当前位置:文档之家› (完整版)天体运动复习题(1)——开普勒三大定律

(完整版)天体运动复习题(1)——开普勒三大定律

(完整版)天体运动复习题(1)——开普勒三大定律
(完整版)天体运动复习题(1)——开普勒三大定律

天体运动复习题(1)——开普勒三大定律

1.关于行星绕太阳运动,下列说法正确的是()

A.行星在椭圆轨道上绕太阳运动的过程中,其速度与行星和太阳之间的距离有关,距离小时速度小,距离大时速度大

B.所有行星在椭圆轨道上绕太阳运动,太阳在椭圆轨道的一个焦点上

C.所有行星绕太阳运动的周期都是相等的

D.行星之所以在椭圆轨道上绕太阳运动,是由于太阳对行星的引力作用

2.关于开普勒行星运动的公式a3

T2=k,以下理解正确的是()

A.k是一个与行星无关的量

B.T表示行星运动的自转周期

C.T表示行星运动的公转周期

D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转轨道的半长轴为a月,

周期为T

月.则

a3地

T2地

a3月

T2月

3.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为()

A.R03

T2B.R0

31

T C.R0

31

T2D.R0

3

T

4.长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于()

A.15天 B.25天C.35天 D.45天

5. 如图所示是行星m绕恒星M运动情况的示意图,下列说法正确的是()

A.速度最大点是B点

B.速度最小点是C点

C.m从A到B做减速运动

D.m从B到A做减速运动

6.有两颗行星环绕某恒星转动,它们的运动周期之比为27∶1,则它们的轨道半径之比为() A.1∶27 B.9∶1 C.27∶1 D.1∶9

7.某行星绕太阳沿椭圆轨道运行,如图所示,在这颗行星的轨道上有a、b、c、d四个对称点,其中a为近日点,c为远日点,若行星运动周期为T,则该行星()

A.从a到b的运动时间等于从c到d的运动时间

B.从d经a到b的运动时间等于从b经c到d的运动时间

C.a到b的时间t ab

D.c到d的时间t cd >T/4

8.两颗人造卫星A、B绕地球做圆周运动,周期之比为T A∶T B=1∶8,则轨道半径之比和运动速率之比分别为()

A.R A∶R B=4∶1,v A∶v B=1∶2 B.R A∶R B=4∶1,v A∶v B=2∶1

C.R A∶R B=1∶4,v A∶v B=1∶2 D.R A∶R B=1∶4,v A∶v B=2∶1

9.月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.

10.飞船沿半径为R的圆周绕地球运动,其周期为T,如果飞船要返回地面,可在轨道上的某一

点A处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B点相切,如图所示,如果地球半径为R0,求飞船由A点到B点所需的时间。

开普勒的三大定律典型例题(教学课资)

典型例题 关于开普勒的三大定律 例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样. 分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的. 解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有: 同理设月球轨道半径为,周期为,也有: 由以上两式可得: 在赤道平面内离地面高度: km 点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。 利用月相求解月球公转周期 例2 若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位置示意图).

解:月球公转(2π+)用了29.5天. 故转过2π只用天. 由地球公转知. 所以=27.3天. 例3如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三 颗人造地球卫星,下列说法中正确的是哪个?() A.B、C的线速度相等,且大于A的线速度 B.B、C的周期相等,且大于A的周期 C.B、C的向心加速度相等,且大于A的向心加速度 D.若C的速率增大可追上同一轨道上的B 分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,故选项B是正确的. 卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的. 若使卫星C速率增大,则必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的. 解:本题正确选项为B。

天体运动复习题开普勒三大定律

天体运动复习题(1)——开普勒三大定律 1.关于行星绕太阳运动,下列说法正确的是( ) A.行星在椭圆轨道上绕太阳运动的过程中,其速度与行星和太阳之间的距离有关,距离小时速度小,距离大时速度大 B.所有行星在椭圆轨道上绕太阳运动,太阳在椭圆轨道的一个焦点上C.所有行星绕太阳运动的周期都是相等的 D.行星之所以在椭圆轨道上绕太阳运动,是由于太阳对行星的引力作用 2.关于开普勒行星运动的公式a3 T2=k,以下理解正确的是( ) A.k是一个与行星无关的量 B.T表示行星运动的自转周期 C.T表示行星运动的公转周期 D.若地球绕太阳运转轨道的半长轴为a地,周期为T地;月球绕地球运转 轨道的半长轴为a月,周期为T月.则a3地 T2地= a3月 T2月 3.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T年,直径2~3千米,而地球与太阳之间的距离为R0. 如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为( ) A.R03 T2B.R0 31 T C.R0 31 T2 D.R03 T

4.长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于() A.15天 B.25天C.35天 D.45天 5. 如图所示是行星m绕恒星M运动情况的示意图,下列说法正确的是 ( ) A.速度最大点是B点 B.速度最小点是C点 C.m从A到B做减速运动 D.m从B到A做减速运动 6.有两颗行星环绕某恒星转动,它们的运动周期之比为27∶1,则它们的轨道半径之比为( ) A.1∶27 B.9∶1 C.27∶1 D.1∶9 7.某行星绕太阳沿椭圆轨道运行,如图所示,在这颗行星的轨道上有a、b、 c、d四个对称点,其中a为近日点,c为远日点,若行星运动周期为T, 则该行星() A.从a到b的运动时间等于从c到d的运动时间 B.从d经a到b的运动时间等于从b经c到d 的运动时间 C.a到b的时间t ab

行星的运动

第一节行星的运动 一、教学目标 知识与技能: 1、知道日心说和地心说的基本内容 2、大致了解开普勒行星运动定律的发现历程及其对经典力学(运动观、宇宙观)发展的意义。 3、初步理解开普勒行星运动定律的物理意义及其在中学阶段的研究中近似处理。 过程与方法: 1、通过开普勒行星运动定律发现历程的学习过程,认识物理模型和数学工具在物理学发展过程中的作用。 2、通过科学家们对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。 情感态度与价值观: 1、知道科学家们凭着严谨的科学态度和极大的勇气,终于认识了行星的运动规律。 2、领略天体运动的奇妙与和谐,发展对科学的好奇心与求知欲,了解探索自然规律的艰 辛与喜悦;培育敢于坚持真理、勇于创新和实事求是的科学态度和科学精神。 3、感悟科学是人类进步不竭的动力,提高自身科学素养。 二、教学内容剖析 本节课的地位和作用: 本节教学既是前面《运动的描述》和《曲线运动》内容的进一步的延伸和拓展,又是为了学习万有引力定律和后续原子结构模型做铺垫。在物理1的第一章《运动的描述》部分,学生已学习了参考系、运动轨迹、运动快慢描述的相关知识;物理2的第六章《曲线运动》部分,已学习了圆周运动快慢描述的相关知识,这些都是学习行星运动的描述的知识准备。同时该节内容也涉及大量物理史实、贴近学生生活和联系社会实际的事实,可进一步培育学生的科学情感、精神和发展观。 本节课教学重点: 1.建构太阳-行星模型。 2.开普勒行星运动三定律。 本节课教学难点: 1.椭圆的认识。 2.建构太阳-行星模型。 三、教学思路与方法 为了整合知识与技能、过程与方法、情感态度与价值观三个维度的上述具体目标,结合学生和课程实际,在构思教学活动和学生活动的安排时,以解决如何描述行星运动的系列问题为线索,建构太阳-行星模型为目标,为解决每个问题创设情境、明确任务,在组织交流和评价的过程中促进意义建构、分享体会。教学中围绕太阳-行星模型的参考系、轨迹、运动快慢、和谐统一性展开教学,指导阅读、比较历史上关于宇宙中心、行星运动轨迹的观点和思想,引导学生把物理事实作为证据的观念,根据证据、逻辑和已有知识作出科学解释。 四、教学准备

开普勒的三大定律典型例题

关于开普勒的三大定律 例1月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样. 同理设月球轨道半径为 2.',周期为丄?’,也有: 由以上两式可得: x(60^)3=6.67A tt 在赤道平面内离地面高度: -- 三亠匸「.厂「? :「一二j < / 1 km 点评:随地球一起转动,就好像停留在天空中的卫星,通常称之为定点卫星?它们离地面的 高度是一个确定的值,不能随意变动。 利用月相求解月球公转周期 例2若近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这 两种转动同向,如图所示,月相变化的周期为29.5天(图是相继两次满月,月、地、日相对位 置示意图). 典型例题 分析:月球和人造地球卫星都在环绕地球运动,的三次 方跟圆周运动周期的二次方的比值都是相等的. 根据开普勒第三定律,它们运行轨道的半径解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:

解:月球公转(2 n + J )用了 29.5天. 卫星的向心加速度是万有引力作用于卫星上产生的, 而选项C 是错误的. 若使卫星C 速率增大,则必然会导致卫星 C 偏离原轨道,它不可能追上卫星 B,故 D 也是错 误的. 解:本题正确选项为 B o 点评:由于人造地球卫星在轨道上运行时, 所需要的向心力是由万有引力提供的, 故转过2 n 只用 29.5 天. 由地球公转知 365 所以2 =27.3天. 例3如图所示,A 、B C 是在地球大气层外的圆形轨道上运行的三颗人造地球卫星, 下列说 法中正确的是哪个?( ) A. B 、C 的线速度相等,且大于 A 的线速度 B. B 、C 的周期相等,且大于 A 的周期 C. B 、C 的向心加速度相等,且大于 A 的向心加速度 D. 若C 的速率增大可追上同一轨道上的 B ,因而选项A 是错误的. 故选项B 是正确的. 0M a = ― 由 ?’ ,可若由于某 分析:由卫星线速度公式 由卫星运行周期公式 y ,

开普勒三定律的发现过程

开普勒三定律的发现过程 生活在地球上的人类,不能感觉地球的运动,却能直接看到日月星辰绕地球旋转,因此,很容易误认为地球是静止不动地居于宇宙的中心,于是地心说应运而生。公元前4世纪,古希腊哲学家亚里士多德(Aristotle)提出整个宇宙是一个多层水晶球,地球位于水晶球的中心,恒星、行星、太阳和月亮都在各自的轨道上围绕地球旋转。这是历史上最早的地心说,后经过古希腊天文学家托勒密(公元90—168年)在二世纪中叶加以系统化之后,曾风靡世界达一千五百年之久。这一现象主要是因为这种说法与当时教会的教义吻合,得到了教会的大力支持。 托勒密首先将希腊和罗马的天文学做总结,并写了一本有名的《大综合论》,这一本书可说是古今天文之大成,书中不仅说明了所有天文学的知识,也大大的宣扬了著名的《天动说》,这个理论认为,所有的天体都在〝本轮环〞上绕著地球公转,一圈一圈往外,有时为了修正星体的运动,必须在本轮环上再加本轮环,这样一来天体的运动就会变得很复杂,对于精度不高的古代,这样做当然有其好处,只不过到了后来,天文观测仪器的改进终于使《天动说》寿终正寝。但是,由于中世纪教会的影响《大综合论》成为中世纪的天文典,而天动说也藉此支配中世纪的欧洲达一千多年之久。 中世纪的欧洲由于教会的压迫,自然科学的进展不大,因此这个时期的天文学重心便集中在阿拉伯。中世纪天文学最主要的成就是岁差的测定和历法的修正,在当时甚至已经有光学的研究出现。这些阿拉伯天文学的成就,为波兰伟大的天文学家哥白尼的新体系奠定了基础.而哥白尼的名著《天体运行论》的出版正揭示了科学革命的到来。 哥白尼的天体运行论一书出版后日心学说就像涟漪一样地向外传布。哥白尼之后,意大利学者布鲁诺(Giordano Bruno)进一步认为,太阳只是无数恒星中的一颗,仅是太阳系的中心,而不是宇宙的中心,这一认识使哥白尼日心说得到了进一步发展。由于日心说危及到当时罗马教会的思想统治,反动教会对布鲁诺恨之入骨,用种种恐怖手段逼迫布鲁诺放弃日心说,布鲁诺宁死不屈,最后被活活烧死。 1609年,意大利著名物理学家、天文学家伽利略(Galileo)用望远镜巡视星空,获得了一系列的重要发现——银河是由无数单个的恒星组成的,木星有4颗卫星,金星有圆缺变化,这些观测事实有力地支持了日心说。教会非常恐慌,将伽利略传到罗马的宗教法庭受审,并宣判他有罪,直到300多年后的1984年,这一冤案才得以昭雪。 尽管罗马教廷对宣传、支持日心说的科学家加以重重迫害,然而经过开普勒(Johannes Kepler)、伽利略和牛顿(Isaac Newton)等人的工作,哥白尼的学说不断获得胜利和发展。后来的许多发现使地球绕太阳转动的学说得到了举世公认的证明。特别是1846年,人们根据日心说理论的计算而准确地发现了海王星,哥白尼的日心说终于得到了完全的证实。加上1781年天王星的发现,1930年冥王星的发现,日心说在对地心说的斗争中最终取得了彻底

行星的运动知识点

行星的运动知识点 Prepared on 24 November 2020

近日点 远日点 行星的运动 一。开普勒三大定律 ①开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一 个焦点上。(椭圆定律) 【牢记】:不同行星绕太阳运行的椭圆 轨道不一样,但这些轨道有一个共同的焦点,即太阳 所处的位置。 ②开普勒第二定律:对任意一个行星来 说,它与太阳的连线在相等时间内扫过相等的面 积.(面积定律) 【牢记】:行星在近日点的速率大于远日 点的速率。 ③开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方 的比值都相等.(周期定律) 即公式k T a 23 (式中的比例系数k 为定值) 【牢记】:k 与中心天体(太阳)有关 二、开普勒三大定律的近似处理 从刚才的研究我们发现,太阳系行星的轨道与圆十分接近,所以在中学阶段的 研究中我们按圆轨道处理。这样,开普勒三大定律就可以说成

【牢记】: ①行星绕太阳运动轨道是圆,太阳处在圆心上。 ②对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星 做匀速圆周运动。 ③所有行星的轨道半径的三次方跟它的公转周期的平方的比值都相等。若用R 代表轨道半径,T 代表公转周期,开普勒第三定律可以用公式表示为:k T R =23 ,k 与太阳有关。 扩展及注意: a) 开普勒定律不仅适用于行星绕太阳运动,同时它适用于所有的天体运动。只不过对于不同的中心天体,k T R =23 中的k 值不一样。如金星绕太阳的23T R 与地球绕太阳的23 T R 是一样的,因为它们的中心天体一样,均是太阳。但月球绕地球运动的23T R 与地球绕太阳的23 T R 是不一样的,因为它们的足以天体不一样。 b) 开普勒定律是根据行星运动的现察结果而总结归纳出来的规 律.它们每一条都是经验定律,都是从行星运动所取得的资料中总结出来的规律.开普勒定律只涉及运动学、几何学方面的内容,不涉及力学原因。 c) 开普勒关于行星运动的确切描述,不仅使人们在解决行星的运动学问题上有了依据,更澄清了人们对天体运动神秘、模糊的认识,同时也推动了对天体动力学问题的研究.

开普勒行星运动定律 练习

开普勒行星运动定律 单选题 1.在经典力学的发展历程中,许多科学家做出了贡献。下列说法正确的是 A.伽利略创立了“日心说” B.牛顿提出了万有引力定律 C.哥白尼提出了“地心说” D.开普勒测出了引力常量 2.有两颗行星环绕某恒星运动,它们的运动周期比为27:1,则它们的轨道半径比为A.3:1 B.27:1 C.9:1 D.1:9 3..关于开普勒第三定律的公式 3 2 R k T ,下列说法中正确的是( ) A.公式只适用于绕太阳作椭圆轨道运行的行星 B.式中的R只能为做圆周轨道的半径 C.围绕不同星球运行的行星(或卫星),其k值相同 D.公式适用于宇宙中所有围绕同一星球运行的行星(或卫星) 4.如图所示,一卫星绕地球运动,图中虚线为卫星的运行轨迹,A、B、C、D是轨迹上的四个位置,其中A距离地球最近,C距离地球最远。下列说法中正确的是() A.卫星在A点的速度最大 B.卫星在C点的速度最大 C.卫星在A点的加速度最小 D.卫星在C点的加速度最大 5.下列关于行星运动的说法,不正确的是 A.行星轨道的半长轴越长,自转周期就越长 B.行星轨道的半长轴越长,公转周期就越长 C.水星轨道的半长轴最短,公转周期就最短 D.海王星离太阳“最远”,公转周期就最长 第1页

参考答案 1.B【解析】【详解】 AC、地心说最初由米利都学派形成初步理念,后由古希腊学者欧多克斯提出,然后经亚里士多德、托勒密进一步发展而逐渐建立和完善起来;哥白尼提出了日心说,故选项A、C错误; B、牛顿提出了万有引力定律,故选项B正确; D、卡文迪许测出了万有引力常量,开普勒通过对天体运动的长期观察,发现了行星运动三定律,故选项D错误。 2.C【解析】【详解】 根据开普勒第三定律 3 2 R k T =,则有 33 22 A B A B R R T T =, 解得9:1 A B R R ==,故选项C正确,A、 B、D错误。 3.D【解析】【详解】 A.开普勒第三定律适用于所有绕同一中心天体运动的行星,A错误 B.式中的R可以是圆周轨道的半径,也可以是椭圆轨道的半长轴,B错误 C.k值与中心天体质量有关,所以围绕不同星球运行的行星(或卫星),其k值不一定相同,C错误 D.公式适用于宇宙中所有围绕同一星球运行的行星(或卫星),D正确 4.A【解析】【详解】 AB.A点为近地点,C点为远地点,所以A点速度最大,A正确B错误 CD.A点为近地点,C点为远地点,根据万有引力定律可知,卫星在A点的加速度最大,C 正确D错误 5.A【解析】【详解】 AB. 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。其表达式,行星轨道的半长轴越长,公转周期就越长。故A错误,B正确; C. 水星轨道的半长轴最短,公转周期就最短,故C错误; D. 海王星离太阳“最远”,半长轴越长,公转周期就最长,故D正确; 本题选择错误答案,故选:AC.

对开普勒行星运动定律的理解

对开普勒行星运动定律的理解德国天文学家开普勒用了20年的时间,通过对丹麦天文学家第谷的行星观测记录,以“日心说”为理论基础,总结了开普勒三定律,也叫“行星运动定律”,指行星在宇宙空间绕太阳公转所遵循的定律,它否定了古人奉行的“地心说”的错误观点。下面本人就开普勒定律谈谈自己的一些理解。 开普勒第一定律也称椭圆定律,它指出所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。我们把像太阳这样被其他星体环绕的天体称为中心天体,其他围绕中心天体运动的行星称为环绕天体。这个定律的提出,首先否定了“天体运动为一个圆周”的错误理论,开创了天体运动科学研究的新局面。另外,我们还应了解,太阳系中不同行星运动的椭圆轨道是不同的,但这些椭圆有一个共同的焦点,即在太阳所在位置。其次,不仅在太阳系中各行星的轨道如此,其他星系中,各环绕天体和中心天体也符合开普勒第一定律。比如,在地月系中,月球和其他地球卫星围绕地球运动的轨道也为一个椭圆,而地球也处在它们椭圆轨道的一个焦点上。 开普勒第二定律,也称面积定律,它指出在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。行星在椭圆轨道运动时,极径 (又 称向径R)所扫过面积与经过的时间成正比,即掠面速度守恒,亦即矢积守恒,又称动量矩(角动量)守恒。天体运动若每走一步的时间

都相等,则向径所扫过的面积也相等,即面速度不变而形状变化。据此我们可以得出,离太阳越近的环绕天体运动的线速度越大,或者说低轨道运行行星比高轨道运行行星的速度大。其次,该定律还蕴含着行星与太阳之间的相互作用力在行星和太阳的连线上。我们还应理解,该定律对于其他星系也同样适用。 “所有行星的轨道半长轴的三次方跟公转周期的二次方的比值都相等”,这就是开普勒第三定律的表述,也称调和定律。这个定律的得出比前两个定律要晚些,它是通过所有行星围绕太阳运动的轨道半长轴与公转周期的比较得出的,是三个定律中应用较为广泛的一个,当然也可以用与其他星系。其物理表达式为a3/T2=K,它蕴含着行星运动的动力学关系,是牛顿得出万有引力定律的基础。公式中的K值是一个只与中心天体质量有关的量,与环绕天体无关,也就是说,只要中心天体一定,则K值就一定。比如,在太阳系中所有围绕太阳运动的轨道半长轴与公转周期的比值K与月球围绕地球运动的轨道半长轴与公转周期的比值K就不一样,这里一定要注意理解。 下面举个例子,已知飞船沿半径为R 的圆周绕地球运动,其周期为T,如图所示如果飞船要返回地面,可在轨道上的某点A将速度降低到适当的数值,从而使飞船沿着地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A 点到B 点所需的时间。(已知 地球半径为R0) 分析:无论飞船是沿圆轨道运行还是沿椭圆轨道运行,

行星运动、万有力定律

行星运动、万有力定律

————————————————————————————————作者:————————————————————————————————日期:

第一讲 行星的运动 万有引力定律 课时1行星的运动 【知识要点】 一、地心说与日心说 古希腊天文学家托勒密在公元2世纪,提出了地心说宇宙体系。在这个体系里,地球是静止不动的,地球是宇宙的中心。 5世纪,以波兰天文学家哥白尼为代表的日心说学派则认为太阳是静止不动的,地球和其他行星都绕太阳运动。 二、行星的运行轨道 1、第谷的匀速圆周运动模型 丹麦天文学家第谷通过长期天文观测,提出太阳系中所有行星绕太阳的运动是匀速圆周运动。 2、开普勒的计算 德国天文学家开普勒仔细整理了丹麦天文学家第谷留下的长期观测资料,并在匀速圆周运动模型下进行了计算,发现计算结果与第谷的观测数据间有8’差异,他摒弃了行星做匀速圆周运动的假设,提出了行星的运动轨道是椭圆的新观点。经过10多年的悉心研究,终于发现了后来以他的名字命名的行星运动定律: 3、开普勒三大定律 (1)开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)开普勒第二定律(面积定律):对于每一个行星而言,太 阳和行星的联线在相等的时间内扫过相等的面积。 (3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 表达式: 32 a k T =(比值k 是一个与行星无关,仅与中心天体——太阳的质量有关的常 数)。 【典例剖析】 【例1】木星绕太阳运动的周期为地球绕太阳运动周期的12倍。那么,木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道半长轴的多少倍? 【解析】设木星、地球绕太阳运动的周期分别为T 1、T 2,它们椭圆轨道的半长轴分别为a 1、 a 2,根据开普勒第三定律有22 3 2 2131T a T a =, 则232 113222 12 5.24a T a T ==≈。 可见,木星绕太阳运动轨道的半长轴约为地球绕太阳运动轨道半长轴的5.24倍。 【例2】天文学家观测到哈雷彗星绕太阳运转的周期是76年,彗星离太阳最近的距离是 8.9×1010m ,但它离太阳最远的距离不能测出。试根据开普勒定律计算这个最远距离。(太阳 a F F 太阳 地球

(完整版)《行星的运动》教学设计

第六章万有引力与航天 第一节行星的运动 陕西省洛南中学高一物理马英锋 教学目标: 知识与技能: 1、了解地心说和日心说的基本观点和代表人物; 2、理解开普勒行星运动三大定律的基本内容; 3、学会利用开普勒行星运动定律解决相关物理问题。 过程与方法: 1、通过托勒密、哥白尼、第谷、开普勒对行星运动规律的不同认识,了解人类对行星运动规律的不断深入的理解和研究。 2、通过对学生自主探究和合作讨论理解行星运动的基本规律和高中物理处理行星运动的模型。 情感态度与价值观: 1、体会科学家探索天体运动的过程,培养学生实事求是的科学态度。 2、由第谷和开普勒的探索和分析过程,建立科学严谨的实验态度和科学有效的实验方法。 教学重点: 开普勒行星运动三大定律。 教学难点: 对开普勒行星运动定律的理解和应用。 新课引入: 一、人类对行星运动规律的认识 多媒体展示图片:展示漫天繁星的天空图片,将学生引入到行星运动规律的认识当中。 学生自主阅读教材第33页,回答相关问题,了解地心说和日心说的基本理论、其代表人物以及局限性。 1.托勒密所代表的观点是什么?他的观点的局限性体现在哪? “地心说”和“日心说”都认为天体的运动是最完美的、最和谐的匀速圆周运动。然而开普勒对第谷的数据进行处理和分析,对“地心说”和“日心说”提出了质疑,并且发现了新的规律,这就是开普勒行星运动的三大定律。

2005 3/21 6/21 9/23 12/21 2006 3/21 6/21 9/23 12/21 周运动,经过分析地球绕着太阳的轨道是椭圆轨道。 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 利用flash 动画展示太阳系中八大行星的运动轨道,启发学生思考图片隐 含的信息。 提示:不同的行星绕太阳的椭圆轨道是不同的。 2、开普勒对第谷的大量的观察数据分析得到了开普勒第二定律。 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 利用圆周运动线速度的定义来比较近日点的速度和远日点的速度。 提示:近日点的速度大于远日点的速度。 3、给出四种天体运动轨道的半长轴和周期,计算半长轴的立方与周期的平方的比值。然后根据结果分析得出自己的结论。 天体 半长轴610km 周期(天) 32()m k s 水星 57.91 87.97 183.3610? 金星 108.2 225 183.3610? 月球 0.3844 27.3 131.0210? 同步卫星 0.0424 1 131.0210? 周期的二次方的比值都相等。 提示:这个比值的大小只和中心天体的质量有关。 三、行星运动的处理方法: 学生仔细观察教材P33页的图片,用直尺测量一下海王星和天王星在轨道 天体 右点距离(cm ) 右点距离(cm ) 右点距离(cm ) 右点距离(cm ) 海王星 2.50 2.50 2.50 2.53 天王星 1.70 1.60 1.50 1.55 近圆周。因此,我们在高中物理中可以近似的用圆周轨道来描述行星运动的规律。我们可以将开普勒三大定律改写一下。

开普勒三定律

开普勒三定律、万有引力定律 1. (2017·湖南衡阳五校联考)在力学理论建立的过程中,有许多伟大的科学家做出了贡献。关于科学家和他们的贡献,下列说法中不正确的是( ) A .伽利略首先将实验事实和逻辑推理(包括数学推演)和谐地结合起来 B .笛卡儿对牛顿第一定律的建立做出了贡献 C .开普勒通过研究行星观测记录,发现了行星运动三大定律 D .牛顿总结出了万有引力定律并用实验测出了引力常量 2. (2013·江苏高考)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心 B .火星和木星绕太阳运行速度的大小始终相等 C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 3. 某行星沿椭圆轨道运行,远日点离太阳的距离为a ,近日点离太阳的距离为b ,过远日点时行星的速率为v a ,则过近日点时行星的速率为( ) A .v b =b a v a B .v b = a b v a C .v b =a b v a D .v b = b a v a 4. 地球在绕太阳转动的同时,本身绕地轴在自转,形成了春、夏、秋、冬四个季节,则下面说法正确的是( ) A .春分时地球公转速率最小 B .夏至时地球公转速率最小 C .秋分时地球公转速率最小 D .冬至时地球公转速率最小 5. (2010新课标卷)太阳系中的8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图像.图中坐标系的横轴是lg(T/T 0),纵轴是lg(R/R 0);这里T 和R 分别是行星绕太阳运行的周期和相应的圆轨道半径,T 0和R 0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是( ) 6. 若将八大行星绕太阳运行的轨迹粗略地认为是圆,各星球半径和轨道半径如下表所示: A .80年 B .120年 C .165年 D .200年

开普勒行星运动定律[整理版]

开普勒行星运动定律[整理版] 开普勒行星运动定律 332323RRTRTR0 根据开普勒周期定律:,,k~则,~两式取对数~得:lg,lg~222323TTTRTR00000 TR整理得2lg,3lg~选项B正确( TR00 答案 B 【知识存盘】椭圆行星椭圆焦点 相等的时间相等的面积 行星半长轴相等无关 万有引力定律及其应用 ?(考纲要求) 【思维驱动】 mm12解析万有引力公式F,G~虽然是牛顿由天体的运动规律得出的~但牛2r 顿又将它推广到了宇宙中的任何物体~适用于计算任何两个质点间的引力(当两个物体的距离趋近于0时~两个物体就不能视为质点了~万有引力公式不再适用(两物体间的万有引力也符合牛顿第三定律(公式中引力常量G的值~是卡文迪许在实验室里实验测定的~而不是人为规定的(故正确答案为C. 答案 C 成正比成反比 G 两球心间 第一宇宙速度 ?(考纲要求) 解析由于对第一宇宙速度与环绕速度两个概念识记不准~造成误解~其实第一宇宙速度是指最大的环绕速度( 答案 B 第二宇宙速度和第三宇宙速度 ? (考纲要求)

【思维驱动】 Mmv2GM解析 b是贴近地球表面的圆,沿此轨迹运动的物体满足G,m,解得 v, ,R2RR v2或满足mg,m,解得v,gR,以上得到的两个速度均为第一宇宙速度,发射速度小于第R 一宇宙速度则不能成为人造卫星,如a,故A、B正确;发射速度大于第一宇宙速度而小于第二宇宙速度,卫星的轨道为椭圆,如c,故C错误;发射速度大于第二宇宙速度,轨迹将不闭合,发射速度大于第三宇宙速度,轨迹也不闭合,故d轨迹不能确定其发射速度是否大于第三宇宙速度,D错误( 答案 AB 考点一万有引力定律的应用 解析设地球的密度为ρ,地球的质量为M,根据万有引力定律可知,地球表面的重力加速 GM4度g,.地球质量可表示为M,πR3ρ.因质量分布均匀的球壳对球壳内物体的引力为R23 3R,d4,,零,所以矿井下以(R,d)为半径的地球的质量为M′,π(R,d)3ρ,解得M′,M,,,3R GM′则矿井底部处的重力加速度g′,,则矿井底部处的重力加速度和地球表面的重力(R,d)2 g′d加速度之比为,1,,选项A正确,选项B、C、D错误( gR 答案 A 22πm月m,,解析 LRO运行时的向心加速度为a,ω2r,(R,h),B正确;根据G,,,T(R,h)2

开普勒三定律与万有引力定律

第四讲 开普勒三定律与万有引力定律 【知识梳理】 一、开普勒行星运动三定律 1. 开普勒第一定律: 2. 开普勒第二定律: 3. 开普勒第三定律: 二、万有引力定律 1. 万有引力定律内容: 2. 万有引力定律表达式: 3. 万有引力常量: ⑴ 开普勒第一定律中不同行星绕太阳运行时的椭圆轨道是不同的。 ⑵ 开普勒第二定律中行星在近日点的速率大于在远日点的速率,从近日点向远日点运 动时速率变小,从远日点向近日点运动时速率变大。 ⑶ 开普勒第三定律的表达式k T r =23 中,k 是与太阳有关而与行星无关的常量,如果 认为行星的轨道是圆的,式中半长轴r 代表圆的半径。 ⑷开普勒三定律不仅适用于行星,也适用于卫星。适用于卫星时,23k T r =,常量k ’ 是 由行星决定的另一常量,与卫星无关。 【例题1】太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是多少年? 【变式训练1】、已知地球半径约为R=6.4?106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。

图4-1 (1)地球对物体的吸引力就是万有引力,重力只是万有引力的一个分力,万有引力的另一个分力是物体随地球自转所需的向心力。如图4-1所示。 (2)物体在地球上不同的纬度处随地球自转所需的向心力的大小不同,重力大小也不同: 两极处:物体所受重力最大,大小等于万有引力,即2R Mm G mg =。 赤道上:物体所受重力最小,2 2 自ωmR R Mm G mg -= 自赤道向两极,同一物体的重力逐渐增大,即g 逐渐增大。 (3)一般情况下,由于地球自转的角速度不大,可以不考虑地球的自转影响,近似的认为 2R Mm G mg = 【例题2】已知火星的半径为地球半径的一半,火星表面的重力加速度是地球表面重力加速度的4/9倍,则火星的质量约为地球质量的多少倍? 【变式训练2】经测定,太阳光到达地球需要经过500s 的时间,已知地球的半径为6.4×106 m ,试估算太阳质量与地球质量之比。(保留一位有效数字) 【知能训练】 A 基础达标 1.一艘原来在围绕地球的圆周轨道上运行的飞船,若加速后能够与绕地球运动的另一个圆周轨道上的空间站对接,则飞船一定是:( ) A .从较高轨道上加速 B .从较低轨道上加速 C .从同一轨道上加速 D .从任意轨道上加速 2.2000年10月15日,我国利用“神舟五号”飞船将宇航员杨利伟送入太空,中国成为继俄、美之后第三个掌握载人航天技术的国家.设杨利伟测出自己绕地球球心做匀速圆周运动的周期为T ,离地面的高度为H ,地球半径为R 。则根据T 、H 、R 和万有引力恒量G ,杨利伟不能计算出下面的哪一项:( ) A .地球的质量 B .地球的平均密度 C .飞船所需的向心力 D .飞船线速度的大小

2019-3-15 高中 物理 开普勒行星运动定律 计算题

2019-3-15 高中 物理 开普勒行星运动定律 计算题 (考试总分:100 分 考试时间: 120 分钟) 一、 计算题 (本题共计 10 小题,每题 10 分,共计100分) 1、“神舟六号”载人飞船于2005年10月12日上午9点整在酒泉航天发射场发射升空由长征运载火箭将飞船送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为,飞船飞行五圈后进行变轨,进入预定圆轨道,如图所示在预定圆轨道上飞行N 圈所用时间为t ,于10月17日凌晨在内蒙古草原成功返回已知地球表面重力加速度为g ,地球半径为求: (1)飞船在A 点的加速度大小. (2)远地点B 距地面的高度. (3)沿着椭圆轨道从A 到B 的时间. 2、土星直径为119 300 km ,是太阳系统中第二大行星,自转周期只需10 h 39 min ,公转周期为29.4年,距离太阳1.432×109 km.土星最引人注目的是绕着其赤道的巨大光环.在地球上人们只需要一架小型望远镜就能清楚地看到光环,环的外沿直径约为274 000 km.请由上面提供的信息,估算地球距太阳有多远.(保留3位有效数字 ) 3、两颗行星的质量分别为m 1和m 2,它们绕太阳运动的轨道半径为R 1和R 2,若122m m =, 124R R =,则它们的周期之比为多少? 4、开普勒第三定律指出:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。该定律对一切具有中心天体的引力系统都成立。如图,嫦娥三号探月卫星在半径为r 的圆形轨道Ⅰ上绕月球运行,周期为T 。月球的半径为R ,引力常量为G 。某时刻嫦娥三号卫星在A 点变轨进入椭圆轨道Ⅱ,在月球表面的B 点着陆。A 、O 、B 三点在一条直线上。求: (1)月球的密度; (2)在轨道Ⅱ上运行的时间。 5、我国的航天事业取得了巨大成就,发射了不同用途的人造地球卫星,它们在不同的轨道上绕地球运行。若一颗质量为m 的卫星绕地球做匀速圆周运动,卫星到地面的距离为h ,已知引力常量G 、地球质量M 和地球半径R 。 (1)求地球对卫星万有引力的大小F ; (2)根据开普勒第三定律可知,不同的卫星绕地球做匀速圆周运动时,它们的轨道半径r 的立方和运动周期T 的平方之比()等于一个常量,求此常量的大小. 6、关于行星的运动,开普勒第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a 的三次方与它的公转周期T 的二次方成正比,即 ,k 是一个对所有行星都相同的常量。 (1)将行星绕太阳的运动按匀速圆周运动处理,请推导太阳系中该常量k 的表达式。(已知引力常量为G ,太阳的质量为M ) (2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为r 1=3.8×108m ,月球绕地球运动的周期T 1=2.4×106S 。①推导地球质量M 地的表达式。②估算其数值。(G=6.67× N ·m 2/kg 2,结果保留一位.. 有效数字) 7、2007年10月24日,中国首颗探月卫星“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道。“嫦娥一号”经过变轨和制动成功进入环月轨道。如图所示,阴影部分表示月球,设想飞船在轨道半径为4R 的圆形轨道Ⅰ上作匀速圆周运动,到达A 点时经过短暂的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上贴近月球表面绕月球作匀速 圆周运动。已知月球半径为R ,月球表面的重力加速度为g 0。不考虑其它星体对飞船的影 响,求: (1)飞船在轨道Ⅰ的周期; (2)飞船从轨道Ⅱ上远月点A 运动至近月点B 所用的时间; (3)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则再经过多长时间,他们会相距最远? 8、图示为宇宙中一恒星系的示意图,A 为该星系的一颗行星,它绕中央恒星O 的运行轨道近似为圆.已知引力常量为G ,天文学家观测得到A 行星的运行轨道半径为R 0,周期为T 0.

开普勒三定律

第六章万有引力与航天 第一讲:行星的运动 相关知识连接:椭圆的几何特点,焦点,中心,轨迹 一、两种学说 1、地心说:地球是静止不动的,地球是宇宙的中心 代表人物:托勒密(古希腊) 2、日心说:太阳是静止不动的,地球和其他行星都绕太阳运动 代表人物:哥白尼 考题一:16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出“日心说”的如下四个基本论点,这四个基本论点中目前看来存在缺陷的是() A 宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动 B 地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运动的同时还跟地球一起绕太阳运动 C 天穹不转动,地球每天自西向东转一周,造成天体东升西落的现象 D 与日地距离相比,恒星离地球都十分遥远,比日地距离大得多 考题二:下列说法中正确的是() A 地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动 B 太阳是静止不动的,地球和其他行星绕太阳运动 C 地球是绕太阳运动的一颗行星 D 日心说和地心说都是错误的 二、行星的运动规律 1、开普勒第一定律(又叫椭圆定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭 圆的一个焦点上 (1)不同行星绕太阳运行时的轨道是不同的 (2)多数行星的轨道都十分接近圆 考题三:冥王星原来是在九大行星之列的,可在2006年8月,国际天文学联合会大会正式通过决议,将冥王星降级,即将它从九大行星队伍中开除,取而代之以“矮行星”的称呼来安慰它,这已经足以令冥王星十分的“郁闷”,可美国科学家的最新发现却又使冥王星很“受伤”!当时人们认为冥王星应该是矮行星中的“老大”,但加利福尼亚理工学院天文学家迈克尔.布朗等人在研究报告中说,另一颗矮行星厄里斯的质量大约比冥王星大27%,是目前已知已知最大的矮行星,下列说法中正确的是() A 八大行星是围绕太阳运动的,而且都在同一椭圆轨道上 B 冥王星被降级以后其轨道也发生了相应的变化 C 矮行星不是绕太阳而是绕其他行星运动的 D 冥王星与厄里斯有着一个共同的轨道焦点 考题四:下列说法中正确的是() A 太阳系中的八大行星有一个共同的轨道焦点 B 行星的运动方向总是沿着轨道的切线方向 C 行星的运动方向总是与它和太阳的连线垂直 D 日心说的说法是正确的 难点突破:1、行星的轨道都是椭圆,所有椭圆有一个共同的焦点 2、不同的行星位于不同的椭圆轨道上,而不是位于同一轨道上 3、不同行星的椭圆轨道一般不在同一平面 2、开普勒第二定律(面积定律)对任意一个行星来说,它与太阳的连线在相等的时间内

万有引力定律的发现过程

万有引力定律的发现过程 自哥白尼建立日心说到开普勒提出行星运动三定律,行星运动的基本规律已被发现,给进一步从动力学方面考察行星的运动提供了条件.到17世纪后半期,已有一些学者,其中包括著名物理学家胡克。认为天体之间存在着相互作用的引力,行星的运动是由太阳对它们的引力引起的。胡克等人甚至推测到太阳对行星的引力的大小跟行星与太阳之间的距离的平方成反比、但是他们都不能证明行星所做的椭圆运动是平方反比律的.对引力大小的数量级也一无所知。1684年,这个问题在英国皇家学会争论颇为激烈,天文学家哈雷和数学家雷恩都不能解决这个疑难,胡克虽然声称他已得解,却拿不出一个公式.同年8月,哈雷带着这个问题来请教牛顿,才知道牛倾已经解决了这个问题。在哈雷的敦促下,牛顿于1684年12月写出了了《论运动》一文,阐明了他在地面物体动力学和天体力学方面获得的成就。 1687年,他又发表了著名的《自然哲学的数学原理》,全面地总结了他的研究成果,他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证.这些论证对于在物理理论中已经确立的定律,新的假说、实验观测和理论推导之间的相互作用,提供了一个极好的范例.研究牛顿留给人们的文献可以看到,他发现万有引力定律的思路大体如下:(1)牛顿首先证明了,一个运动物体,如果受到一个指向固定中心的净力作用,不论这个力的性质和大小如何,它的运动一定服从开普勒第二定律(即等面积定律);反过来,行星运动都服从开普勒第二定律,它们就都受到一个向心力时作用. (2)牛顿又证明,一个沿椭圆轨道运动的物体,如果受到指向椭圆焦点的向心力,这个力一定跟物体与焦点的距离的平方成反比. (3)牛顿认为,行星所受的向心力来源于太阳的引力;卫星所受的向心力来源于行星的引力而地球吸引月球的引力,跟地球吸引树上的苹果和任何一个抛出的物体时显示出来的重力,是同一种力.这就是说,天体的运动跟地面上物体的运动,有着共同的规律,地球重力,也是随着与地心距离的增大按平方反比律而减弱的,牛顿通过计算证明,由于月球与地球的距离是地球半径的60倍,月球轨道运动的向心加速度应该等于地面上重力加速度的。 这就是著名的月地检验,它跟实际测量的结果符合得相当好. 1/ 2

开普勒三定律的发现过程

生活在地球上地人类,不能感觉地球地运动,却能直接看到日月星辰绕地球旋转,因此,很容易误认为地球是静止不动地居于宇宙地中心,于是地心说应运而生.公元前世纪,古希腊哲学家亚里士多德()提出整个宇宙是一个多层水晶球,地球位于水晶球地中心,恒星、行星、太阳和月亮都在各自地轨道上围绕地球旋转.这是历史上最早地地心说,后经过古希腊天文学家托勒密(公元—年)在二世纪中叶加以系统化之后,曾风靡世界达一千五百年之久.这一现象主要是因为这种说法与当时教会地教义吻合,得到了教会地大力支持. 托勒密首先将希腊和罗马地天文学做总结,并写了一本有名地《大综合论》,这一本书可说是古今天文之大成,书中不仅说明了所有天文学地知识,也大大地宣扬了著名地《天动说》,这个理论认为,所有地天体都在〝本轮环〞上绕著地球公转,一圈一圈往外,有时为了修正星体地运动,必须在本轮环上再加本轮环,这样一来天体地运动就会变得很复杂,对于精度不高地古代,这样做当然有其好处,只不过到了后来,天文观测仪器地改进终于使《天动说》寿终正寝.但是,由于中世纪教会地影响《大综合论》成为中世纪地天文典,而天动说也藉此支配中世纪地欧洲达一千多年之久.文档来自于网络搜索 中世纪地欧洲由于教会地压迫,自然科学地进展不大,因此这个时期地天文学重心便集中在阿拉伯.中世纪天文学最主要地成就是岁差地测定和历法地修正,在当时甚至已经有光学地研究出现.这些阿拉伯天文学地成就,为波兰伟大地天文学家哥白尼地新体系奠定了基础.而哥白尼地名著《天体运行论》地出版正揭示了科学革命地到来. 文档来自于网络搜索 哥白尼地天体运行论一书出版后日心学说就像涟漪一样地向外传布.哥白尼之后,意大利学者布鲁诺()进一步认为,太阳只是无数恒星中地一颗,仅是太阳系地中心,而不是宇宙地中心,这一认识使哥白尼日心说得到了进一步发展.由于日心说危及到当时罗马教会地思想统治,反动教会对布鲁诺恨之入骨,用种种恐怖手段逼迫布鲁诺放弃日心说,布鲁诺宁死不屈,最后被活活烧死.文档来自于网络搜索 年,意大利著名物理学家、天文学家伽利略()用望远镜巡视星空,获得了一系列地重要发现——银河是由无数单个地恒星组成地,木星有颗卫星,金星有圆缺变化,这些观测事实有力地支持了日心说.教会非常恐慌,将伽利略传到罗马地宗教法庭受审,并宣判他有罪,直到多年后地年,这一冤案才得以昭雪.文档来自于网络搜索 尽管罗马教廷对宣传、支持日心说地科学家加以重重迫害,然而经过开普勒()、伽利略和牛顿()等人地工作,哥白尼地学说不断获得胜利和发展.后来地许多发现使地球绕太阳转动地学说得到了举世公认地证明.特别是年,人们根据日心说理论地计算而准确地发现了海王星,哥白尼地日心说终于得到了完全地证实.加上年天王星地发现,年冥王星地发现,日心说在对地心说地斗争中最终取得了彻底地胜利.文档来自于网络搜索 如果我们把今天源源不绝地科学成果比喻成自来水,那么哥白尼就可以说是一位装设水管地工人,而把这个水龙头扭开地人则是牛顿,但是其中有一些非常重要地人,他们告诉牛顿水龙头在哪里.这些人把水龙头地位置告诉牛顿,牛顿把水龙头扭开,于是,科学地成果便一直不断地产生,这个水龙头地流水不虞匮乏,因为它直接与真理地海洋相连.文档来自于网络搜索 在哥白尼之后,出现了一位天文学史上举足轻重地天文观察家,也就是第谷.他在其一生中以当代最最精确地精度观测了天空中地行星,其精确程度可说是达到了肉眼地极限.他对天文学最重要地贡献就是他穷毕生精力所累积地观测资料,这些资料在他死后由他地学生开普勒继承,而开普勒也因为第谷地资料而发现了行星运动定律.其次,第谷是一个地心说地拥护者,为了使地心说不至于完全溃败,他也提出了一种介于日心说和地心说之间地行星运动体系,可惜地是他没有成功,因为日心说毕竟“较符合”实际地情况.在他一生观测生涯当中,他也记录、发现了以前所未见地天象,如历史上著名地〝第谷之星〞就是一颗爆发地超新星.这一个超新星地记录使得人们意识到,天空中地恒星并不是一成不变地,因此人类对于天堂

相关主题
文本预览
相关文档 最新文档