当前位置:文档之家› ABAQUS拓扑优化分析手册用户手册

ABAQUS拓扑优化分析手册用户手册

ABAQUS拓扑优化分析手册用户手册
ABAQUS拓扑优化分析手册用户手册

ABAQUS拓扑优化分析手册/用户手册

分析手册:

13. Optimization Techniques优化技术

13.1 结构优化:概述

13.1.1 概述

ABAQUS结构优化是一个帮助用户精细化设计的迭代模块。结构优化设计能够使得结构组件轻量化,并满足刚度和耐久性要求。ABAQUS提供了两种优化方法——拓扑优化和形状优化。拓扑优化(Topology optimization)通过分析过程中不断修改最初模型中指定优化区域的单元材料性质,有效地从分析的模型中移走/增加单元而获得最优的设计目标。形状优化(Shape optimization)则是在分析中对指定的优化区域不断移动表面节点从而达到减小局部应力集中的优化目标。拓扑优化和形状优化均遵从一系列优化目标和约束。

最优化方法(Optimization)是一个通过自动化程序增加设计者在经验和直觉从而缩短研发过程的工具。想要优化模型,必须知道如何去优化,仅仅说要减小应力或者增大特征值是不够,做优化必须有更专门的描述。比方说,想要降低在两种不同载荷工况下的最大节点力,类似的还有,想要最大化前五阶特征值之和。这种最优化的目标称之为目标函数(Object Function) 。另外,在优化过程中可以同时强制限定某些状态参量。例如,可以指定某节点的位移不超过一定的数值。这些强制性的指定措施叫做约束(Constraint)。

ABAQUS/CAE可以创建模型然后定义、配置和执行结构优化。更多信息请参考用户手册第十八章。

13.1.2 术语(Terminology)

设计区域(Design area): 设计区域即模型需要优化的区域。这个区域可以是整个模型,也可以是模型的一部分或者数部分。一定的边界条件、载荷及人为约束下,拓扑优化通过增加/删除区域中单元的材料达到最优化设计,而形状优化通过移动区域内节点来达到优化的目的。

设计变量(Design variables):设计变量即优化设计中需要改变的参数。拓扑优化中,设计区域中单元密度是设计变量,ABAQUS/CAE优化分析模块在其优化迭代过程中改变单元密度并将其耦合到刚度矩阵之中。实际上,拓扑优化将模型中单元移除的方法是将单元的质量和刚度充分变小从而使其不再参与整体结构响应。对于形状优化而言,设计变量是指设计区域内表面节点位移。优化时,ABAQUS或者将节点位置向外移动或者向内移动,抑或不移动。在此过程中,约束会影响表面节点移动的多少及其方向。优化仅仅直接修改边缘处的节点,而边缘内侧的节点位移通过边缘处节点插值得到。

设计循环(Design cycle): 优化分析是一种不断更新设计变量的迭代过程,执行ABAQUS 进行模型修改、查看结果以及确定是否达到优化目的。 其中每次迭代叫做一个设计循环。

优化任务(Optimization task): 一次优化任务包含优化的定义,比如设计响应、目标、限制条件和几何约束。

设计响应(Design responses): 优化分析的输入量称之为设计响应。设计响应可以直接从ABAQUS的结果输出文件.odb中读取,比如刚度、应力、特征频率及位移等。或者ABAQUS 从结果文件中计算得到模型的设计响应,例如质心、重量、相对位移等。一个设计响应与模型紧密相关,然而,设计响应存在一定的范围,例如区域内的最大应力或者模型体积。另外,设计响应也与特点的分析步和载荷状况有关。

目标函数(Objective functions): 目标函数决定了优化的目标。一个目标函数是从设计响应中萃取的一定范围内的值,如最大位移和最大应力。一个目标函数可以用多个设计响应来公式表示。如果设定目标函数最小化或者最大化设计响应,ABAQUS拓扑优化模块则通过增加每个设计响应值代入目标函数进行计算。另外,如果有多个目标函数,可以试用权重因子定义每个目标函数的影响程度。

约束(Constraints): 约束亦是从设计变量中萃取的一定范围的数值。然而,一个约束不能由设计响应集合而来。约束限定了设计响应 ,比如可以指定体积必须降低45%或者某个区域的位移不能超过1mm。约束也可以指定制造跟优化无关的制造或者几何约束,比如轴承面的直径不能改变。

停止条件(Stop conditions): 全局停止条件决定了优化的最大迭代次数。 局部停止条件在局部最大/最小达成之后指定优化应该停止。

13.1.3 ABAQUS/CAE结构优化步骤

下面的步骤需要合并到ABAQUS/CAE模型结构优化设计中:

1) 创建需要优化的ABAQUS模型。

2) 创建一个优化任务。

3) 创建设计响应。

4) 利用设计响应创建目标函数和约束。

5) 创建优化进程,提交分析。

基于优化任务的定义及优化程序,ABAQUS/CAE拓扑优化模块进行迭代运算:

1) 准备设计变量(单元密度或者表面节点位置)。

2) 更新ABAQUS有限元模型。

3) 执行ABAQUS/Standard分析。

这些迭代或者设计循环不会停止,除非:

1) 最大迭代数达到

2) 指定的停止条件达到。

下图描述了ABAQUS优化分析的过程:

13.1.4 拓扑优化

拓扑优化开始于包含指定条件(例如边界条件和载荷)的初始设计开始。优化分析过程在符合优化约束(比如最小体积或者最大位移)的前提下改变初始设计区域的单元密度和刚度从而确定结构新的材料分布方式。

下图展示了汽车控制臂在17次设计循环中拓扑优化的过程,其中优化的目标函数是试图最小化控制臂的最大应变能,最大化控制臂的刚度。约束为降低57%的产品体积。优化过程中,控制臂中部的部分单元不断被移除。

ABAQUS可以应用如下目标到拓扑优化过程中:

1) 应变能(结构刚度的度量值)

2) 特征频率

3) 内力和支反力

4) 重量和体积

5) 重心

6) 惯性矩。

可以应用其他相同约束变量到拓扑优化分析中。另外,拓扑优化同样可以考虑标准产品制造过程。例如铸造和冲压。可以冻结指定区域、应用数量尺寸、对称性及耦合约束。拓扑优化的例子在ABAQUS Example Problems Manual的Section11.1.1中。

13.1.5 基于密度(一般)VS刚度的拓扑优化

拓扑优化支持两种算法——一般算法比较灵活,可以应用到大多数问题中;基于刚度的算法,更为有效,当时应用能力有限。ABAQUS默认采用一般算法,但是当创建优化任务的时候可以进行优化算法的选择。每种优化算法达到优化目标的过程是不同的。

算法

一般拓扑优化算法在满足目标函数和约束前提下使得密度及刚度较好地匹配设计变量,可参考Bends?e and Sigmund (2003),文献中有一般算法的部分描述。相反的,刚度拓扑优化作为一种更为有效的算法,使用了应变能和节点力作为输入量而且并不需要计算设计变量的局部刚度。基于刚度的优化算法是德国卡尔斯鲁厄大学(U.Karlsruhe)的Bakhtiary (1996)提出的。

中间密度单元

一般算法导致了最终设计中间单元的产生(相对密度处于0~1之间的单元)。相反地,基于刚度的优化算法会产生不是空材料即是实体(0或者1)。

优化设计循环步

优化设计需要的循环步在优化计算开始的时候是并不知晓的,但是一般来说,这个步数处于30~45之间。基于刚度的优化算法能够更快地达到优化算法的解(默认15步)。

分析类型

一般优化算法支持线性静力、非线性静力及线性模态分析。两种算法均支持几何非线性和接触,以及很多非线性材料。

此外,静力拓扑优化中可以指定位移。然而,模态分析不可指定位移。拓扑优化支持符合材料分析,个别复合材料的碾压分析是不支持的,如不能指定复合材料纤维走向等。

目标函数和约束

一般优化算法可以使用一个目标函数和数个约束,这些约束可以全部是不等式。多种设计响应可以被定义为目标和约束,例如应变能、位移和旋转、支反力及内力、特征频率和材料的体积及重量。基于刚度的拓扑优化算法更为有效,然而适用性比较差,仅支持应变能(一种刚度的两度)作为目标函数,材料体积作为约束方程。

13.1.6 形状优化

形状优化采用了跟基于刚度的拓扑优化算法类似的算法。形状优化一般是对表面节点进行较小的调整以减小局部应力集中。形状优化用于产品外形需要微调的情况。

形状优化试图重置既定区域的表面节点位置直到此区域的应力成为常数(应力均匀)。下图是连杆形状优化以减小局部应力集中的例子:

形状优化支持一下目标:

1) 应力和接触应力

2) 自然频率

3) 弹性、塑性、全应变和应变能密度

形状优化只能应用体积约束,另外,可以使用一定数量的制造几何限制条件使提出的设计能够继续铸造或者冲压过程。也可以冻结某特定区域、应用数量尺寸、对称性及耦合限制等。

形状优化的网格光顺

形状优化过程中,ABAQUS/CAE拓扑优化模块修改模型表面。如果拓扑优化模块,只对表面节点进行位置调整而不对表层内节点进行调整,单元将会发生扭曲现象。这样,ABAQUS 的优化结果将变得不可信。

为了获得相当质量的表面单元,ABAQUS/CAE拓扑优化模块可以对既定区域进行网格光顺,从而使得内外节点位置关系更加和谐。需要注意的是,在进行优化之前,指定区域必须具有较好的网格质量。

ABAQUS/CAE拓扑优化模块可以光顺标准连续单元,比如三角形单元、四边形单元和四面体单元。其他单元类型将不会被光顺化。可以指定光顺单元的倾斜角度或者单元质量。

网格光顺化是一个比较耗费计算量的过程。光顺算法是基于单元的,计算时间也会随着区域内单元密度及自由度情况响应增加。因此,可以只对优化区域内的单元指定网格光顺化。网格光顺化的区域节点必须是自由的,不能应用于有约束的节点或者区域。网格光顺化的设定具体参见ABAQUS/CAE用户手册。

网格光顺化可以应用到优化区域也可以应用到非优化区域,然而优化区域必须包含于网格光顺化指定区域。

ABAQUS/CAE在网格光顺化中会自动将所有表面单元进行约束,从而使优化结果得到保存。然而可以选择设计区域附近的表层节点进行光顺化移动,从而使得优化区域和非优化设计区域能够更加连续。

默认的网格光顺化采用强制拉普拉斯网格光顺化算法。但是,如果模型比较小,比如小于1000个节点,可以采用局部梯度化网格光顺算法。在每次运算中,局部梯度化网格光顺算法进行质量不好的单元的辨别,然后通过移动节点对其进行光顺。局部梯度化光顺通常产生具有最佳外形的单元。对于较大模型,局部梯度化网格光顺算法一般会在最佳网格质量形成之前停止,这样只有最坏的单元质量得到了光顺。

ABAQUS拓扑优化手册-OverView.doc(103 KB, 下载次数: 81)

-----------------------分割线-------------------------20120601更新by songerking

13.2 优化模型

13.2.1设计响应

13.2.1.1概述

一个设计响应:

1) 是一个单范围值,例如结构的体积

2) 通过ABAQUS/CAE读取odb文件的结果和模型文件来计算

3) 与目标函数和约束相关联(比如,可以创建一个目标函数和约束去最小化节点位移或者强制降低结构重量50%以上)

4) 必须在一定的分析过程基础上(比如,在对既定区域选择最大化最小特征频率则需要进行提取特征频率的分析)

尽管已有一些限制应用到了响应上,还必须在ABAQUS/CAE拓扑优化模块中通过操作来或者设计响应的范围值。例如,一个体积设计响应可以只用于设计区域的体积之和,计算von Mises应力的设计响应必须是模型中一定区域的应力最大值。如下设计响应操作为ABAQUS/CAE拓扑优化模块(以后简称ATOM)所提供:

最小化或者最大化:既定区域的最小值或者最大值。ATOM允许的最大值操作为:应力,接触应力和应变设计响应。

求和:既定区域所有值求和值。ATOM允许体积、重量、惯性矩和重力设计响应的和值优化。

13.2.1.2基于刚度的拓扑优化设计响应

ATOm提供基于刚度的拓扑优化方法以应变能和体积设计响应。

应变能

结构的顺从性是结构挠性及刚性的量度,被定义为所有单元的应变能之和。顺从性与刚度成反比,因此最小化顺从性计算最大化全局刚度。如果载荷是集中力或者面力,则必须选择最小化应变能而不是最大化整体刚度;而如果载荷是热应力场,优化就会在使得结构变软的同时,应变能不断减小,因为降低应变能会导致硬化,所以应该一直选择最大化应变能。另外,如果模型指定了位移,则须最大化应变能。

拓扑优化考虑所有单元的总应变能,因此,如果选择应变能作为目标函数,则须将目标应用于整个模型。优化过程中不能使用应变能作为约束。

Abaqus/CAE Usage:

Optimization module: Task stiffness topology task, Design Response Create: Single-term, Variable Strain energy

体积

体积是设计区域内所有单元体积之和。对于大多数优化问题,需要给定一个ABAQUS 模型。但是如果最小化应变能(最大化刚度)。如果优化需要最小化应变能,则不可用体积作为约束。

Abaqus/CAE Usage:

Optimization module: Task stiffness topology task, Design Response Create:

Single-term, Variable:Volume

13.2.1.3基于密度的拓扑优化(一般拓扑优化)设计响应

ATOM一般拓扑优化算法支持重心、平动、旋转、特征频率、惯性矩、内力、反力、力矩、应变能、体积和重量设计响应。

重心

在优化分析中将指定区域的重心作为一个设计变量,并且可以选择三个主分量:

当ATOM计算重心时,单元会以当前相对密度为计算依据。

举例说明,当需要约束Y方向的重心在某个范围内的时候,这即为一个重心优化问题。设计响应会考虑整个模型或者指定区域的重心位置。

如果使用了局部坐标系,ATOM会根据坐标轴和原点重新计算重心。如果不选择使用局部坐标系,ATOM将使用整体坐标系。

壳体及膜区域的重心在ATOM中考虑其厚度后作为三维区域处理的。ATOM只能对拓扑优化支持的单元类型计算重心。因此,ATOM计算得到的重心跟ABAQUS/Stardard和ABAQUS/Explicit不同,例如,ATOM不会考虑线区域。

Abaqus中Topology和Shape优化指南

Abaqus中Topology和Shape优化指南

目录 1. 优化模块界面......................................................................................................- 1 - 2. 专业术语..............................................................................................................- 1 - 3.定义拓扑优化Task(general optimization和condition-based optimization).......- 2 - 3.1 General Optimization 参数设置.................................................................- 3 - 3.1.1 Basic选项参数..................................................................................- 3 - 3.1.2 Density选项参数..............................................................................- 4 - 3.1.3 Perturbation选项参数.......................................................................- 5 - 3.1.4 Advanced选项参数...........................................................................- 5 - 3.2 Condition-based topology Optimization 参数设置....................................- 6 - 3.2.1 Basic选项参数..................................................................................- 7 - 3.2.2 Advanced选项参数...........................................................................- 7 - 4 定义Shape Optimization Task方法....................................................................- 8 - 4.1 Basic选项参数............................................................................................- 8 - 4.2 Mesh Smoothing Quality选项参数............................................................- 9 - 4.3 Mesh Smoothing Quality选项参数..........................................................- 11 - 5 定义design response变量方法.........................................................................- 13 - 5.1 单个design response定义方法...............................................................- 14 - 5.2 combined design response定义方法........................................................- 15 - 5.3 design response使用注意事项.................................................................- 17 - 5.3.1 定义design response的操作.........................................................- 17 - 5.3.2 condition-based topology optimization的design response............- 18 - 5.3.3 general topology optimization的design response..........................- 18 - 5.3.4 design response for shape optimization...........................................- 21 - 6 定义objective function方法..............................................................................- 22 - 6.1 目标函数定义...........................................................................................- 23 - 6.2 目标函数的运算.......................................................................................- 23 - 6.2.1 min运算..........................................................................................- 23 - 6.2.2 max运算..........................................................................................- 24 -

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

ABAQUS拓扑优化手册

ABAQUS拓扑优化分析手册/用户手册 分析手册: 13. Optimization Techniques优化技术 13.1 结构优化:概述 13.1.1 概述 ABAQUS结构优化是一个帮助用户精细化设计的迭代模块。结构优化设计能够使得结构组件轻量化,并满足刚度和耐久性要求。ABAQUS提供了两种优化方法——拓扑优化和形状优化。拓扑优化(Topology optimization)通过分析过程中不断修改最初模型中指定优化区域的单元材料性质,有效地从分析的模型中移走/增加单元而获得最优的设计目标。形状优化(Shape optimization)则是在分析中对指定的优化区域不断移动表面节点从而达到减小局部应力集中的优化目标。拓扑优化和形状优化均遵从一系列优化目标和约束。 最优化方法(Optimization)是一个通过自动化程序增加设计者在经验和直觉从而缩短研发过程的工具。想要优化模型,必须知道如何去优化,仅仅说要减小应力或者增大特征值是不够,做优化必须有更专门的描述。比方说,想要降低在两种不同载荷工况下的最大节点力,类似的还有,想要最大化前五阶特征值之和。这种最优化的目标称之为目标函数(Object Function)。另外,在优化过程中可以同时强制限定某些状态参量。例如,可以指定某节点的位移不超过一定的数值。这些强制性的指定措施叫做约束(Constraint)。 ABAQUS/CAE可以创建模型然后定义、配置和执行结构优化。更多信息请参考用户手册第十八章。 13.1.2 术语(Terminology) 设计区域(Design area): 设计区域即模型需要优化的区域。这个区域可以是整个模型,也可以是模型的一部分或者数部分。一定的边界条件、载荷及人为约束下,拓扑优化通过增加/删除区域中单元的材料达到最优化设计,而形状优化通过移动区域内节点来达到优化的目的。 设计变量(Design variables):设计变量即优化设计中需要改变的参数。拓扑优化中,设计区域中单元密度是设计变量,ABAQUS/CAE优化分析模块在其优化迭代过程中改变单元密度并将其耦合到刚度矩阵之中。实际上,拓扑优化将模型中单元移除的方法是将单元的质量和刚度充分变小从而使其不再参与整体结构响应。对于形状优化而言,设计变量是指设计区域内表面节点位移。优化时,ABAQUS或者将节点位置向外移动或者向内移动,抑或不移动。在此过程中,约束会影响表面节点移动的多少及其方向。优化仅仅直接修改边缘处的节点,而边缘内侧的节点位移通过边缘处节点插值得到。 设计循环(Design cycle): 优化分析是一种不断更新设计变量的迭代过程,执行ABAQUS进行模型修改、查看结果以及确定是否达到优化目的。其中每次迭代叫做一个设计循环。 优化任务(Optimization task):一次优化任务包含优化的定义,比如设计响应、目标、限制条件和几何约束。 设计响应(Design responses): 优化分析的输入量称之为设计响应。设计响应可以直接从ABAQUS的结果输出文件.odb中读取,比如刚度、应力、特征频率及位移等。或者ABAQUS 从结果文件中计算得到模型的设计响应,例如质心、重量、相对位移等。一个设计响应与模型紧密相关,然而,设计响应存在一定的范围,例如区域内的最大应力或者模型体积。另外,设计响应也与特点的分析步和载荷状况有关。 目标函数(Objective functions): 目标函数决定了优化的目标。一个目标函数是从设计响应中萃取的一定范围内的值,如最大位移和最大应力。一个目标函数可以用多个设计响应

ANSYS拓扑优化原理讲解以及实例操作

拓扑优化是指形状优化,有时也称为外型优化。 拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL ,TOPO 命令来绘出。拓扑优化的目标——目标函数——是在满足结构的约束(V )情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量。 结构拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最佳技术条件和工艺条件的产品。连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据已知边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最佳设计方案。拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。拓扑优化基于概念设计的思想,作为结果的设计空间需要被反馈给设计人员并做出适当的修改。最优的设计往往比概念设计的方案结构更轻,而性能更佳。经过设计人员修改过的设计方案可以再经过形状和尺寸优化得到更好的方案。 5.1.2优化拓扑的数学模型 优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小(或者最大)。一种典型的数学表达式为: ()()()12,,0,,0min ,g x x v g x x v f x v ?=??≤???? 式中,x -系统的状态变量;12g g 、-一等式和不等式的结束方程;(),f x v -目标函数;v -设计变量。 注:在上述方程中,x 作为系统的状态变量,并不是独立的变量,它是由设计变量得出的,并且与设计变量相关。 优化拓扑所要进行的数学运算目标就是,求取合适的设计变量v ,并使得目标函数值最小。 5.2基于ANSYS 的优化拓扑的一般过程 (进行内容排版修改) 在ANSYS 中,进行优化拓扑,一般分为6个步骤。具体流程见图5-1:

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

abaqus常用技巧总结

a b a q u s常用技巧总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Abaqus常用技巧总结 本手册是由simwe等论坛上精华帖以及本人下载的其他资料整理,由于很多资料搜集已经很久,而且时间有限,都没有注明原作者,也没有最资料进行分类整理,见谅。如需要,请PM给我。 Shelly31 Python.tzy@https://www.doczj.com/doc/9714397341.html, 2007.8.1 建议阅读方式:

目录 ABAQUS常用技巧总结 (2) 目录 (3) 1.对TIME INCREMENT的根本理解 (5) 2.ABAQUS 请问 MOMENT的加载 (5) 3.ABAQUS计算时C盘的临时文件太大了,怎么改目录? (6) 4.CAE中如何加预应力 (6) 5.HYPERMESH里面看到ABAQUS分析的结果 (6) 6.X-Y PLOTS (6) 7.把上一次的分析结果作为下一次分析的初始条件该怎么做 (7) 8.材料方向与增量步 (8) 9.多个INP文件如何实现批处理 (9) 10.关于ABAQUS的任务管理 (10) 11.关于数据的输入输出 (12) 12.后处理积分 (12) 13.接触分析激活杀死 (13) 14.利用QUEUE的功能由本地机器向远程UNIX机器提交ABAQUS作业的方法[精华] (14) 15.利用命令进行计算时如何设置调用内存量 (17) 16.清华大学BBS的ABAQUS精华 (17) 17.请问怎么实现双曲线 (55)

18.取消坐标系等的显示 (56) 19.如何在计算中修改材料特性 (57) 20.输出计算过程中的总质量和总刚度矩阵 (60) 21.先张预应力: (61) 22.用户子程序的使用 (61) 23.怎样设定用双CPU机器进行ABAQUS计算 (61) 24.中途停止正在运算的JOB (62) 25.自适应网格技术 (62) 26.ABAQUS计算与内存 (63) 27.质量缩放 (64) 28.ABAQUS多处理器进行并行计算的效果研究 (79) 29.YAHOO讨论组摘录--CONTACT+OVERCLOSURE (81) 30.原创:无限元建立方法,希望得到加分 (95) 31.[分享]ABAQUS 使用问答 (102) 32.[转帖]ABAQUS6.4导入外来模型的几点小经验! (122) 33.ABAQUS的多图层绘图 (125) 34.子结构 (125) 35.如何在不同的分析步改变材料的参数 (126) 36.模型的重启动分析-RESTART (127) 37. ABAQUS的单位心得 (128)

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

拓扑优化技术

拓扑优化技术 第1节基本知识 一、拓扑优化的概念 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。 与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。 拓扑优化的目标—目标函数—是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。 ANSYS提供的拓扑优化技术主要用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保系统的整体刚度(静力分析)、自振频率(模态分析)在满足工程要求的条件下获得极大或极小值。 拓扑优化应用场合:线性静力分析和模态分析。 拓扑优化原理:满足结构体积缩减量的条件下使目标函数结构柔量能量(the enery of structure compliance—SCOMP)的极小化。结构柔量能量极小化就是要求结构刚度的最大化。 例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图19-1表示满足约束和载荷要求的拓扑优化结果。图19-1a表示载荷和边界条件,图19-b 表示以密度云图形式绘制的拓扑结果。 图19-1 体积减少60%的拓扑优化示例 二、拓扑优化的基本过程 拓扑优化的基本步骤如下:

1.定义结构问题定义材料弹性模量、泊松系数、材料密度。 2.选择单元类型拓扑优化功能中的模型只能采用下列单元类型: ● 二维实体单元:Plane2和Plane82,用于平面应力问题和轴对称问题。 ● 三维实体单元:Solid92、Solid95。 ● 壳单元:SHELL93。 3.指定优化和不优化区域ANSYS只对单元类型编号为1的单元网格部分进行拓扑优 化,而对单元类型编号大于1的单元网格部分不进行拓扑优化,因此,拓扑优化时要确保进行拓扑优化区域单元类型编号为1,而不进行拓扑优化区域单元类型编号大于1即可。 4.定义并控制载荷工况或频率提取可以在单个载荷工况和多个载荷工况下做拓扑优化,单载荷工况是最简便的。 要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。 5.定义和控制优化过程拓扑优化过程包括定义优化参数和进行拓扑优化两个部分。用户可以用两种方式运行拓扑优化:控制并执行每一次迭代或自动进行多次迭代。 ANSYS有三个命令定义和执行拓扑优化:TOPDEF,TOPEXE和TOPITER。TOPDEF 命令定义要省去材料的量,要处理载荷工况的数目,收敛的公差;TOPEXE命令执行一次优化迭代;TOPITER命令执行多次优化迭代。 (1)定义优化参数首先要定义优化参数。用户要定义要省去材料的百分比,要处理载荷工况的数目,收敛的公差。 命令:TOPDEF GUI:Main Menu>Solution>Solve>Topological opt 注:本步所定义的内容并不存入ANSYS数据库中,因此在下一个拓扑优化中要重新使用TOPDEF命令。 (2)执行单次迭代定义好优化参数以后,可以执行一次迭代。迭代后用户可以查看收敛情况并绘出或列出当前的拓扑优化结果。可以继续做迭代直到满足要求为止。如果是在GUI方式下执行,在Topological Optimization 对话框(ITER域)中选择一次迭代。 命令:TOPEXE GUI:Main Menu>Solution>Solve>Topological opt TOPEXE的主要优点是用户可以设计自己的迭代宏进行自动优化循环和绘图。在下一节,可以看到TOPITER命令是一个ANSYS的宏,用来执行多次优化迭代。 (3)自动执行多次迭代 在定义好优化参数以后,用户可以自动执行多次迭代。在迭代完成以后,可以查看收敛情况并绘出或列出当前拓扑形状。如果需要的话,可以继续执行求解和迭代。TOPITER 命令实际是一个ANSYS的宏,可以拷贝和定制。

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS就是国际上最先进得大型通用有限元计算分析软件之一,具有惊人得广泛得模拟能力、它拥有大量不同种类得单元模型、材料模型、分析过程等、可以进行结构得静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富得单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛得材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适得材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构得几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适得荷载增量与收敛准则,它不仅能自动选择这些参数得值,而且在分析过程中也能不断调整这些参数值,以确保获得精确得解答、用户几乎不必去定义任何参数就能控制问题得数值求解过程。 1、1ABAQUS产品 ABAQUS由两个主要得分析模块组成,ABAQUS/Standard与AB AQUS/Explicit。前者就是一个通用分析模块,它能够求解广泛领域得线性与非线性问题,包括静力、动力、构件得热与电响应得问题。后者就是一个具有专门用途得分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时得动态事件,如冲击与爆炸问题,此外,它对处理改变接触条件得高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(plete ABAQUS Environment) 它就是ABAQUS得交互式图形环境、通过生成或输入将要分析结构得几何形状,并将其分解为便于网格划分得若干区域,应用它可以方便而快捷地构造模型,然后对生成得几何体赋予物理与材料特性、荷载以及边界条件、ABAQUS/CAE具有对几何体划分网格得强大功能,并可检验所形成得分析模型。模型生成后,ABAQUS/CAE可以提交、监视与控制分析作业。而Visualization(可视化)模块可以用来显示得到得结果、 1。2有限元法回顾 任何有限元模拟得第一步都就是用一个有限元(Finite Element)得集合来离散(Discretize)结构得实际几何形状,每一个单元代表这个实际结构

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

最新Abaqus6.13拓扑优化 atom-book超全学习资料-05

L5.1 w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s Lesson content: Problem Statement Topology Optimization – Results Topology Optimization – Results Examination Topology Optimization – Analysis Conclusions Lesson 5: Nonlinear Geometric Effects in Topology Optimization 30 minutes L5.2 w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s Problem Statement Consider a beam structure, clamped at both ends, subjected to a prescribed displacement in its center region. Topology optimization task: Minimize the strain energy while using only 10% of the original mass. Evaluated solver and material combinations: Linear geometry and linear material Linear geometry and nonlinear material Nonlinear geometry and linear material Nonlinear geometry and nonlinear material prescribed displacement Prescribe displacement c l a m p e d e n d s y m m e t r y Mechanical model Finite element model, exploiting symmetry

ABAQUS教材学习:入门手册

ABAQUS教材:入门使用手册 一、前言 ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。它拥有大量不同种类的单元模型、材料模型、分析过程等。可以进行结构的静态与动态分析,如:应力、变形、振动、冲击、热传递与对流、质量扩散、声波、力电耦合分析等;它具有丰富的单元模型,如杆、梁、钢架、板壳、实体、无限体元等;可以模拟广泛的材料性能,如金属、橡胶、聚合物、复合材料、塑料、钢筋混凝土、弹性泡沫,岩石与土壤等。 对于多部件问题,可以通过对每个部件定义合适的材料模型,然后将它们组合成几何构形。对于大多数模拟,包括高度非线性问题,用户仅需要提供结构的几何形状、材料性能、边界条件、荷载工况等工程数据。在非线性分析中,ABAQUS能自动选择合适的荷载增量和收敛准则,它不仅能自动选择这些参数的值,而且在分析过程中也能不断调整这些参数值,以确保获得精确的解答。用户几乎不必去定义任何参数就能控制问题的数值求解过程。 1.1 ABAQUS产品 ABAQUS由两个主要的分析模块组成,ABAQUS/Standard和ABAQUS/Explicit。前者是一个通用分析模块,它能够求解广泛领域的线性和非线性问题,包括静力、动力、构件的热和电响应的问题。后者是一个具有专门用途的分析模块,采用显式动力学有限元格式,它适用于模拟短暂、瞬时的动态事件,如冲击和爆炸问题,此外,它对处理改变接触条件的高度非线性问题也非常有效,例如模拟成型问题。 ABAQUS/CAE(Complete ABAQUS Environment) 它是ABAQUS的交互式图形环境。通过生成或输入将要分析结构的几何形状,并将其分解为便于网格划分的若干区域,应用它可以方便而快捷地构造模型,然后对生成的几何体赋予物理和材料特性、荷载以及边界条件。ABAQUS/CAE具有对几何体划分网格的强大功能,并可检验所形成的分析模型。模型生成后,ABAQUS/CAE可以提交、监视和控制分析作业。而Visualization(可视化)模块可以用来显示得到的结果。 1.2 有限元法回顾 任何有限元模拟的第一步都是用一个有限元(Finite Element)的集合

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

(完整版)Abaqus优化设计和敏感性分析高级教程

第12章优化设计和敏感性分析 本章主要讲解应用Abaqus进行结构优化设计和敏感性分析。 目前的产品结构设计,大多靠经验,规划几种设计方案,结合CAE分析择优选取,但规划的设计方案并不一定是最优方案,故本章前半部分讲解优化设计中的拓扑优化和形状优化,并制定操作SOP,辅以工程实例详解。 工程实际中,加工制造、装配误差等造成的设计参数变异,会对设计目标造成影响,因此寻找出参数的影响大小即敏感性,变得尤为重要,故本章后半部分着重讲解敏感性分析,并制定操作SOP,辅以工程实例求出设计参数敏感度,详解产品的深层次研究。 知识要点: ?结构优化设计基础 ?拓扑、形状优化理论 ?拓扑、形状优化SOP及实例 ?敏感性分析理论 ?敏感性分析SOP及实例 12.1 优化设计基础 优化设计以数学中的最优化理论为基础,以计算机为手段,根据设计所追求的性能目标,建立目标函数,在满足给定的各种约束条件下,优化设计使结构更轻、更强、更耐用。 在Abaqus 6.11之前,需要借用第三方软件(比如Isight、TOSCA)实现优化设计及敏感性分析,远不如Hyperworks及Ansys等模块化集成程度高。从Abaqus 6.11新增Optimization module后,借助于其强大的非线性分析能力,结构优化设计变得更具可行性和准确性。 12.1.1 结构优化概述 结构优化是一种对有限元模型进行多次修改的迭代求解过程,此迭代基于一系列约束条件向设定目标逼近,Abaqus优化程序就是基于约束条件,通过更新设计变量修改有限元模型,应用Abaqus进行结构分析,读取特定求解结果并判定优化方向。 Abaqus提供了两种基于不同优化方法的用于自动修改有限元模型的优化程序:拓扑优化(Topology optimization)和形状优化(Shape optimization)。两种方法均遵从一系列优化目

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

相关主题
文本预览