法计算过程(单位kN·m)

图4-7底层弯矩分配法计算过程(单位kN·m)

4.3.4由各层单元计算整个结构在恒载作用下的弯矩

将分层法求得的各层弯矩图叠加,可得整个框架在竖向荷载的弯矩图。很显然叠加后各框架节点弯矩并不能达到平衡,这是由于分层计算的误差造成的。为了提高精度,可将不平衡弯矩分配进行一次修正,叠加后的框架梁跨中弯矩计算表见表4-8。

表4-8叠加后的框架梁跨中弯矩计算

位置按简支计算跨中弯矩

叠加后跨中弯矩

左端右端跨中

AB跨(CD跨)5 75.56 34.05 49.95 33.56 4 105.71 50.57 62.76 49.05 3 105.71 58.95 68.81 41.83 2 105.71 59.45 68.98 41.50 1 105.71 53.10 67.64 45.34

BC跨5 10.09 32.10 32.10 -22.01 4 7.95 36.28 36.28 -28.33 3 7.95 34.94 34.94 -26.99 2 7.95 35.20 35.20 -27.25 1 7.95 36.61 36.61 -28.66

4.3.5 梁端剪力及梁端控制界面的弯矩 ① 梁端剪力计算

用平衡条件可求出的梁端剪力及梁端柱边剪力,计算结果见表4-9。 ② 梁端柱边剪力计算

取柱轴心至柱边这一端梁为隔离体,由平衡条件可求出的梁端柱边的剪力值,对AB 跨梁取图 为隔离体,由竖向力平衡及几何条件,可得

)5.0(2.02.0'21g g V g V V AB AB AB AB +-=-=

)5.0(2.02.0'21g g V g V V BA AB BA BA +-=-= )5.0(2.02.0''21g g V g V V V BC AB BC CB BC +-=-==

③ 梁端柱边弯矩计算

为内力组合做准备,需将梁端弯矩换算为梁端柱边弯矩,对本工程按下式计算 '2.0'AB AB AB V M M -= '2.0'BA BA BA V M M -= '2.0'BC BC BC V M M -=

表4-9 梁端弯矩(kN ·m )、剪力(kN )

梁端柱边剪力、弯矩计算结果见表4-10。

表4-10梁端柱边剪力(kN)、弯矩(kN·m)计算

柱轴力可通过对梁端剪力、纵向梁传来剪力和柱自重叠加得到。柱轴力的计算过程见表4-11。

表4-11柱轴力计算(kN)

4.3.7弯矩调幅

β,恒载作用下的梁剪力、柱轴力本工程考虑梁端弯矩调幅,调幅系数85

=

.0

见图4-8,调幅后的梁端柱边弯矩及跨中弯矩见图4-9。

调幅后的梁端柱边弯矩及跨中弯矩见表4-12。

表4-12调幅后的梁端、跨中弯矩

图4-8恒载作用下的剪力、轴力图(单位:kN)

图4-9恒载作用下经调幅的柱边弯矩图(单位:kN·m)

4.4活载作用下的内力计算

活载同时作用于所有框架梁上,按满荷载分布考虑,不考虑活载的不利布置并采用分层法,跨中弯矩乘以1.1-1.2的放大系数,以考虑其不利布置可能产生的影响。

4.4.1 用弯矩分配法计算梁端弯矩 顶层:

m 95.184.58.712

1

2?-=??-

=kN M AB m 95.18?=-=kN M M AB BA

m 30.22.1.8431

2?-=??-=kN M BE

m 15.1.218.46

1

2?-=??-=kN M EB

其它层:

m 95.184.58.7121

2?-=??-=kN M AB

m 95.18?=-=kN M M AB BA

m 88.22.10.631

2?-=??-=kN M BE

m 44.1.210.66

1

2?-=??-=kN M EB

4.4.2 内力计算

活载作用下的梁端弯矩、剪力、柱轴力计算过程与恒载作用下的计算过程完全一样。计算过程不再累述。计算结果见表4-13。

表4-13梁端柱边剪力计算(kN)

活荷载作用下的梁端柱边弯矩计算见表4-14。

表4-14活荷载作用下的梁端柱边弯矩计算

4.4.3弯矩调幅

β,调幅后的梁端柱边弯矩及跨中弯矩见图考虑梁端弯矩调幅,调幅系数85

=

.0

4-12。

表4-15调幅后的梁端、跨中弯矩(kN·m)

风荷载作用下的柱边弯矩、剪力计算见表4-16。

表4-16风荷载作用下的柱边弯矩、剪力计算

风荷载作用下的柱边弯矩见图4-10。

地震作用下的柱边弯矩计算见表4-17。

水平地震作用下的柱边弯矩见图4-11。

表4-17地震作用下梁端柱边弯矩(kN·m)、剪力(kN)计算

图4-10风荷载作用下柱边弯矩图(kN·m)

图4-11水平地震作用下的柱边弯矩图(kN·m) 图4-12活载作用下经调幅后的柱边弯矩图(kN·m)

内力组合计算书

5.4 内力组合 《抗震规范》第5.4条规定如下。 5.4截面抗震验算 5.4.1 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ (5.4.1) 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件承载能 力有利时,不应大于1.0; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表5.4.1 采用; γw ——风荷载分项系数,应采用1.4; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采 用0.2。 注:本规范一般略去表示水平方向的下标。 表5.4.1 地震作用分项系数 5.4.2 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表5.4.2采用; R ——结构构件承载力设计值。

表5.4.2 承载力抗震调整系数 5.4.3 当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用1.0。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为1.0,0.85,0.85,0.7,0.7。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图5.22。

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为 24m ,屋架端部高度2m ,长 度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采 用1.5 >6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三 毡四油防水层,屋面坡度i 1/10。屋架两端铰支于钢筋混凝土柱上,上 柱截面400X400mm ,混凝土 C20,屋面活荷载0.50 kN/m 2,屋面积灰荷 载 0.75 kN/m 2,保温层自重 0.4kN/m 2。 (2) 钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3) 屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度i 1/10 ,由于采用1.5m 6m 预应力钢 筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: L 0 L 300 24000 300 23700 mm 屋架端部高度取: 为使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦 节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系, 屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间 两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系 杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷 载;在设置横向水平支撑的同一柱间, 设置竖向支撑三道,分别设在屋架的两端 跨中高度: 屋架高跨比: H o 2000mm 23700 1 H H o i 2000 3185 3190mm 2 2 10 H 3190 1 L 23700 7.4 u m J 启

杆件的内力截面法

杆件的内力截面法 一、基本要求 1.了解轴向拉伸与压缩、扭转、弯曲的概念; 2.掌握用截面法计算基本变形杆件截面上的内力; 3.熟练掌握基本变形杆件内力图的绘制方法。 表示轴力沿杆件轴线变化规律的图线。该图一般以平行于杆件轴线的横坐标x轴表示横截面位置,纵轴表示对应横截面上轴力的大小。正的轴力画在x轴上方,负的轴力画在x轴下方。 e n 当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为

根据内力与外力的平衡关系,若外力对截面形心取矩为顺时针力矩,则该力在截面上产生正的剪力,反之为负的剪力(顺为正,逆为负);固定截面,若外力或外力偶使梁产生上挑的变形,则该力或力偶在截面上产生正的弯矩,反之为负的弯矩(上挑为正,下压为负)。4)剪力方程和弯矩方程 一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化。若以坐标x 表示横截面在梁轴线上的位置,则横截面上的剪力和弯矩可以表示为x 的函数,即 ) () (S S x M M x F F == 上述函数表达式称为梁的剪力方程和弯矩方程。 5)剪力图和弯矩图 为了直观地表达剪力F S 和弯矩M 沿梁轴线的变化规律,以平行于梁轴线的横坐标x 表示横截面的位置,以纵坐标按适当的比例表示响应横截面上的剪力和弯矩,所绘出的图形分别称为剪力图和弯矩图。 剪力图和弯矩图的绘制方法有以下两种: (1)剪力、弯矩方程法:即根据剪力方程和弯矩方程作图。其步骤为: 第一,求支座反力。 第二,根据截荷情况分段列出F S (x )和M (x )。 在集中力(包括支座反力)、集中力偶和分布载荷的起止点处,剪力方程和弯矩方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点。 第三,求控制截面内力,作F S 、M 图。一般每段的两个端点截面为控制截面。在有均布载荷的段内,F S =0的截面处弯矩为极值,也作为控制截面求出其弯矩值。将控制截面的内力值标在的相应位置处。分段点之间的图形可根据剪力方程和弯矩方程绘出。并注明max max M F S 、的数值。 (2)微分关系法:即利用载荷集度、剪力与弯矩之间的关系绘制剪力图和弯矩图。 载荷集度q (x )、剪力F S (x )与弯矩M (x )之间的关系为: )() (S x q dx x dF = )() (S x F dx x dM = )() ()(S 2 2x q dx x dF dx x M d == 根据上述微分关系,由梁上载荷的变化即可推知剪力图和弯矩图的形状。 (a)若某段梁上无分布载荷,即0)(=x q ,则该段梁的剪力F S (x )为常量,剪力图为平行于x 轴的直线;而弯矩)(x M 为x 的一次函数,弯矩图为斜直线。

#简支T梁内力计算和结果比较

简支T 梁内力计算及结果对比 一、桥梁概况 一座九梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图1-1所示,计算跨径29.5l m =,主梁翼缘板刚性连接。设计荷载:公路—I 级,人群荷载:3.0/kN m , 每侧的栏杆及人行道构件自重作用力为5/kN m ,桥面铺装5.6/kN m ,主梁采用C50混凝土容重为25/kN m 。 (a ) (b ) 图1-1主梁和横隔梁简图(单位:cm ) 二、恒载内力计算 ㈠.恒载集度 主梁:()10.080.140.18 1.30 1.600.18259.76/2g kN m ?+??? =?+?-?= ??????? 横隔梁: 对于边主梁:()12 1.600.18 1.000.110.1572529.500.56/2 g kN m -=-? ???÷= 对于中主梁:2 122220.56 1.12/g g kN m =?=?= 桥面铺装:3 5.6/g kN m =

栏杆和人行道:45/g kN m = 作用于边主梁的全部恒载为: 19.760.56 5.6520.92/i g g kN m ==+++=∑ 作用于中主梁的恒载为: 29.76 1.12 5.6521.48/i g g kN m ==+++=∑ ㈡.恒载内力 计算主梁的弯矩和剪力,计算图式如图2-1所示,则: ()222x gl x gx M x gx l x = ?-?=-,()222 x gl g Q gx l x =-=- g 图2-1 恒载内力计算图式 各计算截面的剪力和弯矩值见表2-1和表2-2。 边主梁恒载内力 表2-1 内力 截面位置 剪力()Q kN 弯矩()M kN m ? 0x = 308.572 gl Q = = 0M = 4l x = 154.294 gl Q == 2 31706.7832gl M == 2 l x = 0Q = 2 2275.708 gl M == 中主梁恒载内力

门式刚架计算模板

一、设计资料 某单层工业厂房,采用单跨双坡门式刚架,刚架跨度24m ,长度48m ,柱距6m ,檐口标高11m ,屋面坡度1/10。屋面及墙面板均为彩色钢板,内填充保温层,考虑经济、制造和安装方便,檩条和墙梁 均采用冷弯薄壁卷边C 型钢,钢材采用Q345钢,2 /310mm N f =,2/180mm N f v =,基础混凝土标号C30,2 /3.14mm N f c =,焊条采用E50型。刚架平面布置图,屋面檩条布置图,柱间支撑布置草图, 钢架计算模型及风荷载体形系数如下图所示。 刚架平面布置图 屋面檩条布置图

柱间支撑布置草图 计算模型及风荷载体形系数 二、荷载计算 2.1 计算模型的选取 取一榀刚架进行分析,柱脚采用铰接,刚架梁和柱采用等截面设计。 2.2 荷载取值计算: (1) 屋盖永久荷载标准值 彩色钢板 0.40 2kN m 保温层 0.60 2kN m 檩条 0.08 2kN m 钢架梁自重 0.15 2kN m 合计 1.23 2 kN m (2) 屋面活载和雪载 0.30 2 /KN m 。

(3) 轻质墙面及柱自重标准值 0.50 2 /KN m (4) 风荷载标准值 基本风压:m kN /525.050.005.10=?=ω。根据地面粗糙度类别为B 类,查得风荷载高度变化系数:当高度小于10m 时,按10m 高度处的数值采用,z μ=1.0。风荷载体型系数s μ:迎风柱及屋面分别为+0.25和-1.0,背风面柱及屋面分别为-0.55和-0.65。 2.3 各部分作用的荷载标准值计算 (1) 屋面荷载: 标 准 值: m kN /42.7cos 1 623.1=??θ 柱身恒载: m kN /00.3650.0=? (2) 屋面活载 屋面活载雪载m kN /81.1cos 1 630.0=? ?θ (3) 风荷载 以左吹风为例计算,右吹风同理计算,根据公式0ωμμωs z k =计算,z μ查表m h 10≤,取1.0,s μ取值如图1.2所示。(地面粗糙度B 类) 迎风面 侧面2 /131.050.005.10.125.0m kN k =???=ω,m kN q /79.06131.01=?= 屋顶2 /525.050.005.10.100.1m kN k -=???-=ω,m kN q /15.36525.02-=?-=

内力组合计算书

内力组合 《抗震规范》第条规定如下。 截面抗震验算 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ () 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有 利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。 注:本规范一般略去表示水平方向的下标。 表 地震作用分项系数 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用; R ——结构构件承载力设计值。 表 承载力抗震调整系数

当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图。 图 梁截面标号示意图

《工程力学》第4次作业解答(杆件的内力计算与内力图).

《工程力学》第4次作业解答(杆件的内力计算与内力图) 2008-2009学年第二学期 一、填空题 1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。 2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。 3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。 4.若传动轴所传递的功率为P 千瓦,转速为n 转/分,则外力偶矩的计算公式为9549P M n =?。 5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负,按右手螺旋法则确定。 6.剪力S F 、弯矩M 与载荷集度q 三者之间的微分关系是()()S dM x F x dx =、()()S dF x q x dx =±。 7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。 8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。 9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。 10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。 二、问答题 1.什么是弹性变形?什么是塑性变形? 解答: 在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。 如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。 2.如图所示,有一直杆,其两端在力F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。试问: (1)对于图示的三种受力情况,直杆的变形是否相同? (2)力的可传性原理是否适用于变形体? 解答: (1)图示的三种情况,杆件的变形不相同。图(a )的杆件整体伸长变形,图(b )的杆件只有局部伸长变形,图(c )的杆件是缩短变形。 (2)力的可传性原理,对于变形体不适用。因为刚体只考虑力的外效应,力在刚体上沿其作用线移动,刚体的运动状态不发生改变,所以作用效应不变;力在变形体沿其作用线移动后,内部变形效果发生了改变,与力在原来的作用位置对变形体产生的效果不同。 3.如上图所示,试判断图中杆件哪些属于轴向拉伸或轴向压缩。 解答:(a )图属于轴向拉伸变形;(b )图属于轴向压缩变形。 (c )、(d )两图不属于轴向拉伸或压缩变形。 4.材料力学中杆件内力符号的规定与静力平衡计算中力的符号有何不同? 【解答】 问答题2图 问答题3图

用位移法计算图示刚架

综合练习2 2. 绘制图示结构的弯矩图。 3a a 答: 3a a 3. 绘制图示结构的弯矩图。 q 答: A

4. 绘制图示结构的弯矩图。 答: l P 5. 绘制图示结构的弯矩图。 答: 6. 绘制图示结构的弯矩图。 l l 答: 2 2ql 四、计算题

1.用力法计算图示结构,作弯矩图。EI =常数。 l l /2l /2 解:(1) 选取基本体系 (2) 列力法方程 011111=?+=?P X δ (3) 作1M 图、P M 图 1M 图 P M 图 (4) 求系数和自由项 由图乘法计算δ11、?1P ∑?= =s 2111d EI M δEI l 343 ; ==?∑?S P P d EI M M 11EI Pl 48293 -

解方程可得 =1X 64 29P (5) 由叠加原理作M 图 (2) 列力法方程 011111=?+=?P X δ (3) 作1M 图、P M 图 A B C 4 A B C 40 1M 图(单位:m ) P M 图 (单位:m kN ?) (4) 求系数和自由项 由图乘法计算δ11、?1P

∑?==s 2111d EI M δEI 3128 ;= =?∑?S P P d EI M M 11EI 3480 解方程可得=1 X kN 75.3- (5) 由叠加原理作M 图 A B C 32.5 15 M 图(单位:m kN ?) 3. 利用对称性计算图示结构,作弯矩图。EI =常数。 2m 4m 2m 解: (1) 将荷载分成对称荷载和反对称荷载。 (2) 简化后可取半边结构如所示。

刚架结构计算参考

一、设计资料 某加工厂一厂房,该厂房为单层,采用单跨双坡门式刚架,刚架跨度18m ,柱高 6m ;共有12榀刚架,柱距6m ,屋面坡度1:10。刚架平面布置见图1(a),刚架形式 及几何尺寸见图1(b)。屋面及墙面板均为彩色压型钢板,内填充以保温玻璃棉板,详 细做法见建筑专业设计文件;钢材采用Q235钢,焊条采用E43型。 112 A B 图1(a).刚架平面布置图 图1(b).刚架形式及几何尺寸 18000 6000900 二、荷载计算 (一)荷载取值计算 1.屋盖永久荷载标准值(对水平投影面) YX51-380-760型彩色压型钢板 0.15 KN/m 2

50mm厚保温玻璃棉板0.05 KN/m2 PVC铝箔及不锈钢丝网0.02 KN/m2 檩条及支撑0.10 KN/m2 刚架斜梁自重0.15 KN/m2 悬挂设备0.20 KN/m2 合计0.67 KN/m2 2.屋面可变荷载标准值 屋面活荷载:按不上人屋面考虑,取为0.50 KN/m2。 雪荷载:基本雪压S0=0.45 KN/m2。对于单跨双坡屋面,屋面坡角 α=5°42′38″,μr=1.0,雪荷载标准值Sk=μr S0=0.45 KN/m2。 取屋面活荷载与雪荷载中的较大值0.50 KN/m2,不考虑积灰荷载。 3.轻质墙面及柱自重标准值(包括柱、墙骨架等)0.50 KN/m2 4.风荷载标准值 按《门式刚架轻型房屋钢结构技术规程》CECS102:2002附录A的规定计算。 基本风压ω0=1.05×0.45 KN/m2,地面粗糙度类别为B类;风荷载高度变化系数按《建筑结构荷载规范》(GB50009-2001)的规定采用,当高度小于10m时,按10m 高度处的数值采用,μz=1.0。风荷载体型系数μs:迎风面柱及屋面分别为+0.25和-1.0,背风面柱及屋面分别为+0.55和-0.65(CECS102:2002中间区)。 5.地震作用 据《全国民用建筑工程设计技术措施—结构》中第18.8.1条建议:单层门式刚架轻型房屋钢结构一般在抗震设防烈度小于等于7度的地区可不进行抗震计算。故本工程结构设计不考虑地震作用。 (二)各部分作用的荷载标准值计算 屋面: 恒荷载标准值:0.50×6=3.00KN/m 活荷载标准值:0.65×6=3.00KN/m 柱荷载: 恒荷载标准值:0.45×6=2.70KN

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为24m ,屋架端部高度2m ,长度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采用×6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三毡四油防水层,屋面坡度=i 1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400mm,混凝土C20,屋面活荷载 kN/m 2,屋面积灰荷载 kN/m 2,保温层自重m 2。 (2)钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3)屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度10/1=i ,由于采用?预应力钢筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: mm L L 23700300240003000=-=-= 屋架端部高度取: =o H 2000mm

跨中高度: mm i L H H 3190318510 12237002000200≈=?+=+ = 屋架高跨比: 4 .712370031900==L H 为使屋架节点受荷,配合屋面板宽,腹杆体系大部分采用下弦节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系,屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷载;在设置横向水平支撑的同一柱间,设置竖向支撑三道,分别设在屋架的两端和跨中,屋脊节点及屋架支座处沿厂房设置通长刚性系杆,屋架下弦跨中设置一道通长柔性

第六章 框架内力组合

第六部分 框架内力组合 一. 框架梁内力组合见横向框架KJ-2内力组合表 对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。 对于框架梁的最不利内力组合有: 对梁端截面:max M +、max M -、m ax V 对梁跨间截面:max M +、max M - 荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时, 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35. (2) 当其效应对结构有利时, 一般情况下应取1.0; 对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4 对标准值大于4KN/m 2 的工业房屋楼面结构的活荷载应取1.3 荷载规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=WK W W EVK EV EhK EH GE G S S S S γψγ γ γ+++ 式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件 承载能力有利是,不应大于1.0; Eh γ、Ev γ——分别为水平、竖向地震作用分项系数,应按表6―1采用; w γ——风荷载分项系数,应采用1.4; GE S ——重力荷载代表值的效应, 有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; wK S ——风荷载标准值的效应; w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采用0.2

静定刚架的内力计算及内力图

静定刚架的内力计算及内力图(步骤) 求如图所示的刚架内力图: q XD 解:(1)求支座反力。 ΣΧ=0 求得XD=q α( ) ΣMA=0 求得YD= 32 q α ( ) ΣY=0解得YA= 12 q α( ) (2)画轴力图N N AB =- 1 2 q α(压) N AC =- q α (压) N CD =- 32 q α(压) 求轴力可以从任一侧求,可设为正(即拉),按平衡求出为正值即为拉,负值即为压。 注:轴力图画在哪侧皆可,但一定要标出正负号。 轴力图N 如下; q α 32 q α (3)剪力图V

V AE =0 V EB =- q α V DC =q α V BC = 12 q α V CB =- 32 q α v cd=q α 特点:没有荷载部分为平直线,有均布荷载部分为斜直线。 剪力图V 如下 剪力图画在哪侧皆可, (4)画弯矩图(刚架内侧受拉为正,外侧受拉为负) 区段叠加的控制点为 1 端部 2均布荷载的起止点 3其他的位置可分开求或叠加(一般在一个段内有集中力作用在均布荷载的位置上时,在集中力处分开。) 先求每根杆两端的弯矩,用虚线连接,段间空载的直接连接,有力的叠加。 M 图特点:1均布荷载:抛物线 2无荷载:直线 3集中力:与力一致的方向产生尖点 叠加大小 集中力点处:力的方向叠加 Fab l (特别地,当α=b 时代入式子为fl 41 ) 均 布荷载中点:2 8 ql M AB =0 M BA =q α2 (左) M DC =0 M CD = q α×2α=2q α2 (右) M BC = q α2(上) M CB

杆件的内力.截面法.

第二章杆件的内力.截面法 一、基本要求 1.了解轴向拉伸与压缩、扭转、弯曲的概念; 2.掌握用截面法计算基本变形杆件截面上的内力; 3.熟练掌握基本变形杆件内力图的绘制方法。 表示轴力沿杆件轴线变化规律的图线。该图一般以平行于杆件轴线的横坐标x轴表示横截面位置,纵轴表示对应横截面上轴力的大小。正的轴力画在x轴上方,负的轴力画在x轴下方。

当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为

的变形,则该力或力偶在截面上产生正的弯矩,反之为负的弯矩(上挑为正,下压为负)。4)剪力方程和弯矩方程 一般情况下,梁横截面上的剪力和弯矩随截面位置不同而变化。若以坐标x 表示横截面在梁轴线上的位置,则横截面上的剪力和弯矩可以表示为x 的函数,即) () (S S x M M x F F == 上述函数表达式称为梁的剪力方程和弯矩方程。 5)剪力图和弯矩图 为了直观地表达剪力F S 和弯矩M 沿梁轴线的变化规律,以平行于梁轴线的横坐标x 表示横截面的位置,以纵坐标按适当的比例表示响应横截面上的剪力和弯矩,所绘出的图形分别称为剪力图和弯矩图。 剪力图和弯矩图的绘制方法有以下两种: (1)剪力、弯矩方程法:即根据剪力方程和弯矩方程作图。其步骤为: 第一,求支座反力。 第二,根据截荷情况分段列出F S (x )和M (x )。 在集中力(包括支座反力)、集中力偶和分布载荷的起止点处,剪力方程和弯矩方程可能发生变化,所以这些点均为剪力方程和弯矩方程的分段点。 第三,求控制截面内力,作F S 、M 图。一般每段的两个端点截面为控制截面。在有均布载荷的段内,F S =0的截面处弯矩为极值,也作为控制截面求出其弯矩值。将控制截面的内力值标在的相应位置处。分段点之间的图形可根据剪力方程和弯矩方程绘出。并注明 m a x m a x M F S 、的数值。 (2)微分关系法:即利用载荷集度、剪力与弯矩之间的关系绘制剪力图和弯矩图。 载荷集度q (x )、剪力F S (x )与弯矩M (x )之间的关系为: )() (S x q dx x dF = )() (S x F dx x dM = )() ()(S 2 2x q dx x dF dx x M d == 根据上述微分关系,由梁上载荷的变化即可推知剪力图和弯矩图的形状。 (a)若某段梁上无分布载荷,即0)(=x q ,则该段梁的剪力F S (x )为常量,剪力图为平行于x 轴的直线;而弯矩)(x M 为x 的一次函数,弯矩图为斜直线。 (b)若某段梁上的分布载荷q x q =)((常量),则该段梁的剪力F S (x )为x 的一次函数,剪力图为斜直线;而)(x M 为x 的二次函数,弯矩图为抛物线。当0>q (q 向上)时,弯矩图为向下凸的曲线;当0

门式刚架计算书

目录 2 荷载计算 (2) 2.1荷载取值计算 (2) 2.1.1 永久荷载标准值(对水平投影面) (2) 2.1.2 可变荷载标准值 (2) 2.1.3 风荷载标准值 (2) 2.1.4 吊车资料 (2) 2.1.5 地震作用 (3) 2.2各部分作用的荷载标准值计算 (3) 3 内力计算 (5) 3.1在恒荷载作用下 (6) 3.2在活荷载作用下 (7) 3.3在风荷载作用下 (8) 3.4在吊车荷载作用下 (9) 3.5内力组合 (10) 4 刚架设计 (14) 4.1截面形式及尺寸初选 (14) 4.2构件验算 (14) 4.2.1 构件宽厚比验算 (15) 4.2.2 有效截面特性 (15) 4.2.3 刚架梁的验算 (18) 4.2.4 刚架柱验算 (19) 4.2.5 位移计算 (21) 4.3节点设计 (21) 4.3.1 梁柱节点设计 (21)

4.3.2 梁梁节点设计 (23) 4.3.3 刚接柱脚节点设计 (26) 5 吊车梁及牛腿设计 (28) 5.1吊车梁设计 (28) 5.2牛腿设计 (31) 6 其它构件设计 (34) 6.1隅撑设计 (34) 6.2檩条设计 (34) 6.2.1 基本资料 (34) 6.2.2 荷载及内力 (34) 6.2.3 截面选择及截面特性 (34) 6.2.4 强度计算 (36) 6.2.5 稳定性验算 (37) 6.3墙梁设计 (37) 6.3.1 基本资料 (37) 6.3.2 荷载计算 (37) 6.3.3 内力计算 (37) 6.3.4 强度计算 (37) 7 基础设计 (38) 7.1刚架柱下独立基础 (38) 7.1.1 地基承载力特征值和基础材料 (38) 7.1.2 基础底面内力及基础底面积计算 (38) 7.1.3 验算基础变阶处的受冲切承载力 (39) 7.1.4 基础底面配筋计算 (39) 7.2山墙抗风柱下独立基础 (39) 结论 (41) 参考文献 (42) 致 (44)

最新弹性杆件横截面上的内力计算

弹性杆件横截面上的 内力计算

弹性杆件横截面上的内力计算 一、概念题 1.判断题:(以下结论对者画√,错者画×) (1) 轴力的大小等于外力的大小。() (2) 杆件拉压或扭转变形时,截面上的内力只与其所受的外力有关。与其他因素无关。 () (3)当轴的两端受到一对大小相等、转向相反的力偶作用时,轴将产生扭转变形。 () (4)在纯扭转变形时,在有外力偶作用的截面处,扭矩图在该处发生突变,且突变值等于外力偶矩的大小。()(5)梁弯曲变形时,截面上的内力只与其所受的外力有关。与其他因素无关。 () (6)梁弯曲变形,在计算截面的弯矩时,无论用截面哪一侧的外力计算,向上的横向外力产生的弯矩总为正值。() (7)在无分布载荷作用的某段水平梁,弯矩图只能是斜直线,不可能是水平线或抛物线。 () (8)简支梁上作用有一集中力偶,该力偶无论置于何处,梁的剪力图都是一 样 的 。 ( )(9)若梁的某段无载荷作用,一般情况下,弯矩图在此段内是平行于梁轴 线 的 直

线 。 ( )2.选择题: (1) 圆轴纯扭转时任一横截面上的扭矩等于() A轴上所有外力偶矩的代数和。 B该截面一侧(左侧或右侧)所有外力偶矩的和。 C轴上所有与轴线垂直的外力偶矩的代数和。 D 以上结论都不对。 (2)梁上任一横截面上的剪力等于() A梁上所有横向外力的代数和。 B该截面一侧(左侧或右侧)所有纵向外力的代数和。 C该截面一侧(左侧或右侧)所有外力的代数和。 D该截面一侧(左侧或右侧)所有横向外力的代数和。 (3)平面弯曲的梁,任一横截面上的弯矩等于() A梁上所有外力(包括力偶)对该截面形心取力矩的代数和。 B 该截面一侧(左侧或右侧)梁上所有外力(包括力偶)对任意点取力矩的代数和。 C该截面一侧(左侧或右侧)梁上所有外力(包括力偶)对截面形心取力矩的代数和。 D该截面一侧(左侧或右侧)梁上所有外力(包括力偶)对梁一端面取力矩的代数和。

简单桁架内力的计算方法

25您的位置:在线学习—>在线教程—>教学内容 上一页返回目录下一页 3.4 静定平面桁架 教学要求 掌握静定平面桁架结构的受力特点和结构特点,熟练掌握桁架结构的内力计算方法——结点法、截面法、联合法 3.4.1 桁架的特点和组成 3.4.1.1 静定平面桁架 桁架结构是指若干直杆在两端铰接组成的静定结构。这种结构形式在桥梁和房屋建筑中应用较为广泛,如南京长江大桥、钢木屋架等。 实际的桁架结构形式和各杆件之间的联结以及所用的材料是多种多样的,实际受力情况复杂,要对它们进行精确的分析是困难的。但根据对桁架的实际工作情况和对桁架进行结构实验的结果表明,由于大多数的常用桁架是由比较细长的杆件所组成,而且承受的荷载大多数都是通过其它杆件传到结点上,这就使得桁架结点的刚性对杆件内力的影响可以大大的减小,接近于铰的作用,结构中所有的杆件在荷载作用下,主要承受轴向力,而弯矩和剪力很小,可以忽略不计。因此,为了简化计算,在取桁架的计算简图时,作如下三个方面的假定:(1)桁架的结点都是光滑的铰结点。 (2)各杆的轴线都是直线并通过铰的中心。 (3)荷载和支座反力都作用在铰结点上。 通常把符合上述假定条件的桁架称为理想桁架。 3.4.1.2 桁架的受力特点 桁架的杆件只在两端受力。因此,桁架中的所有杆件均为二力杆。在杆的截面上只有轴力。 3.4.1.3 桁架的分类 (1)简单桁架:由基础或一个基本铰接三角形开始,逐次增加二元体所组成的几何不变体。(图3-14a) (2)联合桁架:由几个简单桁架联合组成的几何不变的铰接体系。(图3-14b) (3)复杂桁架:不属于前两类的桁架。(图3-14c)

算例计算如图-1所示平面刚架各结点的位移和各梁的内力及支座反力

算例 计算如图-1所示平面刚架各结点的位移和各梁的内力及支座反力。 已知:4422210, 2.010, 1.010E GPa I m A m --==?=? 30kN/m 图-1受分布力和集中力的平面刚架 分析:首先建立有限元模型,即定义结点坐标,定义单元的结点号和材料特性,定义约束条件,给定结点力等。把杆件的连接点和集中力的作用点取为结点,并按1~7编号,其中5号结点就是集中力作用点,如下图所示。为了确定结点的坐标,我们要建立一个整体坐标系,其原点为结点1,水平向右为x 轴正方向,竖直向上为y 轴正方向。这样就能根据框架的尺寸确定7个结点的坐标。然后将这7个结点两两组合成6个单元,并按①~⑥编号,示于图-2中。该刚架有3个结点被固定,每个结点有3个自由度,因此共有9个自由度被约束。另外还有1个集中力,两个单元有分布荷载。这些信息即构成了有限元模型,可编制一个函数程序 30kN/m 图-2 单元划分图

有限元模型生成函数 function PlaneFrameModel % 定义平面杆系的有限元模型 % 输入参数: % 无 % 返回值: % 无 % 说明: % 该函数定义平面杆系的有限元模型数据: % gNode ------- 节点定义 % gElement ---- 单元定义 % gMaterial --- 材料定义,包括弹性模量,梁的截面积和梁的抗弯惯性矩% gBC1 -------- 约束条件 % gNF --------- 集中力 % gDF --------- 分布力 global gNode gElement gMaterial gBC1 gNF gDF % 节点坐标 % x y gNode = [0.0, 0.0 % 节点1 0.0, 4.0 % 节点2 3.0, 0.0 % 节点3 3.0, 4.0 % 节点4 4.5, 4.0 % 节点5 6.0, 0.0 % 节点6 6.0, 4.0 ] ; % 节点7 % 单元定义 % 节点1 节点2 材料号 gElement = [1, 2, 1 % 单元1 2, 4, 1 % 单元2 3, 4, 1 % 单元3 4, 5, 1 % 单元4 5, 7, 1 % 单元5 6, 7, 1] ; % 单元6 % 材料性质 % 弹性模量抗弯惯性矩截面积 gMaterial = [2.1e11, 2.0e-4, 1.0e-2] ; % 材料1 % 第一类约束条件 % 节点号自由度号约束值

箱梁内力计算及组合

内力计算及组合 一、永久作用效应计算 1.梁自重和横隔梁自重(一期荷载) 1 (1.23 1.04) 1.230.2222 1.0415 22526.59 19.4 g + ??+??+? =?=kN/m 2 0.3660.2253 0.283 19.4 g ??? ==kN/m 2. 桥面系自重(二期荷载) 桥面铺装采等厚度的10cm C50混凝土+SBS改性沥青涂膜防水层+10cm沥青混凝土,,则全桥宽铺装每延米重力为: 0.114(2325)6 ??+=kN/m 为计算方便近似按各梁平均分担来考虑,则每片梁分摊到的每延米桥面系重 力为: 367.2 13.44 5 g==kN/m 3. 湿接缝自重(二期荷载) 40.50.225 1.25 2 g ?? ==kN/m 4. 防撞护栏自重(二期荷载) 56.72 2.68 5 g ? ==kN/m 5. 横隔梁湿接自重(二期荷载) 6(0.10.2)0.20.525 0.019 219.4 g +??? == ? kN/m 由此得边梁每延米总重力g为: 1226.87 g g g I =+=kN/m(一期荷载) 345617.4 g g g g g ∏ =+++=kN/m(二期荷载) 6. 恒载内力 本桥为先简支后连续,施工过程包含结构的体系转化,所以结构的自重内力计算过程必须首先将各施工阶段内力计算出来,然后进行叠加。 第一施工阶段:结构体系为简支梁结构,自重作用荷载为g I ;

第二施工阶段:由于两跨间接头较短,混凝土重量较小,其产生的内力较小,且会减少跨中的弯矩,故忽略不计; 第三施工阶段:结构体系为连续体系,忽略临时支撑移除产生的效应,考虑翼缘板及横隔梁接头重力和桥梁二期结构自重作用荷载为桥梁二期荷载,即为 g ∏。 第一施工阶段结构自重作用效应内力计算: 以边梁为计算单元,此时结构体系为简支梁,计算跨径为19.7l =m ; 设x 为计算截面距支座的距离,并令x a l =,则主梁弯矩和剪力计算公式为: ()()211 1 12 1 12g 2a a M a a l g Q a l = -=- 图2-1 内力计算图 各计算截面如下图2—2所示,具体计算结构如表2—1: 图2-2边梁计算截面位置 表2—1 第一施工阶段自重作用效应内力

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图: 1、永久荷载 永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。 恒载标准值(对水平投影面): 板及保温层0.30kN/㎡ 檩条0.10kN/㎡ 悬挂设备0.10kN/㎡ 0.50kN/㎡ 换算为线荷载:7.50.5 3.75 3.8/ =?=≈ q KN m 2、可变荷载标准值 门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。对于屋面结构,《钢结构设计规范》 m,但构件的荷载面积大于602m的可乘折减系数0.6,门规定活荷载为0.5KN/2 m。由荷载规范查得,大连地区式刚架符合此条件,故活荷载标准值取0.3KN/2 雪荷载标准值为0.40kN/㎡。 屋面活荷载取为0.30kN/㎡ 雪荷载为0.40kN/㎡

取二者较大值 0.40kN/㎡ 换算为线荷载:7.50.43/q KN m =?= 3、风荷载标准值 :0k z s z ωβμμω= (1) 基本风压值 2 0k N /m 6825.065.005.1=?=ω (2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不 大于1.5,不考虑风振系数) (3) 风压高度变化系数z μ 由地面粗糙度类别为B 类,查表得: h=10m ,z μ=1.00;h=15m ,z μ=1.14 内插: 低跨刚架,h=10.5m ,z μ= 1.14 1.11 1.00(10.510)1510-+ ?--=1.014; 高跨刚架,h=15.7m ,z μ= 1.25 1.14 1.14(15.715)2015 -+ ?--=1.155。 (4) 风荷载体型系数s μ

杆件的强度计算公式要点

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

相关主题
文本预览
相关文档 最新文档