当前位置:文档之家› 材料物理基础第二章固体结构-(2)空间点阵-201209

材料物理基础第二章固体结构-(2)空间点阵-201209

钢结构基本原理课后习题与答案完全版

2.1 如图2-34所示钢材在单向拉伸状态下的应力-应变曲线,请写出弹性阶段和非弹性阶段的-关系式。 tgα'=E' f 0f 0 tgα=E 图2-34 σε-图 (a )理想弹性-塑性 (b )理想弹性强化 解: (1)弹性阶段:tan E σεαε==? 非弹性阶段:y f σ=(应力不随应变的增大而变化) (2)弹性阶段:tan E σεαε==? 非弹性阶段:'()tan '()tan y y y y f f f E f E σεαεα =+-=+- 2.2如图2-35所示的钢材在单向拉伸状态下的σε-曲线,试验时分别在A 、B 、C 卸载至零,则在三种情况下,卸载前应变ε、卸载后残余应变c ε及可恢复的弹性应变y ε各是多少? 2235/y f N mm = 2270/c N mm σ= 0.025F ε= 522.0610/E N mm =?2'1000/E N mm = f 0 σF 图2-35 理想化的σε-图 解: (1)A 点: 卸载前应变:5 2350.001142.0610y f E ε= = =? 卸载后残余应变:0c ε= 可恢复弹性应变:0.00114y c εεε=-= (2)B 点: 卸载前应变:0.025F εε==

卸载后残余应变:0.02386y c f E εε=- = 可恢复弹性应变:0.00114y c εεε=-= (3)C 点: 卸载前应变:0.0250.0350.06' c y F f E σεε-=- =+= 卸载后残余应变:0.05869c c E σεε=- = 可恢复弹性应变:0.00131y c εεε=-= 2.3试述钢材在单轴反复应力作用下,钢材的σε-曲线、钢材疲劳强度与反复应力大小和作用时间之间的关系。 答:钢材σε-曲线与反复应力大小和作用时间关系:当构件反复力y f σ≤时,即材料处于弹性阶段时,反复应力作用下钢材材性无变化,不存在残余变形,钢材σε-曲线基本无变化;当y f σ>时,即材料处于弹塑性阶段,反复应力会引起残余变形,但若加载-卸载连续进行,钢材σε-曲线也基本无变化;若加载-卸载具有一定时间间隔,会使钢材屈服点、极限强度提高,而塑性韧性降低(时效现象)。钢材σε-曲线会相对更高而更短。另外,载一定作用力下,作用时间越快,钢材强度会提高、而变形能力减弱,钢材σε-曲线也会更高而更短。 钢材疲劳强度与反复力大小和作用时间关系:反复应力大小对钢材疲劳强度的影响以应力比或应力幅(焊接结构)来量度。一般来说,应力比或应力幅越大,疲劳强度越低;而作用时间越长(指次数多),疲劳强度也越低。 2.4试述导致钢材发生脆性破坏的各种原因。 答:(1)钢材的化学成分,如碳、硫、磷等有害元素成分过多;(2)钢材生成过程中造成的缺陷,如夹层、偏析等;(3)钢材在加工、使用过程中的各种影响,如时效、冷作硬化以及焊接应力等影响;(4)钢材工作温度影响,可能会引起蓝脆或冷脆;(5)不合理的结构细部设计影响,如应力集中等;(6)结构或构件受力性质,如双向或三向同号应力场;(7)结构或构件所受荷载性质,如受反复动力荷载作用。 2.5 解释下列名词: (1)延性破坏 延性破坏,也叫塑性破坏,破坏前有明显变形,并有较长持续时间,应力超过屈服点fy 、并达到抗拉极限强度fu 的破坏。 (2)损伤累积破坏 指随时间增长,由荷载与温度变化,化学和环境作用以及灾害因素等使结构或构件产生损伤并不断积累而导致的破坏。 (3)脆性破坏 脆性破坏,也叫脆性断裂,指破坏前无明显变形、无预兆,而平均应力较小(一般小于屈服点fy )的破坏。 (4)疲劳破坏 指钢材在连续反复荷载作用下,应力水平低于极限强度,甚至低于屈服点的突然破坏。 (5)应力腐蚀破坏 应力腐蚀破坏,也叫延迟断裂,在腐蚀性介质中,裂纹尖端应力低于正常脆性断裂应力临界值的情况下所造成的破坏。 (6)疲劳寿命 指结构或构件中在一定恢复荷载作用下所能承受的应力循环次数。 2.6 一两跨连续梁,在外荷载作用下,截面上A 点正应力为21120/N mm σ=,2280/N mm σ=-,B 点的正应力

第二章2 固体结构试题与答案

一、名词解释:相、固溶体、中间相、超结构、电子浓度、正常价化合物、电子化合物、 间隙相、间隙化合物; 二、计算题: 1、青铜为铜和锡组成的固溶体合金,其中大约有3%的铜原子为锡原于所取代,且仍维持着fcc结构。试求合金中所含Cu和Sn的质量分数(已知cu的相对原子量为63.54,Sn为118.69) 解由题意知,合金中所含Sn的摩尔分数为X Sn=3%,所台Cu的摩尔分数为X Cu=97%,故其质量分数为 2、在1000℃时,有Wc=1.7%的碳溶入面心立方结构的铁中形成固溶体,求100个单位晶胞中有多少个碳原子? 解因为100个单位晶胞中,有400个铁原子,其质量分数W Fe=98.3% 总质量为(400×55.85)/0.983=22726 碳原子数为22726×0.017/12.0l=32 大约l/3个单位晶胞中才有1个碳原子。这是因为碳原子半径较八面体间隙半径稍大些,因而碳原子不太可能都填满所有的等效位置。 3、β’黄铜的结构为简单立方。如图2-3所示。如果Cu和Zn原子半径分别为0.13nm和0.14 nm,试估计其密度(已知Cu和Zn的相对原子质量分别为63.54及65.38)。 4、计算单质原子配位数为6的晶体结构的致密度,并计算此时的原子半径与配位数为12时的原子半径比值。 配位数为6的晶体结构为简单立方结构,设其半径为r,晶格常数为a,二者关系为a=2r,

致密度 3 3 4 3 =0.5233 6 r a ππ η== , 612 1 r/r a = 5、Mg具有hcp结构,c/a=1.624体密度为1.74g/cm3,求a,c,原子半径和致密度。 1.74 A nM VN ρ===,得a=0.32nm,c=0.52nm,r=0.1598, 致密度为 3 4 6 0.74 r π η ? == 6、测得X Au=40%的Cu-Au固溶体点阵常数a=0.3795nm,密度为14.213g/cm3,计算说明该合金是什么类型固溶体? 利用Cu Au (X X) Cu Au A n M M VN ρ + =,得出n=3.95≈4,故为置换固溶体 Au M=200 7、Fe-Mn-C固溶体具有面心立方结构,Mn和C的质量分数为12.3%和1.34%,点阵常数为0.3624nm,密度为7.83g/cm3,请说明Mn和C在Fe中各是什么固溶体? 再计算固溶体中每个原子的平均重量 23 23 0.821755.850.11954.940.059312 8.821910 6.0210 A g - ?+?+? ==? ? 每个晶胞中的原子数为 37 23 (0.362410)7.83 4.2876 8.821910 a n A ρ- - ?? === ? 因为Fe-Mn-C合金固溶体具有面心立方结构,每个晶胞中含有4各原子,现在计算得每个晶胞中含有4.2876个原子,说明其中一个或全部溶质组元都是间隙溶质原子。上面计算结果说明每个晶胞中含有0.2876各间隙原子,间隙原子的摩尔分数应该为

最新钢结构基本原理(沈祖炎)课后习题答案完全版

第二章 2.1 如图2-34所示钢材在单向拉伸状态下的应力-应变曲线,请写出弹性阶段和非弹性阶段的σε-关系式。 tgα'=E' f y 0f y 0tgα=E 图2-34 σε-图 (a )理想弹性-塑性 (b )理想弹性强化 解: (1)弹性阶段:tan E σεαε==? 非弹性阶段:y f σ=(应力不随应变的增大而变化) (2)弹性阶段:tan E σεαε==? 非弹性阶段:'()tan '()tan y y y y f f f E f E σεαεα=+-=+- 2.2如图2-35所示的钢材在单向拉伸状态下的σε-曲线,试验时分别在A 、B 、C 卸载至零,则在三种情况下,卸载前应变ε、卸载后残余应变c ε及可恢复的弹性应变y ε各是多少? 2235/y f N mm = 2270/c N mm σ= 0.025F ε= 522.0610/E N mm =?2'1000/E N mm = σ f y 0σF 图2-35 理想化的σε-图 解: (1)A 点: 卸载前应变:5235 0.001142.0610y f E ε===? 卸载后残余应变:0c ε= 可恢复弹性应变:0.00114y c εεε=-=

卸载前应变:0.025F εε== 卸载后残余应变:0.02386y c f E εε=-= 可恢复弹性应变:0.00114y c εεε=-= (3)C 点: 卸载前应变:0.0250.0350.06'c y F f E σεε-=-=+= 卸载后残余应变:0.05869c c E σεε=-= 可恢复弹性应变:0.00131y c εεε=-= 2.3试述钢材在单轴反复应力作用下,钢材的σε-曲线、钢材疲劳强度与反复应力大小和作用时间之间的关系。 答:钢材σε-曲线与反复应力大小和作用时间关系:当构件反复力y f σ≤时,即材料处于弹性阶段时,反复应力作用下钢材材性无变化,不存在残余变形,钢材σε-曲线基本无变化;当y f σ>时,即材料处于弹塑性阶段,反复应力会引起残余变形,但若加载-卸载连续进行,钢材σε-曲线也基本无变化;若加载-卸载具有一定时间间隔,会使钢材屈服点、极限强度提高,而塑性韧性降低(时效现象)。钢材σε-曲线会相对更高而更短。另外,载一定作用力下,作用时间越快,钢材强度会提高、而变形能力减弱,钢材σε-曲线也会更高而更短。 钢材疲劳强度与反复力大小和作用时间关系:反复应力大小对钢材疲劳强度的影响以应力比或应力幅(焊接结构)来量度。一般来说,应力比或应力幅越大,疲劳强度越低;而作用时间越长(指次数多),疲劳强度也越低。 2.4试述导致钢材发生脆性破坏的各种原因。 答:(1)钢材的化学成分,如碳、硫、磷等有害元素成分过多;(2)钢材生成过程中造成的缺陷,如夹层、偏析等;(3)钢材在加工、使用过程中的各种影响,如时效、冷作硬化以及焊接应力等影响;(4)钢材工作温度影响,可能会引起蓝脆或冷脆;(5)不合理的结构细部设计影响,如应力集中等;(6)结构或构件受力性质,如双向或三向同号应力场;(7)结构或构件所受荷载性质,如受反复动力荷载作用。 2.5 解释下列名词: (1)延性破坏 延性破坏,也叫塑性破坏,破坏前有明显变形,并有较长持续时间,应力超过屈服点fy 、并达到抗拉极限强度fu 的破坏。 (2)损伤累积破坏 指随时间增长,由荷载与温度变化,化学和环境作用以及灾害因素等使结构或构件产生损伤并不断积累而导致的破坏。

第七章钢结构课后习题答案

第七章钢结构课后习题答案

第七章 7.9解:钢材为Q235钢,焊条为E43型,则角 焊缝的强度设计值f 图示连接为不等肢角钢长肢相连, K 2=0.35。 焊缝受力: w 2 f 160N/mm 。 N 1 K 1 N 0.65 600 390kN l w1 需焊 N 1 2 0.7h f1 f f w N 2 K 2N 缝计 390 103 2 0.7 8 160 210kN 0.35 600 算长度 217.6mm I w2 210 103 2 0.7 6 160 面焊缝实际 N f2 f 156.3mm l 1 l w1 2h f1 21 7.6 2 8 2 33.6mm , l 2 l w2 2 h f2 156.3 2 6 165.6mm , 7.11 解: ^尖 K I =0.65, 焊长度, 取 240mm ; 肢 尖 取 170mm 。 ① h fmin 1.5'.t max 1.5 16 6mm h fmax t 1 ~ 2 12 ax 1 ~ 2 10 ~ 11mm 焊缝有效截面的形心位置: ^取 h f 8mm

Tr y J 60 106 150 °.7 6 2 99.2N/mm 2 92009614 U x J 60 106 I 94 07 6 2 2 92009614 2 64.6N/mm f2 64.6 99.22 112.4MPa 160MPa 1.22 1 2 0.7 8 192 192 0.7 8 _ 2 x 56.1mm 2 0.7 8 192 300 2 0.7 8 0.7 8 1 3 2 4 I x 12 ° 7 8 300 2 ° 7 8 2 ° 7 8 192 150 ° 7 8 66128649 佔 I y 0.7 8 300 2 0.7 8 56.12 1 19 2 0 7 8 2 2 0.7 8 1923 0.7 8 192 56.1 16011537mm 4 12 2 2 J I x I y 66128649 16011537 82140186mm 4 101 3 111.62 139.1MPa 160MPa 1.22 所选焊脚尺寸满足强度要求(可选焊脚尺寸为 7mm 验算强度,可能不满足) I x I y 59400746 32608868 92009614mm 4 Tr y J Tr x J 60 106 150 0.7 8 2 82140186 60 106 192 07 - 2 111.6N/mm 2 56.1 --- 101.3N/mm 2 ②采用四面围焊,取 1 3 200 2 0.7 6 300 2 0.7 6 12 1 3 200 2 0.7 6 300 2 0.7 6 I x I y h f 6mm 1 00 3003 59400746mm 4 1 2 1 300 2003 32608868mm 4 12

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

固体力学发展及分支

固体力学 固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固 体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。 固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料 力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。 自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算 方法。 由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传 统的有用的经典理论,另一方面为适应各们现代工程的特点而建立新的理论和方法。 固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采 用了薄壁杆件。 固体力学的发展历史 萌芽时期远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建 筑物、简单的车船和狩猎工具等。中国在隋开皇中期(公元591~599年)建造的赵州石拱桥,已蕴含了近代杆、板、壳体设计的一些基本思想。 随着实践经验的积累和工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。尽管如此,这些成就还是为较早发展起来的固体力学理论,特别是为后来划归材料力学和结构 力学那些理论奠定了基础。 发展时期实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的推动力。 这期间,固体力学理论的发展也经历了四个阶段:基本概念形成的阶段;解决特殊问题的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复杂问题的阶段。在这一时期,固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的道路发展的,而弹性

第二章固体结构2教案

2.2金属的晶体结构 2.2.1 三种典型的金属晶体结构 面心立方结构A1或fcc、体心立方结构A2或bcc和密排六方结构A3或hcp三种。 面心立方结构体心立方结构密排六方结构 1.晶胞中的原子数 面心立方结构n = 8*1/8 + 6 * 1/2 = 4体心立方结构n = 8*1/8 + 1 =2密排六方结构n = 12*1/6 +2*1/2 +3 = 6 2.点阵常数与原子半径 晶胞的大小一般是由晶胞的棱边长度即(a,b,c)衡量的,它是表征晶体结构的一个重要基本参数。 如果把金属原子看作刚球,并设其半径为R,根据几何学关系不难求出三种典型金属晶体结构的点阵常数与R之间的关系: 面心立方结构:点阵常数为a,且2a=4 R; 体心立方结构:点阵常数为a,且3a=4 R; 密排六方结构:点阵常数由a和c表示。在理想的情况下,即把原子看作等径的刚球,可算得c/a=1.633,此时,a=2R;但实际测得的轴比常常偏离此值,即c/a≠1.633,这时,(a2/3+c2/4)1/2=2R。 3.配位数和致密度 所谓配位数(CN)是指晶体结构中任一原子周围最近邻且等距离的原子数;

而致密度是指晶体结构中原子体积占总体积的百分比。如以一个晶胞来计算,则致密度就是晶胞中原子体积与晶胞体积之比值,即 式中K为致密度;n为晶胞中原子数;v是一个原子的体积。 表 2.7 典型金属晶体结构的配位数和致密度 晶体结构类型配位数(CN)致密度 A1120.74 A28( 8 + 6 )0.68 A312( 6 + 6 )0.74 2.2.2 晶体的原子堆垛方式和间隙 原子密排面在空间一层一层平行的堆垛起来就分别构成以上三种晶体结构。 面心立方和密排六方结构的致密度均为0.74,是纯金属中最密集的结构。体心立方结构的致密度为0.68。 金属晶体存在许多间隙,这种间隙对金属的性能、合金相结构和扩散、相变等都有重要影响。 1、体心立方晶格 1).晶胞中的原子数 体心立方晶体每个角上的原子只有1/8个属于这个晶胞,晶胞中心原子完全属于这个晶胞,所以体心立方晶胞中的原子数为8*1/8+1=2. 2).原子半径 原子沿立方体对角线紧密接触.设晶格常数为,则立方体对角线长度为,等于4个原子半径,所以体心立方晶胞中的原子半径.

第七章钢结构课后习题答案

第七章 解:钢材为Q235钢,焊条为E43型,则角焊缝的强度设计值w 2 f 160N/mm f =。 图示连接为不等肢角钢长肢相连,故K 1=,K 2=。 焊缝受力:110.65600390kN N K N ==?= 220.35600210kN N K N ==?= 所需焊缝计算长度,肢背:3 1w1w f1f 39010217.6mm 20.720.78160 N l h f ?===???? 肢尖:3 2w2w f2f 21010156.3mm 20.720.76160 N l h f ?===???? 侧面焊缝实际施焊长度,肢背:1w1f12217.628233.6mm l l h =+=+?=,取240mm ; 肢尖: 2w2f22 156.326165.6mm l l h =+=+?=,取170mm 。 — 解:① ()()fmin fmax 6mm 1~2121~210~11mm h h t ====-=-=取f 8mm h = 焊缝有效截面的形心位置: ()120.781921920.78256.1mm 20.7819230020.780.78 x ?? ?????+? ? ??==???++???? 、 ()()32 4x 10.7830020.7820.781921500.7866128649mm 12 I = ???+??+????+?= ()2 y 2 3 4 0.7830020.7856.111920.7820.781920.7819256.116011537mm 1222I =??+????????+????+???+-=?? ??????? 4x y 661286491601153782140186mm J I I =+=+=

钢结构基本原理(第二版)习题参考解答第七章

7.1 一压弯构件长15m ,两端在截面两主轴方向均为铰接,承受轴心压力1000N kN =,中央截面有集中力150F kN =。构件三分点处有两个平面外支承点(图7-21)。钢材强度设计值为2 310/N mm 。按所给荷载,试设计截面尺寸(按工字形截面考虑)。 解:选定截面如下图示: 图1 工字形截面尺寸 下面进行截面验算: (1)截面特性计算 ()23002026502021420540A mm =??+-??= 339411300650286610 1.45101212 x I mm =??-??=? 63/325 4.4810x x W I mm ==? 337411220300610149.01101212 y I mm =???+??=? 53/150 6.0110y y W I mm ==? 266.2x i mm == 66.2y i m m = (2)截面强度验算 36226100010562.510172.3/310/20540 4.4810 x M N N mm f N mm A W σ??=+=+=<=? 满足。 (3)弯矩作用平面内稳定验算 长细比1500056.3266.2 x λ== 按b 类构件查附表4-4 ,56.368.2,查得0.761x ?=。 2257222.061020540' 1.20101.1 1.156.3 EX x EA N N ππλ???===??? 弯矩作用平面内无端弯矩但有一个跨中集中荷载作用:

371000101.00.2 1.00.20.981.2010 1.1 mx EX N N β?=-?=-?=??, 取截面塑性发展系数 1.05x γ= 363611000100.98562.5100.7612054010001010.8 1.05 4.481010.8' 1.2010mx x x x x EX M N A N W N β?γ???+=+??????-???-? ? ? ?????? 22189.54/310/N mm f N mm =<= ,满足。 (4)弯矩作用平面外稳定验算 长细比500075.566.2 y λ==,按b 类构件查附表4-4, 75.591.5=,查得0.611x ?=。 弯矩作用平面外侧向支撑区段,构件段有端弯矩,也有横向荷载作用,且端弯矩产生同向曲率,取 1.0tx β=。 弯矩整体稳定系数近似取2275.53451.07 1.070.884400023544000235y y b f λ?=-?=-?=,取截面影响系数 1.0η=。 36221100010 1.0562.5101.0222.4/310/0.61120540 4.48100.88 tx x y b x M N N mm f N mm A W βη?????+=+?=<=??? 满足。 (5)局部稳定 a. 翼缘: 15077.1510.720b t -==<(考虑有限塑性发展),满足要求。 b.腹板 腹板最大压应力:3620max 6100010562.510610166.6/205406504.4810 x h N M N mm A W h σ??=+?=+?=? 腹板最小压应力:3620min 6100010562.51061069.2/205406504.4810x h N M N mm A W h σ??=-?=-?=-? 系数max min 0max 166.669.2 1.42166.6 σσασ-+=== [ [ 061043.6160.52516 1.420.556.32562.614w w h t αλ==<++=?+?+,满足。 由以上验算可知,该截面能满足要求。

钢结构第七章作业

7.9. 两面侧焊的角钢连接,受沿形心线的静力荷载作用,设计值 N =600KN, 角钢为2L100×63×10,连接板厚 10mm ,钢材为Q235,焊条为 E43型,手工焊,根据构造要求和受力要求设计角焊缝. 解:2/160mm N f w f = 据题设焊脚高度为 mm h f 81=,mm h f 62= (1) 采用两边侧焊,肢背、肢尖的受力为(图中为长肢相连) kN N K N 39060065.011=?=?= kN N K N 21060035.022=?=?= (2)计算肢背、肢尖所需焊缝长度为 mm h f h N L f w f f w 2268160 87.02103907.023 1111=+????=+?= mm h f h N L f w f f w 1626160 67.02102107.0232222=+????=+?= 构件端部按要求做成2f h 绕角焊,故不再加h f 。 分别取230mm 和170mm ,满足构造要求。 若端部不做2f h 绕角焊,则 mm h f h N L f w f f w 23416160 87.02103907.023 1111=+????=+?= mm h f h N L f w f f w 16812160 67.02102107.0232222=+????=+?= 分别取240mm 和170mm ,满足构造要求。

7.10 图示三面围焊,焊脚尺寸为6mm ,钢材为Q235BF ,计算此连接能承受的最大拉力。 解:2/160mm N f w f = 端焊缝受力 kN f h b N w f f e 32816022.167.0200223=?????=???=β 侧焊缝受力 kN f h l N N w f e 28816067.0)6220(2221=???-?=??== kN N N N N 904288288328123=++=++=总 连接板只需验算中间20厚的 kN kN 90498420524020>=??=连接板抗拉 故该连接能承受的最大拉力为904kN 7.11图示牛腿板承受扭矩设计值T=60kNm ,钢材为Q235BF ,焊条为E43系列。 (1)采用三面围焊角焊缝,试设计此角焊缝,即确定焊脚高度h f 。 (2)四面围焊,焊脚高度可以改为多少。 (3)方案二的焊条是否少于方案一。 解:要点:画对焊缝截面图 mm h t h t f f 11~106)2~1(5.121<

钢结构第2章(带答案)

第2章 钢结构材料 1 钢材代号Q235D 的含义为 Q 为屈服强度的汉语拼音字母,235为屈服强度数值、D 为质量等级符号。 2 钢材的硬化,提高了钢材的 强度 ,降低了钢材的 塑性和韧性 。 3 当用公式σ?≤[σ?]计算常幅疲劳时,式中σ?表示 工作应力幅,对焊接结构的焊接部位min max σσσ-=?,对于非焊接部位min max σσσk -=?。 4 钢材的两种破坏形式为 塑性破坏 和 脆性破坏 。 5 钢材的设计强度等于钢材的屈服强度fy 除以 抗力分项系数γR 。 6 钢材在复杂应力状态下,由弹性转入塑性状态的条件是折算应力等于或大于钢材 单向拉伸的屈服极限。 7 按 脱氧方法 之不同,钢材有镇静钢和沸腾钢之分。 8 钢材的Cv 值与温度有关,在-20oC 或在-40oC 所测得的Cv 值称 低温冲击韧性 。 9 随着时间的增长,钢材强度提高,塑性和韧性下降的现象称为 时效硬化 。 10 通过标准试件的一次拉伸试验,可确定钢材的力学性能指标为:抗拉强度fu 、 和 屈服极限fy 和伸长率δ 。 11 钢材设计强度f 与屈服点fy ,之间的关系为 R y f f γ= 。 12 韧性是钢材在塑性变形和断裂过程中 吸收能量 的能力,亦即钢材抵抗 冲击 荷载的能力。 13 对于焊接结构,除应限制钢材中硫、磷的极限含量外,还应限制 C 的含量不超过规定值%。 14 在疲劳设计时,经过统计分析,把各种构件和连接分为 8 类,相同应力循环次数下,类别越高,容许应力幅越 低 。 15 衡量钢材抵抗冲击荷载能力的指标称为 冲击韧性 。它的值越小,表明击断试件所耗的能量越 少 ,钢材的韧性越 差 。 16 钢中含硫量太多会引起钢材的 热 ;含磷量太多会引起钢材的 冷 。 17 钢材受三向同号拉应力作用时,即使三向应力绝对值很大,甚至大大超过屈服点,但两两应力差值不大时,材料不易进入 塑性 状态,发生的破坏为 脆性 破坏。

钢结构基本原理第七章压弯构件习题

7.3一压弯构件的受力支承及截面如图7-23所示(平面内为两端铰支支承)。设材料为Q235(2235/y f N mm =),计算其截面强度和弯矩作用平面内、平面外的 稳定性,其中 1.07b ?= B = —300×12—376×10 —300×12 图7-23习题7.3 解:(1)截面特性计算: 截面面积:2 2300123761010960A mm =××+×=绕截面主轴x 轴的惯性矩:3384 1(300400290376) 3.151012 x I mm = ×?×=×绕截面主轴y 轴的截面模量:374 1(3761000212300) 5.401012y I mm =×+××=×绕截面主轴x 轴的截面模量:631.5810200x x I W mm ==×绕截面主轴x 轴的截面塑性模量: 2634001240012223001210 1.7510222px W mm ???????????? ???=×××?+×=×??????????(2)截面强度计算(验算右端): A 按边缘屈服准则计算: 36226 8001012010149.10/215/10960 1.5810x x M N N mm f N mm A W σ××=+=+=<=×

B 按部分发展塑性准则计算(取 1.05x γ=): 36226 8001012010145.47/215/10960 1.05 1.5810x x x M N N mm f N mm A W σγ××=+=+=<=××C 按全截面屈服准则计算: 36226 8001012010141.55/215/10960 1.7510x px M N N mm f N mm A W σ××=+=+=<=×故截面强度满足要求。 (3)平面内稳定计算(验算右端): 回转半径:169.6x i mm ==平面内为两端铰支,故计算长度为:012000x l mm =长细比:01200070.74169.6 x x x l i λ=== 相对长细比为:70.74x λλ==折减后的欧拉临界力为:225' 22 2.0610109604047.81.1 1.170.74Ex x EA N kN ππλ×××===×由于弯矩作用平面内构件段没有横向荷载作用,有端弯矩作用且端弯矩产生反向曲率,故取:800.650.350.417120 mx β=?×=采用B 类截面,查附表4-4得:0.746 x φ=采用稳定极限承载力准则(取截面塑性发展系数 1.05x γ=): 36 61'2 800100.417120100.88000.74610960 1.05 1.5810(1)10.84047.8133.72215/mx x x x x Ex M N A N W N f N mm β?γ×××+=+××??×××????? ?=<=故平面内稳定满足要求。

钢结构基本原理课后习题与答案完全版

如图2-34所示钢材在单向拉伸状态下的应力-应变曲线,请写出弹性阶段和非弹性阶段的σε-关系式。 tgα'=E' f y 0f y 0tgα=E 图2-34 σε-图 (a )理想弹性-塑性 (b )理想弹性强化 解: (1)弹性阶段:tan E σεαε==? 非弹性阶段:y f σ=(应力不随应变的增大而变化) (2)弹性阶段:tan E σεαε==? 非弹性阶段:'()tan '()tan y y y y f f f E f E σεαεα=+- =+- 如图2-35所示的钢材在单向拉伸状态下的σε-曲线,试验时分别在A 、B 、C 卸载至零,则在三种情况下,卸载前应变ε、卸载后残余应变c ε及可恢复的弹性应变y ε各是多少 2235/y f N mm = 2270/c N mm σ= 0.025F ε= 522.0610/E N mm =?2'1000/E N mm = f y 0σF 图2-35 理想化的σε-图 解: (1)A 点: 卸载前应变:5235 0.001142.0610y f E ε===? 卸载后残余应变:0c ε=

可恢复弹性应变:0.00114y c εεε=-= (2)B 点: 卸载前应变:0.025F εε== 卸载后残余应变:0.02386y c f E εε=-= 可恢复弹性应变:0.00114y c εεε=-= (3)C 点: 卸载前应变:0.0250.0350.06'c y F f E σεε-=-=+= 卸载后残余应变:0.05869c c E σεε=-= 可恢复弹性应变:0.00131y c εεε=-= 试述钢材在单轴反复应力作用下,钢材的σε-曲线、钢材疲劳强度与反复应力大小和作用时间之间的关系。 答:钢材σε-曲线与反复应力大小和作用时间关系:当构件反复力y f σ≤时,即材料处于弹性阶段时,反复应力作用下钢材材性无变化,不存在残余变形,钢材σε-曲线基本无变化;当y f σ>时,即材料处于弹塑性阶段,反复应力会引起残余变形,但若加载-卸载连续进行,钢材σε-曲线也基本无变化;若加载-卸载具有一定时间间隔,会使钢材屈服点、极限强度提高,而塑性韧性降低(时效现象)。钢材σε-曲线会相对更高而更短。另外,载一定作用力下,作用时间越快,钢材强度会提高、而变形能力减弱,钢材σε-曲线也会更高而更短。 钢材疲劳强度与反复力大小和作用时间关系:反复应力大小对钢材疲劳强度的影响以应力比或应力幅(焊接结构)来量度。一般来说,应力比或应力幅越大,疲劳强度越低;而作用时间越长(指次数多),疲劳强度也越低。 试述导致钢材发生脆性破坏的各种原因。 答:(1)钢材的化学成分,如碳、硫、磷等有害元素成分过多;(2)钢材生成过程中造成的缺陷,如夹层、偏析等; (3)钢材在加工、使用过程中的各种影响,如时效、冷作硬化以及焊接应力等影响;(4)钢材工作温度影响,可能会引起蓝脆或冷脆;(5)不合理的结构细部设计影响,如应力集中等;(6)结构或构件受力性质,如双向或三向同号应力场;(7)结构或构件所受荷载性质,如受反复动力荷载作用。 解释下列名词: (1)延性破坏 延性破坏,也叫塑性破坏,破坏前有明显变形,并有较长持续时间,应力超过屈服点fy 、并达到抗拉极限强度

钢结构独立基础施工方案

最新资料,word文档,可以自由编辑!! 精 品 文 档 下 载 【本页是封面,下载后可以删除!】

钢结构独立基础施工方案 目录 第一章编制说明 一、编制依据 第二章工程概况 一、建筑概况 二、结构概况 第三章施工前期准备工作 一、现场准备 二、技术准备 三、材料准备 四、人员组织 第四章施工流程及进度计划 一、施工流程 二、施工安排 第五章主要分项工程施工方案 一、基础施工 二、钢结构施工 三、楼板施工 四、装饰装修施工 五、建筑屋面施工 第六章季节性施工 第七章施工安全保障 第八章文明施工措施 第九章附图 一、施工进度计划横道图 第一章、编制说明 一、编制依据 1、国家现行建筑安装工程施工质量验收规范 2、《建筑地基基础工程施工质量验收规范》GB50202——2002 3、《砌体工程施工质量验收规范》GB50203——2002 4、《混凝土结构工程施工质量验收规范》GB50204——2002 5、《建筑给水排水及采暖工程施工质量验收规范》GB50242—2002 6、《建筑电气工程施工质量验收规范》GB50303——2002 7、《钢结构工程施工质量验收规范》GB50205——2001 8、《钢筋焊接接头试验方法标准》JGJ/T——2001 9、《建筑装饰装修工程质量验收规范》GB50201-2001 10、南湖大酒店宿舍楼工程建施、结施、水电安装工程设计施工图编制第二章、工程概况

建筑概况 本工程为南湖大酒店宿舍楼工程,总建筑面积约为3176.08平方米,主体结构为四层钢框架结构,檐口总高度为15.450米。耐火等级为二级,使用年限为50年,抗震烈度为8度。基础为杯形独立(双杯)基础,梁柱均为Q235B H型钢,楼面、屋面均为压型钢板混凝土非组合楼面,维护结构为200mm厚加气混凝土块,内墙为150mm厚ALC加劲混凝土板。第三章、施工前期准备工作 第一节、现场准备 1、重点是由业主移交的平面控制点、水准控制点等进行引测、复核及办理相关移交手续。 2、临时设施准备:主要包括办公室、值班室、配电房、水泥库、围墙、道路、工具房、大门、钢筋加工棚、模板加工棚、厕所等。生活区内主要包括办公场所、职工宿舍、食堂、浴室、等。 3、场地准备:设置好场内排水系统,现场所有雨污水的排放均按唐山市相关规定有组织地通过排水管道排入路雨污水管网。 4、施工用水、电准备:建设单位已提供400KVA变压器和DN50的水源,主要工作包括施工区、生活区水电线路的布置及进水、排水管道的铺设。 第二节、技术准备 1、施工前均要将安全文明施工方案、现场总平面图等相关资料及时上报市建管局、安全站以及建设、监理审批,并按照审批意见予以实施。 2、组织各专业工长、班组长、技术员仔细阅读图纸,参加图纸会审、熟悉设计意图及相关细节。开展各类钢筋、模板的放样、计算工作。确定施工测量所需的几何参数。制定试验计划、进行混凝土配合比试配。 3、根据各子分部、分项工程内容、计算工程量,做好工料分析,据此编制施工计划。 第三节、材料准备 1、根据各个时期的进度要求,对材料的需要量进行分析,对材料的名称、规格、使用时间、数量进行统计、汇总编制采购计划,确定堆放、储存场地和组织运输。 2、对所有需要的材料均需提前三天进行上报,以便及时采购。 第四节、人员组织 第四章、施工流程及进度计划 1、施工流程: 定位放线机械开挖土方垫层施工柱、墙施工基础梁施工砌体基础分部验收基础土方回填钢结构施工楼板施工砌体、隔墙施工给水、排水施工电气施工装饰装修施工自验、整改竣工验收 2、施工安排: 2.1、根据现场初步定位观察,开挖土方时采用1:0.75进行放坡。 2.2、各分项工程工期、进度计划见附图。 第五章、主要分项工程施工方案 第一节、基础施工 一、建筑轴线定位: 1.1、定位点依据:根据测绘部门提供的01、02、04三个定位点进行施工现场定位。 1.2、测量定位工具: 1.2.1、建筑物各周边轴线定位采用J2经纬仪进行。 1.2.2、标高引测采用N2型水准仪进行。

第二章 固体结构

第二部分 固体结构 概述:物质聚集状态通常分为气态、液态、固态。固态物质按其原子排列特征又分为晶态和非晶态,前者中原子在空间呈有规律的周期性重复排列,而后者中原子呈无规则排列;材料的性能与材料中各元素的原子结构和键合、原子的排列和运动规律及原子集合体的形貌特征等密切相关,因此,研究固态物质内部结构,即原子排列和分布规律是了解和掌握材料性能的基础,只有这样我们才能从物质内部找到改善和发展新材料的途径。 第一节 晶体学基础 1.空间点阵与晶胞 空间点阵:将理想晶体中的质点抽象为几何点,这些几何点在空间周期性排列所组成的阵列; 晶胞:由空间点阵中选取的基本单元即为晶胞,但必须服从一定的选取规则; 晶胞选取规则:1.选取的平行六面体应能反映出点阵的最高对称性;2.平行六面体中棱和角相等的数目应最多;3.当棱边夹角存在直角时,直角数目应最多;4.在满足上述条件下,平行六面体应具有最小体积。 晶系与布拉维点阵: 晶系 晶胞参数 布拉维点阵 举例 三斜 a≠b≠c,α≠β≠γ≠90° 简单三斜 K 2CrO 7 单斜 a≠b≠c,α=γ=90°≠β 简单单斜,底心单斜 β-S,CaSO 4·2H 2O 正交 a≠b≠c,α=β=γ=90° 简单正交,底心正交,体心正交,面心正交 α-S,Fe 3C 六方 a 1=a 2=a 3≠c, α=β=9°,γ=120° 简单六方 Zn,Cd 菱方 a=b=c,α=β=γ≠90° 简单菱方 As,Sb,Bi 四方 a=b≠c,α=β=γ=90° 简单四方,体心四方 TiO 2 立方 a=b=c,α=β=γ=90° 简单立方,体心立方,面心立方 Cu,Ag,Au 晶体结构与空间点阵的关系:☆ 空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,故它只能由14中类型;而晶体结构指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。 2.晶向指数与晶面指数☆ 晶向指数 [uvw] 晶向族 类似于向量的方向向量 晶面指数 (hkl ) 晶面族{hkl } 类似与平面的法向向量 三轴定向与四轴定向之间的转换: [UVW] [uvtw] U=u-t V=v-t W=w u=(2U-V)/3 v=(2V-U)/3 t=-u+v w=W 晶带:所有平行或相交于某一晶向的晶面构成一个晶带。 晶带定律:hu+kv+lw=0 晶面间距计算公式: 对于简单晶胞如下:

相关主题
文本预览
相关文档 最新文档