当前位置:文档之家› 平面几何经典难题与解答

平面几何经典难题与解答

平面几何经典难题与解答
平面几何经典难题与解答

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .

2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、

CC 1、DD 1的中点.

求证:四边形A 2B 2C 2D 2是正方形.(初二)

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、

BC 的延长线交MN 于E 、F .

求证:∠DEN =∠F .

A P C D

B A F G C

E B

O D D 2 C 2

B 2 A 2

D 1 C 1 B 1

C B D

A A 1 B

F

1、已知:△ABC 中,H 为垂心(各边高线的交点),O

(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)

2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线

EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)

3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:

设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)

4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形

CBFG ,点P 是EF 的中点.

求证:点P 到边AB 的距离等于AB 的一半.

1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

求证:CE =CF .(初二)

2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .

求证:AE =AF .(初二)

3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .

求证:PA =PF .(初二)

4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交

于B 、D .求证:AB =DC ,BC =AD .

1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.

求:∠APB 的度数.(初二)

2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)

3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC

4、平行四边形ABCD

中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.

2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC

300,∠EBA=200,求∠BED的度数.

经典难题解答:

经典难题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,

即△GHF∽△OGE,可得EO

GF

=

GO

GH

=

CO

CD

,又CO=EO,所以CD=GF得证。

2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得

△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,

由A2E=1

2A1B1=1

2

B1C1= FB2 ,EB2=1

2

AB=1

2

BC=F C1 ,又∠GFQ+∠Q=900和

∠GE B2+∠Q=900,所以∠GE B2=∠GFQ又∠B2FC2=∠A2EB2,

可得△B2FC2≌△A2EB2,所以A2B2=B2C2,

又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,

从而可得∠A2B2 C2=900 ,

同理可得其他边垂直且相等,

从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典难题(二)1.(1)延长AD到F连BF,做OG⊥AF,

又∠F=∠ACB=∠BHD,

可得BH=BF,从而可得HD=DF,

又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB,OC,既得∠BOC=1200,

从而可得∠BOM=600,

所以可得OB=2OM=AH=AO,

得证。

3.作OF ⊥CD ,OG ⊥BE ,连接OP ,OA ,OF ,AF ,OG ,AG ,OQ 。

由于

22AD AC CD FD FD

AB AE BE BG BG

====

, 由此可得△ADF ≌△ABG ,从而可得∠AFC=∠AGE 。

又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ , ∠AOP=∠AOQ ,从而可得AP=AQ 。

4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ=

2

EG FH

+。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。 从而可得PQ=

2AI BI += 2

AB

,从而得证。

经典难题(三)

1.顺时针旋转△ADE,到△ABG,连接CG.

由于∠ABG=∠ADE=900+450=1350

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。推出AE=AG=AC=GC,可得△AGC为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。又∠EFC=∠DFA=450+300=750.

可证:CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。由AC=CE=2GC=2CH,

可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,

又∠FAE=900+450+150=1500,

从而可知道∠F=150,从而得出AE=AF。

3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

tan∠BAP=tan∠EPF=X

Y

=

Z

Y X Z

-+

,可得YZ=XY-X2+XZ,

即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,

得到PA=PF ,得证。

经典难题(四)

1.顺时针旋转△ABP 600,连接PQ ,则△PBQ是正三角形。

可得△PQC是直角三角形。

所以∠APB=1500。

2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.

可以得出∠ABP=∠ADP=∠AEP ,可得:

AEBP 共圆(一边所对两角相等)。 可得∠BAP=∠BEP=∠BCP ,得证。

3.在BD 取一点E ,使∠BCE=∠ACD ,既得△BEC ∽△ADC ,可得:

BE BC =AD

AC

,即AD ?BC=BE ?AC , ① 又∠ACB=∠DCE ,可得△ABC ∽△DEC ,既得

AB AC =DE

DC

,即AB ?CD=DE ?AC , ② 由①+②可得: AB ?CD+AD ?BC=AC(BE+DE)= AC ·BD ,得证。

4.过D 作AQ ⊥AE ,AG ⊥CF ,由ADE S V =

2

ABCD

S Y =DFC S V ,可得:

2AE PQ g =2

AE PQ

g ,由AE=FC 。 可得DQ=DG ,可得∠DPA =∠DPC (角平分线逆定理)。

经典难题(五)

1.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。

既得PA+PB+PC=AP++PE+EF 要使最小只要AP ,PE ,EF 在一条直线上, 即如下图:可得最小L=

(2)过P 点作BC 的平行线交AB,AC 与点D ,F 。 由于∠APD>∠ATP=∠ADP ,

推出AD>AP ① 又BP+DP>BP ② 和PF+FC>PC ③ 又DF=AF ④

由①②③④可得:最大L< 2 ; 由(1)和(2)既得:≤L <2 。

2.顺时针旋转△BPC 600,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。

既得=

= = 1)

2

=

2

3.顺时针旋转△ABP 900,可得如下图:

既得正方形边长L = a= a。

4.在AB上找一点F,使∠BCF=600,

连接EF,DG,既得△BGC为等边三角形,

可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF ,

得到BE=CF ,FG=GE 。

推出:△FGE为等边三角形,可得∠AFE=800,

既得:∠DFG=400①

又BD=BC=BG ,既得∠BGD=800,既得∠DGF=400②推得:DF=DG ,得到:△DFE≌△DGE ,

从而推得:∠FED=∠BED=300。

初中数学经典几何难题及答案39256

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4 题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 第1题图 第2题图 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 第3题图 第4题图 F

平面几何经典难题及解答

经典难题(一) 1、已知:如图,O就是半圆的圆心,C、E就是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 求证:△PBC就是正三角形. 3、如图,已知四边形ABCD、A1 CC1、DD1的中点. 求证:四边形A2B2C2D2 4、已知:如图,在四边形ABCD中 线交MN于E、F. 求证:∠DEN=∠F. 1、已知:△ABC中,H为垂心( (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH= 2、设MN就是圆O外一直线,过 D、E,直线EB及CD分别交 求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN就是圆O的弦,过 P、Q. 求证:AP=AQ.(初二) 4、如图,分别以△ABC的AC与 点P就是EF的中点. 求证:点P到边AB 1、如图,四边形ABCD为正方形 求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形 求证:AE=AF.(初二) 3、设P就是正方形ABCD一边 求证:PA=PF.(初二) 4、如图,PC切圆O于C,AC 求证:AB=DC,BC=AD.(初三 1、已知:△ABC就是正三角形,P 求:∠APB的度数.(初二) 2、设P就是平行四边形ABCD 求证:∠PAB=∠PCB.(初二)

3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC · 4、平行四边形ABCD 中,设E 、F 分别就是BC 、AB 上的一点,AE AE =CF.求证:∠DPA =∠DPC.(初二) 经典难题(五) 1、设P 就是边长为1的正△ABC 内任一点证: ≤L <2. 2、已知:P 就是边长为1的正方形ABCD 内的一点,求PA +PB +PC 3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a, 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别就是AB 、AC =200,求∠BED 的度数. 经典难题解答: 经典难题(一) 1、如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH 即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO,所以CD=GF

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第 4题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A P C D B A F G C E B O D

长线交MN于E、F.求证:∠DEN=∠F. 经典难题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 第1题图第2题图 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及 D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题: 设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)

第3题图 第4题图 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 第1题图 第2题图 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)

(完整word版)初二几何证明整理(经典题型)

如何做几何证明题 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【例题精讲】 【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【例1】已知:如图所示,?A B C 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF F E D C B A

【巩固】如图所示,已知?A B C 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。 求证:EC =ED 【例2】已知:如图所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【例3】如图所示,设BP 、CQ 是?A B C 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的 垂线。 求证:KH ∥BC A C E D F B A B D C E A B Q P H C K

平面几何经典难题

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、 DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过 O 作OA ⊥MN 于A ,自A D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、 Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

平面几何经典难题及解答之令狐文艳创作

平面几何 令狐文艳 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 24、已知:如图,在四边形ABCD 中,AD AB 、CD 的中点,AD 、BC 的延长线交求证:∠DEN =∠F . 经典难题(二) 1、已知:△ABC 中,H 心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A G C E B

两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 正方形ACDE 和正方形CBFG ,点P 是求证:点P 到边AB 的距离等于AB 经典难1、如图,四边形ABCD 为正方形,DE 相交于F . 求证:CE =CF 2、如图,四边形ABCD EC 交DA 延长线于F . 求证:AE =AF 3、设P 是正方形ABCD ∠DCE . 求证:PA =PF 4、如图,PC 切圆O 于AE 、AF 与直线PO

初中数学几何经典难题精选

初三数学总复习辅导学习资料(6)——几何经典难题 1.已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF . 2.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 3.如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、 C 2、 D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2 C 2 D 2是正方形. 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 5.已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600 ,求证:AH =AO . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

F 6.设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及 CD 分别交MN 于P 、Q .求证:AP =AQ . 7.如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作 两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ . 8.如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 9.如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于 10.如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF . E

平面几何经典难题及解答

经典难题(一) 1、已知:如图, 0是半圆的圆心, C E 是圆上的两点, CD 丄AB, EF 丄AB, EGL CO 求证:CD= GF. 4、已知:如图,在四边形 ABCD 中, AD= BC, M N 分别是AB CD 的中点,AD BC 的延长线 交MN 于E 、F . 求证:/ DEN=Z F . 2、已知:如图,P 是正方形 ABCD 内一点, 求 证:△ PBC 是正三角形 . PAD=Z PDA= 150. 3、如图,已知四边形 ABCD AiBCD 都是正方形, 的中 点. 求证:四边形A e B 2C 2C 2是正方形.(初二) A 、E 2、C 2、D 2 分别是 AA 、BB 、CG 、DD D C D C M

经典难题(二) 1、已知:△ ABC 中,H 为垂心(各边高线的交点),0为外心,且 OM L BC 于M. (1) 求证:AH= 20M (2) 若/ BAC= 600,求证: 2、设MN 是圆O 外一直线,过0作OAL MN 于A 自A 引圆的两条直线, 交圆于B 、C 及D E , 直线EB 及CD 分别交MN 于P 、Q. 求证:AP = AQ (初二) 3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC DE 设CD EB 分别交MN 于P 、Q. 求证:AP = AQ (初二) 4、如图,分别以厶 ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形CBFG AH= AO (初二) H E B C M D G E C A M N P O

平面几何经典难题及解答

平面几何 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线 交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线, 过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

初中数学经典几何难题及答案

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正 方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC , M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . D 2 C 2 B 2 A 2 D 1 C 1 B 1 C D A A 1 A N F E C D M B

经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初 二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) · A D H E M C B O · G A O D B E C Q P N M

C G D E 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边, 在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. · O Q P B D E C N M · A

平面几何经典难题及解答

经典难题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 求证:△PBC是正三角形. 3、如图,已知四边形ABCD、A1B 点. 求证:四边形A2B2C2D2 4、已知:如图,在四边形ABCD 于E、F. 求证:∠DEN=∠F. 1、已知:△ABC中,H (1)求证:AH=2OM; (2)若∠BAC=600,求证: 2、设MN是圆O外一直线,过O EB及CD分别交MN于P、Q 求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN是圆O的弦,过 求证:AP=AQ 4、如图,分别以△ABC的AC和是 EF的中点. 求证:点P到边AB 1、如图,四边形ABCD 求证:CE=CF.(初二) 2、如图,四边形ABCD 求证:AE=AF.(初二) 3、设P是正方形ABCD一边BC 求证:PA=PF.(初二) 4、如图,PC切圆O于C,AC AB=DC,BC=AD.(初三) 1、已知:△ABC是正三角形,P 求:∠APB的度数.(初二) 2、设P是平行四边形ABCD 求证:∠PAB=∠PCB

3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC · 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2. 2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数. 经典难题解答: 经典难题(一) 1.如下图做GH ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH =∠即△GHF ∽△OGE,可得 EO GF =GO GH =CO CD ,又CO=EO ,所以CD=GF 2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得△DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 3.如下图连接BC 1和AB 1分别找其中点F,E.连接C 2F 与A 2E 并延长相交于Q 点, 连接EB 2并延长交C 2Q 于H 点,连接FB 2并延长交A 2Q 于G 点, 由A 2E=12A 1B 1=12B 1C 1= FB 2 ,EB 2=12AB=1 2BC=F C 1 ,又∠GFQ+∠Q=900和 ∠GE B 2+∠Q=900,所以∠GE B 2=∠GFQ 又∠B 2FC 2=∠A 2EB 2 , 可得△B 2FC 2≌△A 2EB 2 ,所以A 2B 2=B 2C 2 , 又∠GFQ+∠HB 2F=900和∠GFQ=∠EB 2A 2 , 从而可得∠A 2B 2 C 2=900 , 同理可得其他边垂直且相等, 从而得出四边形A 2B 2C 2D 2是正方形。 4.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 经典难题(二) D

初中数学几何经典例题目及解题技巧

初中几何证明技巧及经典试题 证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。 10.等于同一角的两个角相等。 证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 *10.在圆中平分弦(或弧)的直径垂直于弦。 *11.利用半圆上的圆周角是直角。 证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。

初中数学经典几何难题, 附答案

初二数学几何经典难题 初二数学几何经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 F

G D 求证:∠DEN =∠F . 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A

初中几何经典难题

经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二) 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二) 4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.

经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二) 2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二) 3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE 和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二) 经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)

(完整word版)初中数学经典几何难题及答案

(完整word 版)初中数学经典几何难题及答案 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 第1题图 第2题图 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二) 第3题图 第4题图 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F . 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) A F G C E B O D A P C D B D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会 有错误的地方,如果有错误的地方请您评论区留言,我们 予以纠正,如果本文档对您有帮助,请您下载收藏以便随 时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

立体几何经典难题汇编

立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是() ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A.2 B.3 C.4 D.5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC1D是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A1BD是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C. 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键.

【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD , 由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE . 取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可, 当△ABD 是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a , ∴AB=a ,所以EB= EF= 所以几何体的体积为: . 故答案为: 【点评】本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能 力以及计算能力. 4. 如图,直线l ⊥平面α,垂足为O ,已知在直角三角形ABC 中,BC=1,AC=2, AB= .该直角三角形在空间做符合以下条件的自由运动:(1)A ∈l , (2)C ∈α.则B 、O 两点间的最大距离为 _________. 22.a c -22 1.a c --2222112*21*2* 1. 323a c c c a c --=--222 1. 3c a c --5

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 决定: 的坐标有下面的方程组、;则,、,C B )()(4433y x E y x D , 1 - ;12,0-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去 ,1 - ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 · G A O D B E C Q P N M D · G A O D B E C Q P N M D X Y A N F E C D M B

平面几何经典难题及解答分解

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

初中数学经典几何难题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、 DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延 长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A D 、E ,直线EB 及 CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、 Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

平面几何经典难题及解答

平面几何 经典难题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 求证:△PBC是正三角形. 3、如图,已知四边形ABCD、A CC1、DD1的中点. 求证:四边形A2B2C2D2 4、已知:如图,在四边形 的延长线交MN于E 求证:∠DEN=∠F. 1、已知:△ABC中,H (1)求证:AH=2OM; (2)若∠BAC=600,求证: 2、设MN是圆O外一直线,过 及D、E,直线EB及CD 求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN是圆O的弦,过 于P、Q. 求证:AP=AQ. 4、如图,分别以△ABC的AC CBFG,点P是EF的中点. 求证:点P到边AB 1、如图,四边形ABCD 求证:CE=CF.(初二) 2、如图,四边形ABCD 求证:AE=AF.(初二) 3、设P是正方形ABCD一边 求证:PA=PF.(初二) 4、如图,PC切圆O于C,AC B、D.求证:AB=DC,BC 1、已知:△ABC是正三角形,P

求:∠APB的度数.(初二) 2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二) 3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC= 4、平行四边形ABCD中,设E、F分别是BC、AB上的一点, AE=CF.求证:∠DPA=∠DPC.(初二) 经典难题(五) 1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2. 2、已知:P是边长为1的正方形ABCD 内的一点,求PA+PB+PC 3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a 4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC ∠EBA=200,求∠BED的度数. 经典难题解答: 经典难题(一) 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以 2. 如下图做△DGC使与△ADP全等,可得△PDG △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=所以∠DCP=300 ,从而得出△PBC是正三角形 3.如下图连接BC 1和AB 1 分别找其中点F,E.连接C 2 F与A 2 E并延长相交于Q点, 连接EB 2并延长交C 2 Q于H点,连接FB 2 并延长交A 2 Q于G点, 由A 2E=1 2 A 1 B 1 =1 2 B 1 C 1 = FB 2 ,EB 2 =1 2 AB=1 2 BC=F C1 ,又∠GFQ+∠Q=900和 ∠GE B2+∠Q=900,所以∠GE B2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2, 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等,

初二几何经典难题集锦(含答案)

初二几何经典训练题 1、如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. ⑴求证:四边形ABFE是等腰梯形; ⑵求AE的长. 2、如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点. (1)求证:△ADE≌△BCF; (2)若AD=4cm,AB=8cm,求CF和OF的长。 3、如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.(1)求A D的长及t的取值范围;(2)当≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律。 4、如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。

5、如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C。(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)、(2)的条件下,若AD=3,求BF的长(计算结果可含根号)。 6、如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm, 我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离。 7、如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等并证明你的结论. 8、如图已知点E、F在△ABC的边AB所在的直线上,且AE=BF,FH∥FG∥AC,FH、EG分别交边BC所在的直线于点H、G。 (1)如图1,如果点E、F在边AB上,那么EG+FH=AC; (2)如图2,如果点E在边AB上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是_________ ;(3)如图3,如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG、FH、AC的长度关系是_____________。

相关主题
文本预览
相关文档 最新文档