当前位置:文档之家› 第4章+晶体结构和空间点阵

第4章+晶体结构和空间点阵

1.3 晶体学基础(空间点阵)

1.3 晶体学基础(空间点阵) 金属及非金属材料在固态通常都是晶体,它们的许多特性都与其结晶状态有关。因此,作为材料科学工作者,首先要熟悉晶体的特征及其描述方法。本节将扼要地介绍晶体学的基础知识,包括以下几方面内容: (1)空间点阵及其描述、晶系和点阵类型。 (2)晶体取向的解析描述:晶面和晶向指数。 (3)晶体中原子堆垛的几何学,堆垛次序,四面体和八面体间隙。 熟练地掌握以上内容,关键是要多练习、多应用。以上内容不仅是学习材料课程的基础,也是学习其他许多专业课程(如X射线衍射、电子衍射、固体物理等)的基础。因此,要求学生对这些内容,能掌握得非常透彻、非常熟练。 一、晶体与非晶体 1 晶体的定义 物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 图1 金属及其他许多材料的长程有序排列 2 非晶体 非晶体在整体上是无序的,但原子间也靠化学键结合在一起,所以在有限的小范围内观察还有一定规律,可将非晶体的这种结构称为近程有序。 图 2 水蒸气的短程有序玻璃的短程有序 3 晶体的特征 (1)周期性 固态物质按其原子或分子的聚集状态可分为两大类,一类是晶体,另一类是非晶体。晶体的一个基本特征就是其中的原子或原子集团都是有规律地排列的,这个规律就是周期性,即不论沿晶体的哪个方向看去,总是相隔一定的距离就出现相同的原子或原子集团。这个距离也称为周期。显然,沿不同的方向有不同的周期。非晶体不具有上述特征。在非晶体中原子(或分子、离子)无规则地堆积在一起。液体和气体都是非晶体。在液体中,原子也处于相对紧密聚集的状态,但不存在长程的周期性排列。对于金属液体的结构,我们在学习后面的内容时将会有进一步的了解。 固态的非晶体实际上是一种过冷状态的液体,只是它的物理性质不同于通常的液体。玻璃是一个典型的固态非晶体,所以,往往将非晶态的固体称为玻璃态。 (2)有固定的凝固点和熔点 晶体还有一些其他的特点。例如,从液体到固态晶体的转变是突变的,有一定的凝固点

高中化学选修三_晶体结构与性质

晶体结构与性质 一、晶体的常识 1.晶体与非晶体 得到晶体的途径:熔融态物质凝固;凝华;溶质从溶液中析出 特性:①自范性;②各向异性(强度、导热性、光学性质等) ③固定的熔点;④能使X-射线产生衍射(区分晶体和非晶体最可靠的科学方法) 2.晶胞--描述晶体结构的基本单元.即晶体中无限重复的部分 一个晶胞平均占有的原子数=1 8×晶胞顶角上的原子数+1 4×晶胞棱上的原子+1 2×晶胞面上的粒子数+1×晶胞体心内的原子数 思考:下图依次是金属钠(Na)、金属锌(Zn)、碘(I 2)、金刚石(C)晶胞的示意图.它们分别平均含几个原子? eg :1.晶体具有各向异性。如蓝晶(Al 2O 3·SiO 2)在不同方向上的硬度不同;又如石墨与层垂直方向上的电导率和与层平行方向上的电导率之比为1:1000。晶体的各向异性主要表现在( ) ①硬度 ②导热性 ③导电性 ④光学性质 A.①③ B.②④ C.①②③ D.①②③④ 2.下列关于晶体与非晶体的说法正确的是( ) A.晶体一定比非晶体的熔点高 B.晶体一定是无色透明的固体 C.非晶体无自范性而且排列无序 D.固体SiO 2一定是晶体 3.下图是CO 2分子晶体的晶胞结构示意图.其中有多少个原子?

二、分子晶体与原子晶体 1.分子晶体--分子间以分子间作用力(范德华力、氢键)相结合的晶体 注意:a.构成分子晶体的粒子是分子 b.分子晶体中.分子内的原子间以共价键结合.相邻分子间以分子间作用力结合 ①物理性质 a.较低的熔、沸点 b.较小的硬度 c.一般都是绝缘体.熔融状态也不导电 d.“相似相溶原理”:非极性分子一般能溶于非极性溶剂.极性分子一般能溶于极性溶剂 ②典型的分子晶体 a.非金属氢化物:H 2O、H 2 S、NH 3 、CH 4 、HX等 b.酸:H 2SO 4 、HNO 3 、H 3 PO 4 等 c.部分非金属单质::X 2、O 2 、H 2 、S 8 、P 4 、C 60 d.部分非金属氧化物:CO 2、SO 2 、NO 2 、N 2 O 4 、P 4 O 6 、P 4 O 10 等 f.大多数有机物:乙醇.冰醋酸.蔗糖等 ③结构特征 a.只有范德华力--分子密堆积(每个分子周围有12个紧邻的分子) CO 2 晶体结构图 b.有分子间氢键--分子的非密堆积以冰的结构为例.可说明氢键具有方向性 ④笼状化合物--天然气水合物

无机材料科学基础___第二章晶体结构

第 2 章结晶结构 一、名词解释 1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体 2.空间点阵与晶胞: 空间点阵是几何点在三维空间内周期性的重复排列 晶胞:反应晶体周期性和对称性的最小单元 3.配位数与配位多面体: 化合物中中心原子周围的配位原子个数 成配位关系的原子或离子连线所构成的几何多面体 4.离子极化: 在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶: 同一物质在不同的热力学条件下具有不同的晶体结构 化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构 6.正尖晶石与反尖晶石: 正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。 反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。 二、填空与选择 1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。 2.空间点阵是由 C 在空间作有规律的重复排列。( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。 4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为 6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 , 八面体空隙数为 12 ,四面体空隙数为 6 。 5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。

高中化学选修三选修3物质结构与性质第三章第3章常见晶体结构晶胞分析归纳整理总结

1 1. 金刚石晶体结构(硅单质相同) 1mol 金刚石中含有 mol C —C 键, 最小环是 元环,(是、否) 共平面。 每个C-C 键被___个六元环共有,每个C 被_____ 个六元环共有。每个六元环实际拥有的碳原子数为 ______个。C-C 键夹角:_______。C 原子的杂化方式是______ SiO 2晶体中,每个Si 原子与 个O 原子以共价键相结合, 每个O 原子与 个Si 原子以共价键相结合,晶体中Si 原子与 O 原子个数比为 。 晶体中Si 原子与Si —O 键数目之比 为 。最小环由 个原子构成,即有 个O , 个Si ,含有 个Si-O 键,每个Si 原子被 个十二元环,每 个O 被 个十二元环共有,每个Si-O 键被__个十二元环共 有;所以每个十二元环实际拥有的Si 原子数为_____个,O 原子数为____个,Si-O 键为____个。硅原子的杂化方式是______,氧原子的杂化方式是_________. 2 . 在NaCl 晶体中,与每个Na +等距离且最近的Cl -有 个, 这些Cl -围成的几何构型是 ;与每个Na +等距离且最近的 Na +有 个。由均摊法可知该晶胞中实际拥有的Na +数为____个 Cl -数为______个,则次晶胞中含有_______个NaCl 结构单元。 3. CaF 2型晶胞中,含:___个Ca 2+和____个F - Ca 2+的配位数: F -的配位数: Ca 2+周围有______个距离最近且相等的Ca 2+ F - 周围有_______个距离最近且相等的F ——。

2 4.如图为干冰晶胞(面心立方堆积),CO 2分子在晶胞 中的位置为 ;每个晶胞含二氧化碳分子的 个数为 ;与每个二氧化碳分子等距离且最 近的二氧化碳分子有 个。 5.如图为石墨晶体结构示意图, 每层内C 原子以 键与周围的 个C 原子结合,层间作用力为 ; 层内最小环有 _____个C 原子组成;每个C 原子被 个最小环所共用;每个 最小环含有 个C 原子, 个C —C 键;所以C 原子数和C-C 键数之比是_________。C 原子的杂化方式 是__________. 6. 冰晶体结构示意如图 ,冰晶体中位于中心的一个水分子 周围有______个位于四面体顶角方向的水分子,每个水分子通过 ______条氢键与四面体顶点上的水分子相连。每个氢键被_____个 水分子共有,所以平均每个水分子有______条氢键。 7. 金属的简单立方堆积是_________层通过_________对 _________堆积方式形成的,晶胞如图所示:每个金属阳离子的 配位数是_____,代表物质是________________________。 8. 金属的体心立方堆积是__________层通过 ________对________堆积方式形成的,晶胞如图: 每个阳离子的配位数是__________.代表物质是 _____________________ 。

第二章材料中的晶体结构

第二章材料中的晶体结构 基本要求:理解离子晶体结构、共价晶体结构。掌握金属的晶体结构和金属的相结构,熟练掌握晶体的空间点阵和晶向指数和晶面指数表达方法。 重点:空间点阵及有关概念,晶向、晶面指数的标定,典型金属的晶体结构。难点:六方晶系布拉菲指数标定,原子的堆垛方式。 §2.1 晶体与非晶体 1.晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 2. 非晶体:非晶体在整体上是无序的;近程有序。 3. 晶体的特征 周期性 有固定的凝固点和熔点 各向异性 4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”) 5.晶体与非晶体的相互转化 思考题: 常见的金属基本上都是晶体,但为什么不显示各向同性? §2.2 晶体学基础 §2.2.1 空间点阵和晶胞 1.基本概念 阵点、空间点阵 晶格 晶胞:能保持点阵特征的最基本单元

2.晶胞的选取原则: (1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。 3. 描述晶胞的六参数 §2.2.2 晶系和布拉菲点阵 1.晶系 2. 十四种布拉菲点阵 晶体结构和空间点阵的区别 §2.2.3 晶面指数和晶向指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。 1.晶向指数的标定 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边

分子结构与晶体结构完美版

第六章分子结构与晶体结构 教学内容: 1.掌握杂化轨道理论、 2.掌握两种类型的化学键(离子键、共价键)。 3.了解现代价键理论和分子轨道理论的初步知识,讨论分子间力和氢键对物质性质的影响。 教学时数:6学时 分子结构包括: 1.分子的化学组成。 2.分子的构型:即分子中原子的空间排布,键长,键角和几何形状等。 3.分子中原子间的化学键。 化学上把分子或晶体中相邻原子(或离子)之间强烈的相互吸引作用称为化学键。化学键可 分为:离子键、共价键、金属键。 第一节共价键理论 1916年,路易斯提出共价键理论。 靠共用电子对,形成化学键,得到稳定电子层结构。 定义:原子间借用共用电子对结合的化学键叫做共价键。 对共价键的形成的认识,发展提出了现代价键理论和分子轨道理论。 1.1共价键的形成 1.1.1 氢分子共价键的形成和本质(应用量子力学) 当两个氢原子(各有一个自旋方向相反的电子)相互靠近,到一定距离时,会发生相互作用。每个H原子核不仅吸引自己本身的1s电子还吸引另一个H原子的1s电子,平衡之前,引力>排斥力,到平衡距离d,能量最低:形成稳定的共价键。 H原子的玻尔半径:53pm,说明H2分子中两个H原子的1S轨道必然发生重叠,核间形成一个 电子出现的几率密度较大的区域。这样,增强了核间电子云对两核的吸引,削弱了两核间斥力,体系能量降低,更稳定。(核间电子在核间同时受两个核的吸引比单独时受核的吸引要小,即位能低,∴能量低)。

1.1.2 价键理论要点 ①要有自旋相反的未配对的电子 H↑+ H↓ -→ H↑↓H 表示:H:H或H-H ②电子配对后不能再配对即一个原子有几个未成对电子,只能和同数目的自旋方向相反的未成对电子成键。如:N:2s22p3,N≡N或NH3 这就是共价键的饱和性。 ③原子轨道的最大程度重叠 (重叠得越多,形成的共价键越牢固) 1.1.3 共价键的类型 ①σ键和π键(根据原子轨道重叠方式不同而分类) s-s :σ键,如:H-H s-p :σ键,如:H-Cl p-p :σ键,如:Cl-Cl π键, 单键:σ键 双键:一个σ键,一个π键 叁键:一个σ键,两个π键 例:N≡N σ键的重叠程度比π键大,∴π键不如σ键牢固。 σ键π键 原子轨道重叠方式头碰头肩并肩 能单独存在不能单独存在 沿轴转180O符号不变符号变 牢固程度牢固差 含共价双键和叁键的化合物的重键容易打开,参与反应。

空间点阵型式

空间点阵型式:14种布拉维格子-兰州大学结构化学 在七大晶系基础上, 如果进一步考虑到简单格子和带心格子, 就会产生14种空间点阵型式, 也叫做14种布拉维格子. 不过, 格子是否带心并不能从宏观上发现, 所以, 空间点阵型式属于微观对称性的范畴. 为什么要考虑带心格子呢? 原因是: 有些点阵中的格子, 如果取成某种复格子就能充分表现出它固有的较高对称性,但若取成素格子, 某些对称性就可能被掩盖,表现为较低的对称性. 我们宁愿观察一个高对称性的复格子, 也不愿观察一个低对称性的素格子. 所以, 选取正当格子时, 首先照顾高对称性, 其次才考虑点阵点尽可能少. 前面以NaCl型晶体的格子为例讲过, 若取素格子, 只能表现三方对称性(这是一种三方R,现已不用); 若取作立方面心复格子,就表现出了立方对称性. 当然, 这并不是说格子的选取方式能够改变点阵本身的对称性, 只是说, 点阵固有的较高对称性, 在素格子上被掩盖而不易表现出来. 图6-42 NaCl型晶体的立方面心复格子(正当格子)与素格子那么, 任何点阵都能通过取带心格子表现出更高的对称性吗? 否! 例如, 在三斜晶体的点阵中, 无论取多少点, 格子的对称性也仍是三斜. 我们当然不去徒劳无益地选择带心格子. 下面给出在七大晶系基础上进一步考虑简单和带心格子所产生的14种空间点阵型式, 即14种布拉维格子: 图6-43 14种空间点阵型式(布拉维格子)对于以上两种六方格子需要特别说明几点:(1)图中只有蓝色线条围成的部分才是六方格子,而灰白色部分只是为了便于观察其对称性才画出的,因为六方格子也必须是平行六面体而不能是六棱柱;(2)六方晶系的晶体按六方晶胞表达只能抽象出六方简单(hP)格子,而三方晶系的晶体按六方晶胞表达时则能抽象出六方简单(hP)和六方R

第二章 晶体结构

晶体结构分类方法

(B) 2.1 符号中的第一个大写字母表示结构的类型,后面的数字为第个大写字母表示结构的类型后面的数字为顺序号,不同的顺序号表示不同的结构,例如A1是铜型结 结构等。 构,B2是CsCl型结构等,C3是FeS 2

Pearson符号 它所属的布喇菲点阵类型(例如P、I、F、C等),第三个数 等) 字表示单胞中的原子数。 2.2 金属单质的晶体结构 在元素周期表中,共有70多种金属元素。

由于金属键不具有饱和性和方向性,使金属的晶体结构倾向配位数(

将用原子刚性球模型讨论每个单胞所含的原子数以及这些构中的间隙等。 2.2.1 面心立方结构 结构符号是A1,Pearson 符号是c F4。 原子坐标为0 0 0,0 1/2 1/2,1/2 0 1/2和1/2 1/2 0 每个晶胞含4个原子 最紧密排列面是{111},密排方向 是<110>。原子直径是a/2<110>的 长度,即 面心立方结构的晶胞体积为a 3, 晶胞内含4个原子,所以它的致密 度η为4 2a r =423443443 3 33? ??? ????×=×=ππηa r 每个原子有个最近邻原子,它的 配位数(CN )是12。 74 .062 ==πa a

面心立方结构的最密 排面是{111},面心立 方结构是以{111}最密 排面按一定的次序堆 垛起来的。 第一层{111}面上有两个 可堆放的位置:▲和▼位 可堆放的位置▲和▼位 置,在第二层只能放在一 种位置,在面上每个球和 下层3个球相切,也和上 层3个球相切。 第一层为A,第 二放在B 位置, 第三层放在C 位 置,第四层在 置第四层在 放回A位置。 {111}面 按…abcabc… 顺序排列,这 就形成面心立 方结构。

1 空间点阵与晶体结构的异同

1 空间点阵与晶体结构的异同 空间点阵晶体结构 人为的、抽象的几何图形客观的 具有具体的物质内容,其基本的单元是结构单元(原子或离子)组成空间点阵的结点是没有物质内容的几何点 结构单元与结点在空间排列的周期是一致的,或者说它们具有同样的T矢量; 抽象的空间点阵不能脱离具体的晶体结构而单独存在,所以它不是一个无物质基础的纯粹的几何图形。这种抽象能更深入地反映事物的本质与规律,因此是一个科学的抽象。 空间点阵只是一个几何图形,它不等于晶体内部具体的格子构造,是从实际晶体内部结构中抽象出来的无限的几何图形。虽然对于实际晶体来说,不论晶体多小,它们所占的空间总是有限的,但在微观上,可以将晶体想象成等同点在三维空间是无限排列的。 2 在同一行列中结点间距是相等的; 在平行的行列上结点间距是相等的; 不同的行列,其结点间距一般是不等的(某些方向的行列结点分布较密;另一些方向行列结点的分布较疏。) 3 面网密度:面网上单位面积内结点的数目面网间距:任意2个相邻面网的垂直距离相互平行的面网的面网密度和面网间距相等面网密度大的面网其面网间距也大 4 宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互之间的组合关系 (1)对称变换的集合——对称变换群 (2)对称要素的集合——对称要素群合称对称群 在宏观晶体中所存在的对称要素都必定通过晶体的中心,因此不论对称变换如何,晶体中至少有一个点是不变的,所以将对称型称为点群,该点称为点群中心 5 点阵几何元素的表示法 ☆坐标系的确定 任一点阵结点------------坐标原点单位平行六面体的三个互不平行的棱---坐标轴点阵常数a、b、c所代表的三个方向---x、y、z轴坐标单位:a、b、c ☆结点的位置表示法 以它们的坐标值来表示的。 6 晶向的表示法 晶向—空间点阵中由结点连成的结点线和平行于结点线的方向 晶向指数uvw—通过原点作一条直线与晶向平行,将这条直线上任一点的坐标化为没有公约数的整数。 晶向符号:[uvw] B点坐标:111 OB的晶向符号:[111] A点坐标:1 2/3 1 OA的晶向符号:[323] 负值表示为:[32-3] X-轴方向为[100] Y-轴方向为[010] Z-轴方向为[001] 7 晶面的表示法 点阵中的结点全部分列在一系列平行等距离的平面上,这样的平面——晶面 显然,点阵中的平面可以有无数组 对于一组平行的等距离的晶面,可用密勒(miller)指数表示 令这组平行晶面中的一个面通过原点,其相邻面与x、y、z轴截距分别为r、s、t 然后取倒数h=1/r,k=l/s,l=l/t

空间点阵

-空间点阵 空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。这14种空间点阵以后就被称为布拉 菲点阵。 空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如图1-8 所示。一般情况下单胞的选取有以 图1-8 空间点阵及晶胞的不同取法图1-9面心立方阵胞中的固体物理原胞

图1-10晶体学选取晶胞的原则 下两种选取方式: 1.固体物理选法 在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。如面心立方点阵的固体物理单胞并不反映面心立方的特征,如图1-9所示。 2.晶体学选法 由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则(如图1-10所示): ①要能充分反映整个空间点阵的周期性和对称性; ②在满足①的基础上,单胞要具有尽可能多的直角; ③在满足①、②的基础上,所选取单胞的体积要最小。 根据以上原则,所选出的14种布拉菲点阵的单胞(见图1-12)可以分为两大类。一类为简单单胞,即只在平行六面体的 8个顶点上有结点,而每个顶点处的结点又分属于 8个相邻单胞,故一个简单单胞只含有一个结点。另一类为复合单胞(或称复杂单胞),除在平行六面体顶点位置含有结点之外,尚在体心、面心、底心等位置上存在结点,整个单胞含有一个以上的结点。14种布拉菲点 阵中包括7个简单单胞,7个复合单胞。

第二章晶体结构

第二章 晶体结构 2.1 (1)证明:如图所示,六角层内最近邻原子间距为a ,而相邻两层间的最近邻原子间距为: ( )2 1 2 2 4 3 c a d +=, 当a d =时构成理想的密堆六角结构,此时有: ( )2 1 2 2 4 3 c a a +=, 由此解出,() 633.138 2 1==a c (2)解:(2)体心立方每个单胞包含2个基元,一个基元所占的体积为 23 c c a V = , 单位体积内的格点数为. 1 Vc 六角密堆积每个单胞包含6个基元,一个基元所占的体积为 3 2 1 222 23843436/323a a a c a c a a V s = ? ?? ???==???? ? ????= 因为密度不变,所以 s c V V 11=,即:3 3 2 22/a a c = nm a a c s 377.02 /6 1== nm a c s 615.0633.1== 2.2证明: 设简单六角布拉菲格子基矢如图示 :

∧ ∧∧ ∧ =+ = =z c a y a x a a x a a 321, 2 32 , 则其倒格子的三个基矢为 ()( )( ) ∧ ∧ ∧∧= == ?=???? ??-=?=z c b y a a a b y x a a a b ππ ππ ππ 223322233223 2133 211323 211 另知21,b b 的夹角为120度,且 a 34π= =,2313,b b b b ⊥⊥ 故简单六角布拉菲格子的倒格子仍为简单六角,倒格子的晶格常数分别为 a c 34, 2ππ,倒格 子相对于正格子绕c 轴旋转30度,(如图中标出321,,b b b 更清晰) 2.3 体心立方

分子结构与晶体结构

分子结构与晶体结构 ★双基知识 几个基概念 化学键:相邻的两个或多个原子间强烈的相互作用 共价键:原子间通过共用电子对所形成的相互作用 离子键:阴、阳离子通过静电作用所形成的化学键 极性键:由不同元素的原子所形成的共价键 非极性键:由相同元素的原子所形成的共价键 金属键:金属阳离子与自由电子之间较强烈的作用叫金属键。 氢键: 范德华力(分子间作用力) 极性分子非极性分子 离子晶体分子晶体 原子晶体金属晶体 2.常见几种晶体的结构分析(点、线、面、体) (1)氯化钠晶体(2)氯化铯晶体(3)二氧化碳晶体(4)白磷分子的结构 (5)Cn的结构(6)金刚石晶体(7)二氧化硅晶体(8)石墨晶体★巧思巧解 2.四种晶体的比较

晶体类型离子晶体原子晶体分子晶体金属晶体 存在粒子 粒子间作用 熔、沸点 硬度 溶解性 导电性 实例 3.晶体熔、沸点比较 (1)异类晶体:原子晶体(离子晶体)分不大于分子晶体 一样地,原子晶体>离子晶体>分子晶体 (2)同种类型晶体:构成晶体质点间的作用力大,则熔、沸点高,反之则小。 ①离子晶体:离子所带的电荷数越高,离子半径越小,离子键越强,则熔、沸点越高。 ②分子晶体:关于组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越大,则熔、沸点越高。 在同分异构体中,一样地,支链越多,熔、沸点越低。 ③原子晶体:原子半径越小,键长越短、键能越大,则熔、沸点越高 ④金属晶体:金属阳离子半径越小,离子所带的电荷越多,则金属键越强,金属熔、沸点越高 ★例题精析 [例1]:下列性质中,能够证明某化合物内一定存在离子键的是:()A.能够溶于水 B.具有较高的熔点 C.水溶液能导电 D.熔融状态能导电 [例2]:下列化合物中阴离子半径和阳离子半径之比最大的是: A.LiI B. NaBr C. KCl D. CsF [例3]:食盐晶体如右下图所示。在晶体中●表示Na+,○表示Cl-,已知食盐的密度为ρg/cm3,NaCl的摩尔质量为M g/mol,阿佛加得罗常数为N,则在食盐晶体是Na+离子和Cl-离子的间距大约是:

1 空间点阵与晶体结构的异同备课讲稿

学习资料 1 空间点阵与晶体结构的异同 空间点阵晶体结构 人为的、抽象的几何图形客观的 具有具体的物质内容,其基本的单元是结构单元(原子或离子)组成空间点阵的结点是没有物质内容的几何点 结构单元与结点在空间排列的周期是一致的,或者说它们具有同样的T矢量; 抽象的空间点阵不能脱离具体的晶体结构而单独存在,所以它不是一个无物质基础的纯粹的几何图形。这种抽象能更深入地反映事物的本质与规律,因此是一个科学的抽象。 空间点阵只是一个几何图形,它不等于晶体内部具体的格子构造,是从实际晶体内部结构中抽象出来的无限的几何图形。虽然对于实际晶体来说,不论晶体多小,它们所占的空间总是有限的,但在微观上,可以将晶体想象成等同点在三维空间是无限排列的。 2 在同一行列中结点间距是相等的; 在平行的行列上结点间距是相等的; 不同的行列,其结点间距一般是不等的(某些方向的行列结点分布较密;另一些方向行列结点的分布较疏。) 3 面网密度:面网上单位面积内结点的数目面网间距:任意2个相邻面网的垂直距离相互平行的面网的面网密度和面网间距相等面网密度大的面网其面网间距也大 4 宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互之间的组合关系 (1)对称变换的集合——对称变换群 (2)对称要素的集合——对称要素群合称对称群 在宏观晶体中所存在的对称要素都必定通过晶体的中心,因此不论对称变换如何,晶体中至少有一个点是不变的,所以将对称型称为点群,该点称为点群中心 5 点阵几何元素的表示法 ☆坐标系的确定 任一点阵结点------------坐标原点单位平行六面体的三个互不平行的棱---坐标轴点阵常数a、b、c所代表的三个方向---x、y、z轴坐标单位:a、b、c ☆结点的位置表示法 以它们的坐标值来表示的。 6 晶向的表示法 晶向—空间点阵中由结点连成的结点线和平行于结点线的方向 晶向指数uvw—通过原点作一条直线与晶向平行,将这条直线上任一点的坐标化为没有公约数的整数。 晶向符号:[uvw] B点坐标:111 OB的晶向符号:[111] A点坐标:1 2/3 1 OA的晶向符号:[323] 负值表示为:[32-3] X-轴方向为[100] Y-轴方向为[010] Z-轴方向为[001] 7 晶面的表示法 点阵中的结点全部分列在一系列平行等距离的平面上,这样的平面——晶面 显然,点阵中的平面可以有无数组 对于一组平行的等距离的晶面,可用密勒(miller)指数表示 令这组平行晶面中的一个面通过原点,其相邻面与x、y、z轴截距分别为r、s、t 然后取倒数h=1/r,k=l/s,l=l/t 仅供学习与参考

高中化学竞赛 晶体结构中的空间点阵

高中化学竞赛 晶体结构中的空间点阵 空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。这14种空间点阵以后就被称为布拉 菲点阵。 空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如图1-8 所示。一般情况下单胞的选取有以 图1-8 空间点阵及晶胞的不同取法图1-9面心立方阵胞中的固体物理原胞

图1-10晶体学选取晶胞的原则 下两种选取方式: 1.固体物理选法 在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。如面心立方点阵的固体物理单胞并不反映面心立方的特征,如图1-9所示。 2.晶体学选法 由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则(如图1-10所示): ①要能充分反映整个空间点阵的周期性和对称性; ②在满足①的基础上,单胞要具有尽可能多的直角; ③在满足①、②的基础上,所选取单胞的体积要最小。 根据以上原则,所选出的14种布拉菲点阵的单胞(见图1-12)可以分为两大类。一类为简单单胞,即只在平行六面体的 8个顶点上有结点,而每个顶点处的结点又分属于 8个相邻单胞,故一个简单单胞只含有一个结点。另一类为复合单胞(或称复杂单胞),除在平行六面体顶点位置含有结点之外,尚在体心、面心、底心等位置上存在结点,整个单胞含有一个以上的结点。14种布拉菲点 阵中包括7个简单单胞,7个复合单胞。

第二章晶体结构与晶体中的缺陷

内容提要:通过讨论有代表性的氧化物、化合物和硅酸盐晶体结构, 用以掌握与本专业有关的各种晶体结构类型。介绍了实际晶体中点缺陷分 类;缺陷符号和反应平衡。固熔体分类和各类固熔体、非化学计量化学化 合物的形成条件。简述了刃位错和螺位错。 硅酸盐晶体结构是按晶体中硅氧四面体在空间的排列方式为孤岛状、组群状、链状、层装和架状五类。这五类的[SiO4]四面体中,桥氧的数目也依次由0增加到4, 非桥氧数由4减至0。硅离子是高点价低配位的阳离子。因此在硅酸盐晶体中,[SiO4] 只能以共顶方式相连,而不能以共棱或共面方式相连。表2-1列出硅酸盐晶体结构类型及实例。 表2-1 Array硅酸 盐晶 体的 结构 类型

真实晶体在高于0K的任何温度下,都或多或少地存在着对理想晶体结构的偏离,即存在着结构缺陷。晶体中的结构缺陷有点缺陷、线缺陷、面缺陷和复合缺陷之分,在无机材料中最基本和最重要的是点缺陷。 点缺陷根据产生缺陷的原因分类,可分为下列三类: (1)热缺陷(又称本征缺陷) 热缺陷有弗仑克儿缺陷和肖特基缺陷两种基本形式。 弗仑克儿缺陷是指当晶格热震动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗仑克儿缺陷。 肖特基缺陷是指如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,而在原正常格点上留下空位,这种缺陷称为肖特基缺陷。 (2)杂质缺陷(非本征缺陷) (3)非化学计量化学化合物 为了便于讨论缺陷反应,目前广泛采用克罗格-明克(Kroger-Vink)的点缺陷符号(见表2-2)。 表2-2 Kroger-Vink缺陷符号(以M2+X2-为例)

分子结构与晶体结构

第七章分子结构与晶体结构 序言 第一节离子键 第二节共价键理论 第三节杂化轨道理论与分子几何构型第四节晶体的特征 第五节离子晶体 第六节原子晶体 第七节分子间力和氢键 第八节金属晶体 第九节离子极化 第十节混合型晶体

序言: v原子怎样结合成为分子?-化学键?离子键 Link ?共价键 ?金属键 v分子的形状?-分子构型 ?价电子对互斥理论 v分子怎样组成物质材料?-分子间作用力v固体材料的结构? -晶体结构 -无定型结构

价电子(Valence electrons )·····H ·He ::N ··O ·:Cl ·K ·Mg: :Ne :· ·········K ·+ :Cl ·→K +[:Cl:]- ····失或得电子→稳定结构(主族) Loss or gain electrons →octet rule 为什么惰性气体稳定? n s 2n p 6 八电子层结构 ????

化学键—分子中的两个(或多个)原子之间的相互作用 第一节离子键 1916 年德国科学家Kossel( 科塞尔) 提出离子键理论 一离子键的形成(以NaCl为例) 第一步电子转移形成离子: Na -e ——Na+,Cl+ e ——Cl- 相应的电子构型变化: 2s 2 2p 6 3s 1——2s 2 2p 6 ,3s 2 3p 5 ——3s 2 3p 6 形成Ne和Ar的稀有气体原子的结构,形成稳定离子。

第二步靠静电吸引,形成化学键。 体系的势能与核间距之间的关系如图所示: V Vr0 r0r 横坐标核间距r ;纵坐标体系的势能V。 纵坐标的零点当r 无穷大时,即两核之间无限远时的势能。 下面来考察Na+和Cl-彼此接近的过程中,势能V 的变化。 ,当r 减小时,正负离子靠静电相互吸图中可见:r > r 引,势能V 减小,体系趋于稳定。

分子结构和晶体结构四

1 普化无机试卷(分子结构和晶体结构四) 答案 一、问答题 1. (9990) (1) +0.5,变短;(2) -0.5,变长;(C) +0.5,变短 2. (9991) 在一般的分子或离子中,作为端基氧经常与中心成双键,故氧提供2个电子,即一对电子,但在处理双键时,要在电子对数上减去1,其结果与认为氧提供电子数为零,与不按双键处理是一致的。 3. (9992) 中心原子不带孤对电子时,五配位主族元素的化合物分子采用三角双锥结构,如PX 5、X:卤素等;反之,若中心原子有一对孤对电子,化合物分子将采用四方锥结构,如BrF 5和XeOF 4等。 4. (9993) 因BF 3分子中B —F 间除形成σ 键外还生成了∏46大π 键,因而使B —F 键比B —F 平均 键长要短。 5. (9994) 以x 轴为键轴,ns - ns 、np x - np x 重叠形成σ键,其化学键的强弱与原子核间的距离和轨道重叠大小有关。s 轨道是球型对称的,而p x 轨道具有方向性,因此,一般是np x - np x 形成的化学键强。但H 的原子半径特别小,H 2分子的核间距离小,1s - 1s 能有效重叠,而F 的原子半径小有孤对电子对,F 2分子中孤对电子之间排斥作用大,导致2p x - 2p x 形成化学键的键能小。 6. (9995) (1) 八面体,五角双锥体 (2) IF 7 + SbF 5?→? [IF 6][SbF 6] 7. (9996) 乙腈的结构式为CH 3—C ≡N ,甲胩的结构式为CH 3—N ≡C ,CH 3CN 更稳定 ( m f H ?(CH 3CN) = -150 kJ ·mol -1, m f H ?(CH 3NC) = -88 kJ ·mol -1)。两种分子中化学键的键数相同,但C —C 键比C —N 键稳定,故CH 3CN 更稳定。 8. (9997) NF 3 BF 3 ClF 3 N 以sp 3杂化 B 以sp 2杂化 Cl 以sp 3d 杂化 三角锥 平面三角形 近似T 型 取向力,诱导力,色散力 色散力 取向力,诱导力,色散力 9. (9998) (1) (2) (3) (4) (5) BF 3 →BF 4- H 2O → H 3O + PCl 5 →PCl 4 + PCl 5 →PCl 6- AlCl 3 → Al 2Cl 6 Sp 2 → sp 3 sp 3 → sp 3 sp 3d → sp 3 sp 3d → sp 3d 2 sp 2 → sp 3 平面三角形 → 正四面体 V 形 → 三角锥形 三角双锥形 → 正四面体形 三角双锥形 → 正八面体形 平面三角形 → 两个正四面体共棱

第6章 分子结构和晶体结构 课后习题及参考答案Yao

第六章分子结构和晶体结构P116 1) 指出下列分子的中心原子可能采用的杂化轨道类型,并写出它们的空间构型以及分子的偶极矩(是否为零)。 ① SiH4; ② BBr3; ③ BeH2; ④ PH3; ⑤ H2S。 解: 分子空间构型分子偶极矩化合物名称中心原子杂化轨道类 型 ① SiH4sp3等性杂化正四面体m=0 ② BBr3sp2等性杂化平面三角形m=0 ③ BeH2sp等性杂化直线型m=0 ④ PH3sp3不等性杂化三角锥形m≠0 ⑤ H2S sp3不等性杂化V型m≠0 2) 解释H2S 和BeCl2都是三原子分子,为何前者为V形,后者为直线形? 答:因为H2S 中S是sp3不等性杂化,BeCl2中Be是sp等性杂化。 3) 指出下列各分子之间存在哪几种分子间作用力(包括氢键)。①H2分子间;②H2O分子间;③ H2O-O2分子间;④ HCl-H2O分子间;⑤ CH3Cl分子间。 解:① H2分子间;(非极性分子间)只有色散力 ② H2O分子间;(极性分子间)取向力,诱导力,色散力,氢键 ③ H2O-O2分子间;诱导力和色散力 ④ HCl-H2O分子间;色散力,取向力,诱导力 ⑤ CH3Cl分子间。取向力,诱导力,色散力 4) 写出下列各离子的外层电子构型,并说明各离子分别属于哪一类电子构型(8电子,18电子,18+2电子,9~17电子构型)。 ① Mg2+;② Fe2+;③ Ag+;④ Cu2+;⑤ Zn2+;⑥ Sn2+。 解: 离子外层电子构型电子构型

① Mg2+2s22p68e ② Fe2+2s22p63d69~17e ③ Ag+4s24p64d1018e ④ Cu2+3s23p63d99~17e ⑤ Zn2+3s23p63d1018e ⑥ Sn2+4s24p64d105s218+2e 5) 判断下列各组中两种物质的溶点高低。 ① NaCl和MgO;② BaO和CaO;③ SiC和SiH4;④ NH3和PH3。 解:① MgO>NaCl (Z+?Z-MgO>NaCl) ② CaO>BaO (r+?r-BaO>CaO) ③ SiC>SiH4 (SiC 原子晶体SiH4 分子晶体) ④ NH3>PH3 (NH3 分子间氢键PH3 无分子间氢键) 6) 为什么①室温下CH4为气体,CCl4为液体;而CI4为固体? ② H2O的沸点高于H2S,而CH4的沸点却低于SiH4? 解:①因为从CH4、CCl4 到CI4 分子量增大,色散力逐渐增大,分子间作用力增大;所以室温下CH4为气体,CCl4为液体;而CI4为固体。②因为H2O分子间存在氢键,所以其沸点高于H2S;CH4和SiH4 分子间都不存在氢键,只有正常分子间作用力。SiH4 因其分子量大,分子间色散力强,所以其沸点高于CH4。 7) 试判断下列各种物质各属何种晶体类型以及晶格结点上微粒间作用力,并写出熔点从高到低的顺序。① KCl;② SiO2;③ HCl;④ CaO。 解:熔点由高到低的顺序为: ② SiO2;>④ CaO;>① KCl;>③ HCl 晶体类型:②原子晶体;④离子晶体;①离子晶体;③分子晶体。 晶格结点上微粒间作用力:②共价键;④离子键;①离子键;③分子间力。 8) 乙醇和二甲醚(CH3OCH3)的组成相同,但前者的沸点为78.5 oC,而后者的沸点为-23 oC。为什么? 解:乙醇和二甲醚为同分异构体,同属极性分子,但乙醇分子间因存在氢键而使其沸点高于二甲醚。

工程材料习题集参考答案(第二章)汇编

习题集部分参考答案 2金属的晶体结构 思考题 1.晶体和非晶体的主要区别是什么? 答:晶体和非晶体的区别在于内部原子的排列方式。晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。因为排列方式的不同,性能上也有所差异。晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。 2.何为各向异性? 答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。 3.为什么单晶体呈各向异性,而多晶体通常呈各向同性? 答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。 对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。 4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义? 答:晶体缺陷是指金属晶体中原子排列的不完整性。常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。 点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。过饱和的点缺陷还可以提高材料的强度。 线缺陷是各种类型的位错。对材料的变形、扩散以及相变起着非常大的作用。特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。 金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。晶界和亚晶界均可提高金属的强度。单位体积中的晶粒数目越多,晶界面积越大,晶格畸变越严重,材料的强度越高,同时材料的塑性也较好(同样的变形量可以分散到更多的晶粒中去进行,说明材料可以承受更大的变形量)。

晶体结构分析中的无序 绝对结构和

晶体结构分析中的无序、绝对结构和孪晶 一、晶体结构分析中的无序 1、有序:分子结构在晶体中的排列符合所属空间群的对称性和晶体结构的周期性(完美晶体)。 A B B A A B B A A B B A A B B A A B B A A B B A A B B A A B B A B B A A 2、无序:分子结构或结构的一部分在晶体中的排列不符合所属空间群的对称性或晶体结构的周期性(缺陷晶体,严重时即为非晶)。 3、结构解析中的无序(局部无序):分子结构的大部分有序,而小部分呈现统计 性无序。 4、无序的种类 (1)占有率无序 A 、 同一套等效位置统计性地被不同的原子占据,总占有率为1。矿物晶体中离子的掺杂现象就属于这种情况。 A B C D A B C D A B C D A'B C D A B C D A'B C D A'B C D A'B C D B C D A' B 、晶体中的一套等效位置被统计性地部分占据,总占有率小于1。结构中非配位水分子经常出现这种情况。

A B C D A B C D A B C D B C D A B C D B C D B C D B C D B C D C 、由于晶体中任何一个位置及其周围一定范围(位阻范围)内只能同时容纳一个原子,因此若两个或两个以上的原子位于这样的范围内,则其总占有率应小于或等于其中任何一个原子的理论最高占有率,即这些原子不能同时出现在同一位置的位阻范围内。处理结构中非配位水分子时,要特别注意这一点。 不同位置的理论最高占有率: 一般位置:1 特殊位置(位于对称元素上的位置),其理论最高占有率小于1。 a 、2次轴上的位置:0.5 b 、3次轴上的位置:0.33333 c 、4次轴上的位置:0.25 d 、6次轴上的位置:0.166667 e 、对称面上的位置:0.5 ……………………. ……………………. ** 特别要注意:一旦指认原子后,WinGX 程序会自动给出该特殊位置的最高理论占有率。 例1、两个处于普通位置(理论最高占有率为1)的氧原子间的距离为例: 埃) 两个氧原子任何情况下不能同时存在的区域: 0.0—1.4?:两个原子距离比形成共价键时还短,因此不能同时存在。

相关主题
文本预览
相关文档 最新文档