当前位置:文档之家› 化工原理-第四章-流体通过颗粒层的流动

化工原理-第四章-流体通过颗粒层的流动

化工原理-第四章-流体通过颗粒层的流动
化工原理-第四章-流体通过颗粒层的流动

化工原理-第四章-流体通过颗粒层的流动

一、单选择题(每题2分)

1、板框压滤机中()。

A 框有两种不同的构造

B 板有两种不同的构造

C 框和板都有两种不同的构造

D 板和框都只有一种构造 B

2、助滤剂应具有以下性质()。

A 颗粒均匀、柔软、可压缩

B 颗粒均匀、坚硬、不可压缩

C 粒度分布广、坚硬、不可压缩

D 颗粒均匀、可压缩、易变形 B

3、对于恒压过滤_______。

A 滤液体积增大一倍则过滤时间增大为原来的2倍

B 滤液体积增大一倍则过滤时间增大至原来的2倍

C 滤液体积增大一倍则过滤时间增大至原来的4倍

D 当介质阻力不计时,滤液体积增大一倍,则过滤时间增大至原来的4倍D

4、恒压过滤时,如介质阻力不计,滤饼不可压缩,过滤压差增大一倍时同一过滤时刻所得滤液量___ 。

A增大至原来的2倍B增大至原来的4倍

C增大至原来的2倍D增大至原来的倍

C

5、以下过滤机是连续式过滤机_______。

A箱式叶滤机B真空叶滤机

C回转真空过滤机D板框压滤机C

6、过滤推动力一般是指______。

A过滤介质两边的压差B过滤介质与滤饼构成的过滤层两边的压差

C滤饼两面的压差D液体进出过滤机的压差B

7、回转真空过滤机中是以下部件使过滤室在不同部位时,能自动地进行相应的不同操作:______。

A转鼓本身B随转鼓转动的转动盘

C与转动盘紧密接触的固定盘D分配头 D

8、非球形颗粒的当量直径的一种是等体积球径,它的表达式为 ______。

A d p=6V/A此处V为非球形颗粒的体积,A为非球形颗粒的表面积

B d p=(6V/)1/3

C d p=(4V/)1/2

D d p=(kV/)1/3 (k为系数与非球形颗粒的形状有关) B

9、恒压过滤时,如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的。 B

A. 1 倍;

B. 2 倍;

C.2倍; 2倍

10、助滤剂应具有以下性质。B

A. 颗粒均匀、柔软、可压缩;

B. 颗粒均匀、坚硬、不可压缩;

C. 粒度分布广、坚硬、不

可压缩; D. 颗粒均匀、可压缩、易变形

11、助滤剂的作用是。B

A.降低滤液粘度,减少流动阻力;

B.形成疏松饼层,使滤液得以畅流;

C.帮助介质拦截固体颗粒;

D.使得滤饼密实并具有一定的刚性

12、下面哪一个是转筒真空过滤机的特点。B

A.面积大,处理量大;B.面积小,处理量大;C.压差小,处理量小;D.压差大,面积小

13、以下说法是正确的。B

A. 过滤速率与A(过滤面积)成正比;

B. 过滤速率与A2成正比;

C. 过滤速率与滤液体积成正比;

D. 过滤速率与滤布阻力成反比

14、恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量。

C

A.增大至原来的2倍;

B. 增大至原来的4倍;

C. 增大至原来的倍;

D. 增大至原

来的倍

15、过滤推动力一般是指。 B

A.过滤介质两边的压差;B. 过滤介质与滤饼构成的过滤层两边的压差; C. 滤饼两面的压差; D. 液体进出过滤机的压差

16、恒压板框过滤机,当操作压差增大1倍时,则在同样的时间里所得滤液量将

(忽略介质阻力)。 A

A.增大至原来的2倍;B.增大至原来的 2倍;

A

17、回转真空过滤机的过滤介质阻力可略去不计,其生产能力为5m3/h(滤液)。现将转速度降低一半,其他条件不变,则其生产能力应为____________。

A 5m3/h

B h

C 10m3/h

D h D

18、等压过滤的滤液累积量q与过滤时间τ的关系为______________。

B

19、过滤基本方程是基于____________推导出来的。

A 滤液在过滤介质中呈湍流流动

B 滤液在过滤介质中呈层流流动

C 滤液在滤渣中呈湍流流动

D 滤液在滤渣中呈层流流动D

20、一般而言,旋风分离器长、径比大及出入口截面小时,其效率,阻力。

A 高

B 低

C 大

D 小 A

18、在板框过滤机中,如滤饼不可压缩,介质阻力不计,过滤时间增加一倍时,其过滤速率为原来的_____________。

A 2倍

B 1/2倍 C)1/2倍 D 4倍 C

21、板框压滤机中,最终的滤液流率是洗涤液流率的 _______。(Δp E=Δp w,μ=μw)

A一倍B一半C四倍D四分之一C

22、球形度(形状系数)恒小于或等于1,此值越小,颗粒的形状离球形越远,球形度的定义式可写为______。

A =V p/V,V为非球形粒子的体积,V p为球形粒子的体积

B =A p/A,A为非球形粒子的表面积, A p为与非球形粒子体积相同的球形粒子的表面积

C =a p/a,a为非球形粒子的比表面积, a p为球形粒子的比表面积

D =6a p/(d) B

23、“在一般过滤操作中,实际上起到主要介质作用的是滤饼层而不是过滤介质本身”,“滤渣就是滤饼”则_______。

A这两种说法都对B两种说法都不对

C只有第一种说法正确D只有第二种说法正确 A

26、在板框过滤机中,如滤饼不可压缩,介质阻力不计,黏度增加一倍时,对同一q值,过滤速率为原来的 _____________。

A 2倍

B 1/2倍

C 1/2倍

D 4倍 B

27、回转真空过滤机洗涤速率与最终过滤速率之比为()。

A l

B 1/2

C 1/4

D 1/3 A

28、以下说法是正确的()。

A 过滤速率与S(过滤面积)成正比

B 过滤速率与S2成正比

C 滤速率与滤液体积成正比

D 过滤速率与滤布阻力成反比 B

二.填空题(每题2分)

1、已知q为单位过滤面积所得滤液体积V/A,q e为V e/A,V e为过滤介质的当量滤液体积(滤液体积为V e时所形成的滤饼层的阻力等于过滤介质的阻力),在恒压过滤时,测得

Δ/Δq=3740q+200 则过滤常数K = ()。

2、实现过滤操作的外力可以是、或。重力;压强差;惯性离心力

3、在饼层过滤中,真正发挥拦截颗粒作用的主要是而不是。滤饼层;过滤介质

4、对恒压过滤,当过滤面积增大一倍时,如滤饼可压缩,则过滤速率增大为原来的

倍。四

5、用板框式过滤机进行恒压过滤操作,随着过滤时间的增加,滤液量,生产能力。增加;不变

6、对恒压过滤,介质阻力可以忽略时,过滤量增大一倍,则过滤速率为原来的。二分之一

7、沉降操作是指在外力场作用下,利用分散相和连续相之间的密度差异,使之发生相对运

动而实现非均相混合物分离的操作。

8、用板框过滤机过滤某种悬浮液。测得恒压过滤方程为θ5210402.0-?=+q q (θ的单位为s ),则K 为 m 2

/s ,q e 为 m 3

/ m 2

,e θ为 s 。5104-?,,

9、在过滤的大部分时间中, 起到了主要过滤介质的作用。 滤饼

10、过滤介质阻力忽略不计,滤饼不可压缩,则恒速过滤过程中滤液体积由V l 增多至V 2=2V l 时,则操作压差由ΔP l 增大至ΔP 2= 。 2ΔP l

11、已知q 为单位过滤面积所得滤液体积V/S ,q e 为V e /S ,V e 为过滤介质的当量滤液体积(滤液体积为V e 时所形成的滤饼层的阻力等于过滤介质的阻力),在恒压过滤时,测得 Δ/Δq=3740q+200 则过滤常数K= 。

12、已知q 为单位过滤面积所得滤液体积V/S ,q e 为V e /S ,V e 为过滤介质的当量滤液体积(滤液体积为V e 时所形成的滤饼层的阻力等于过滤介质的阻力),在恒压过滤时,测得 Δ/Δq=3740q+200 则过滤常数q e = 。

13、最常见的间歇式过滤机有 和 。 板框过滤机 叶滤机 14、在一套板框过滤机中,板有 种构造,框 种构造。 2 1

15、板框过滤机在过滤阶段结束的瞬间,设框已充满,则在每一框中,滤液穿过厚度为 。框的厚度

16、板框过滤机在过滤阶段结束的瞬间,设框已充满,在洗涤时,洗涤液穿过厚度为 。 框厚度之半

17、板框过滤机在过滤阶段结束的瞬间,设框已充满,在洗涤时,洗涤液穿过的滤布面积等于 。 框的内面积

18、按ψ=A p/A 定义的球形度(此处下标p 代表球形粒子),最大值为___ 。 越小则颗粒形状与球形相差越___。 1 大

19、一个过滤操作周期中,“过滤时间越长生产能力越大”的看法是 , “过滤时间越短,生产能力越大”的看法是 。过滤时间有一个 值, 此时过滤机生产能力为______。

不正确的 不正确的 最适宜 最大

20、当介质阻力不计时,回转真空过滤机的生产能力与转速的 次方成正比。1/2 21、间歇过滤机的生产能力可写为Q=V/,此处V 为 。 一个操作循环中得到的滤液体积 22、间歇过滤机的生产能力可写为Q=V/,此处表示一个操作循环所需的 。

总时间

23、一个过滤操作周期中,“过滤时间越长,生产能力越大”的看法是否正确

不正确的

24、一个过滤操作周期中,“过滤时间越短,生产能力越大”的看法是否正确

不正确的

25、一个过滤操作周期中,过滤时间有一个 值。 最适宜

26、一个过滤操作周期中,最适宜的过滤时间指的是此时过滤机生产能力 。最大 27、对不可压缩性滤饼dV/d 正比于ΔP 的 次方,对可压缩滤饼dV/d 正比于ΔP 的 次方。 1 1-s 28、对恒压过滤,介质阻力可以忽略时,过滤量增大一倍,则过滤速率为原来的 。 二分之一

29、对恒压过滤,当过滤面积增大一倍时,如滤饼不可压缩,则过滤速率增大为原来的 倍。对恒压过滤,当过滤面积增大一倍时,如滤饼可压缩,则过滤速率增大为原来的 倍。 4 4

30、转鼓沉浸度是 与 的比值(1) 转鼓浸沉的表面积 转鼓的总表面积 31、按ψ=A p/A 定义的球形度(此处下标p 代表球形粒子),最大值为___ 。 越小则颗粒形状与球形相差越___。 1 大

34、一个过滤操作周期中,“过滤时间越长生产能力越大”的看法是 , “过滤时间越短,生产能力越大”的看法是 。过滤时间有一个 值, 此时过滤机生产能力为______。

不正确的 不正确的 最适宜 最大

三、问答题(每题3分)

1、影响回转真空过滤机生产能力的因素有哪些(过滤介质阻力可忽略)

当过滤介质阻力可忽略时 2Q KA n ?=

2/K p r φμ

=?

可见,影响因素有:转筒的转速、浸没度、转筒尺寸、操作压强及处理物料的浓度及特性。

5、由过滤基本方程d q /d t =Δp /[rΦμ(q +q e)分析影响过滤速率的因素

影响过滤速率的因素有:①物性参数,包括悬浮液的性质(φ、μ)及滤饼特性(r );②操作参数Δp ;③设备参数q e 6、试说明滤饼比阻的意义

比阻r 表示滤饼对过滤速率的影响,其数值的大小反映滤液通过滤饼层的难易程度。 1998--试写出回转真空过滤机单位面积滤液量q 与转速n ,浸入面积分率?以及过滤常数的关系式,说明过滤面积为什么用转鼓面积A 而不用A ?

q=

n K

q 2

e ?

+-qe

考察方法是跟踪法,所以过滤面积为A ,而?体现在过滤时间里

2000-2002-2005-加快过滤速率的途径有哪些 ①改变滤饼结构;

②改变悬浮液中的颗粒聚集状态; ③动态过滤

2000-2003-2006-2009-数学模型实验研究方法的主要步骤 ①简化物理模型; ②建立数学模型;

③模型检验,试验定模型参数。

2001--在表面过滤方式中,何谓架桥现象 在过滤操作开始阶段,会有部分颗粒浸入过滤介质网孔中,随着滤渣的逐步堆积而在介质上形成一个滤渣层即滤饼的现象。

在考虑流体通过固定床流动的压降时颗粒群的平均直径以何为基准 颗粒群的平均直径以比表面积相等为基准

因为流体在颗粒层内为爬流流动,流动阻力主要由颗粒层内固体表面积的大小有关,而颗粒形状并不重要

2007--过滤速率与哪些因素有关

过滤速率u=dq/dτ=

)

q

q(

r/

e

+

?

?φμ

中,u与e

q,q,

,

,r,μ

φ

?

?

均有关

指导①-过滤常数有哪两个,各与哪些因素有关什么条件下才为常数

K、qe

K与压差,悬浮液浓度,滤饼比阻,滤液粘度有关;qe与过滤介质阻力有关

恒压下才为常数

指导②③-(以板框过滤机为例)简述如何通过实验测定过滤常数K、qe

①安装过滤设备,配料,在恒压下测定不同时刻τ的滤液量V;

②利用q=V/A将数据整理得到τ/q-q(或Δτ/ Δq-q)关系式;

③用τ/q-q(或Δτ/ Δq-q)数据作图(或数据拟合)

④将数据拟合成直线,根据直线斜率和截距求出过滤常数

四、计算题(每题10分)

1、某板框过滤机框空的长、宽、厚为250mm×250mm×20mm,框数为8, 以此过滤机恒压过滤某悬浮液,测得过滤时间为与15min时的滤液量分别为及,试计算过滤常数K。

解:

过滤面积A= 8×2×× = m2

(2分)

已知: τ1 = min V1 = m3 τ2 = 15 min V2 = m3

∵V2+2VVe = KA2τ (4分)可得+2× = K×12× (1)

+2× = K×12×15 (2)

(1)、(2)式联立,解得K = m2/min = ×10-5 m2/s (4分)

2、以板框压滤机恒压过滤某悬浮液,过滤面积10m2,操作压差×105 Pa。每一循环过滤15min 得滤液。过滤介质阻力不计。

(1)该机生产能力为h滤液,求洗涤、装拆总共需要的时间及过滤常数K。

(2)若压差降至×104Pa,过滤时间及过滤量不变,其他条件不变,需多大过滤面积

设滤饼不可压缩。

(3)如改用回转真空过滤机,转一圈得滤液,转速为多少才可以维持生产能力不变

解:(1) ∵V2=KA2τ

即 =K×102×15

∴K=×10-3 m2/min

又Q= V/∑τ

即 60=(15+τw+τD)

∴ τw+τD= min

(4分)

(2)V2=KA2τA2= V2/Kτ(4分)

'

'2

14.1A K p A A

A m ∴∝

∝?∴

===∴==而

(3)Q =60=×n (n-r/min ) ∴ n = r/min (2分)

3、用某叶滤机恒压过滤钛白水悬浮液。滤叶每侧过滤面积为2m 2

,共10只滤叶。测得:过滤10min 得滤液;再过滤10min 共得滤液。已知滤饼与滤液体积比n =。试问:(1)过滤至滤饼厚为21mm 即停止,过滤时间是多少

(2)若滤饼洗涤与辅助时间共45min,其生产能力是多少(以每小时得的滤饼体积计)

解:(1) ∵V 2 + 2VVe = KA 2

t

由题意得 + 2× = KA 2

×10 (a)

+ 2× = KA 2

×20 (b)

(a)、(b)联立,解得 KA 2= m 6/min,Ve = m 3

(3分) 又 A = 10×2× =

过滤终了时,共得滤液量V E = × = m 3

由 + 2×× = ,∴t E = min

(3分) (2) 生产能力 = nV E /(t E +t w +t 辅)

= ×+45) =×10-3 m 3/min = m 3

/h(滤饼)

(4分)

4、在3×105

Pa 的压强差下对钛白粉在水中的悬浮液进行过滤实验,测得过滤常数

K=5×10-5m 2/s 、q e =m 2

,又测得滤饼体积与滤液体积之比v=。现拟用有38个框的BMY50/810-25型板框压滤机处理此料浆,过滤推动力及所用滤布也与实验用的相同。试求:(1)过滤至框内全部充满滤渣所需的时间;(2)过滤完毕,以相当于滤液量1/10的清水进行洗涤,求洗涤时间;(3)若每次卸渣、重装等全部辅助操作共需15min ,求每台过滤机的生产能力(以

每小时平均可得多少(m 3

)滤饼计)。 解:(1)所需过滤时间

A=×2×38= V c =××38=

320.62330.1563/0.0849.86c V q m m vA =

==? ()()22

5

1120.156320.15630.01551510e q qq s K θ-=+=+??=? (4分)

(2)洗涤时间

()()

553051049.86 1.87410/880.15630.01w dV KA m s d q q θ--????

=

==? ?++??

3

/0.1/1.87410W W W

dV V V d θθ-??

==? ???

3

0.10.156349.86/1.87410

416s -=???= (4分)

(3)生产能力 30.62333600

1.2025514181560

c Q m ?=

=++?(滤饼)/h (2分)

5、用板框过滤机过滤某悬浮液,一个操作周期内过滤 20分钟后共得滤液 4m 3

(滤饼不可压缩,介质阻力可略)。若在一个周期内共用去辅助时间30分钟,求: (1) 该机的生产能力

(2)若操作表压加倍,其它条件不变(物性,过滤面积,过滤时间与辅助时间),该机生产能力提高了多少 解:滤饼不洗涤 (1)4分

3604

0.08/min 2030

w D V Q m θθθ=

==+++

(2)6分

22'2'211'2'

21133,'' 1.4144 5.655.65

0.113/min 50

V K A V K A V K V K K p V p

V m Q m θθ===∝∴∝

==?==

=

6、对某悬浮液进行恒压过滤。已知过滤时间为300s 时,所得滤液体积为,且过滤面积为1m 2,恒压过滤常数K=5*10-3

m2/s 。若要再得滤液体积,则又需过滤时间为多少

2:2e q q K θ+=解由q 3分

2

232

25103000.750.625

220.75

e e q q K K q q θθ-=--??-∴===?得q q 3分 2232 1.520.62515

825510825300525e q q K s

θθ-++??===?=-=q 4分

7、一小型板框压滤机有框10块,长宽各为,在2at (表压)下作恒压过滤共二小时滤框充

满共得滤液160l ,每次洗涤与装卸时间为1hr ,若介质阻力可忽略不计,求:

(1)过虑常数K ,洗涤速率。

(2)若表压增加一倍,其他条件不变,此时生产能力为若干 解:(1) (5分)

2P at ?=

A=××10×2=

2223

2

230.160.02/0.8210.01/42W V KA K m h dv KA m h d V

θ

θ=∴==???

=?

= ??? (2) (5分)

2P P '?=? 2K K '∴= 2

0.160.81K h

θθ??''= ???'= 故生产能力为 (1+1)=h

8、某板框压滤机的过滤面积为 m 2

,在恒压下过滤某悬浮液,4hr 后得滤液80 m 3

,过滤

介质阻力可略去不计。

试求:①若其它情况不变,但过滤面积加倍,可得多少滤液

②若其它情况不变,但操作时间缩短为2hr ,可得多少滤液

③若在原表压下过滤4hr 后,再用5m 3

水洗涤滤饼,需多长洗涤时间设滤液与水性质相近。 解:(1) (3分)

2222

22

2211

2

2

22

2320.8

800.4160V KA V A V A V V m θ

====

(2) (3分)

2222

804

V = 355.6V m =

(3) (4分)

()2

2

2

6222

801600/4

22211424E e w w

w E V KA m h

dv KA KA d V V V

V V h KA dv V

d θθθθ===??

=

= ?+??===????

? ?????

9、一小型板框过滤机,过滤面积为0.1m 2

,恒压过滤某一种悬浮液。得出下列过滤议程式:

(q +10)2=250(θ+0.4)式中q 以l/m 2

,θ以分钟计。

试求:(1)经过249.6分钟获得滤液量为多少

(2)当操作压力加大1倍,设滤饼不可压缩同样用249.6分钟将得到多少滤液量。

解:(1))4.0(250)10(2+=+θq

当6.249=θ分时

q=240L/M 2

V=240×0。1=24L

(5分)

(2),2P P =' K K 2='

222502)4.06.249(2502)10(?=+?=+q 2/5.343m l q =

L V 3.341.05.343=?= (5分)

10、用一板框压滤机在300kPa 的压强差下过滤某悬浮液。已知过滤常数s m K /105.725-?=,

23/012.0m m q e =。要求每一操作周期得8m 3

的滤液,过滤时间为小时。设滤饼不可压缩,

且滤饼与滤液的体积之比为。试求

(1)过滤面积;

(2)若操作压强差提高至600kPa 。现有一板框过滤机,每框的尺寸为25635635??mm ,

若要求每个周期仍得到8m 3

滤液,则至少需要多少个框才能满足要求又过滤时间为多少 解:(1)恒压过滤方程θ222KA VV V e =+ ,其中A q V e e =,于是:

0222=--V A Vq KA e θ

25

522

2

25.221800

10

5.721800

105.7012.082012.0822442m K V K q V Vq A e e =?????+?+??=

++=

--θ

θ

(2)恒压过滤方程反映的是滤液体积、过滤时间和过滤面积之间的关系。在这一问,

过滤面积和过滤时间均为所求。因此用该方程不能解决这一问题。

事实上,滤液体积已知且滤渣与滤液体积比也已知,则滤饼体积可求,由滤饼体积及每框的容积可求框数(因为每个操作周期中滤饼充满框后才停止过滤)。

滤饼体积=32.08025.0m cV =?=。

框数=84.19025

.0635.0635.02.0=??=每框容积滤饼体积,取20=n

操作压强提高至600kPa ,由于滤饼不可压缩,过滤常数K 与压差成正比,于是s m K /105.1'24-?=。e q 不变。

实际过滤面积为:213.16635.0635.0202'm A =???= 由恒压过滤方程可计算过滤时间:s A K A Vq V e 2.171913

.1610

5.113.16012.0828'

''22

4

22

2=?????+=

+=

点评:过滤面积的求取属设计型计算,可通过过滤方程式直接解决;设计条件和操作条件的差异应在过滤常数上加以体现。当过滤压差增大时,用较小的过滤面积在基本相同的时间内就能得到相同的滤液量。

11、用板框过滤机在恒压下过滤悬浮液。若滤饼不可压缩,且过滤介质阻力可忽略不计。

(1)当其它条件不变,过滤面积加倍,则获得的滤液量为原来的多少倍 (2)当其它条件不变,过滤时间减半,则获得的滤液量为原来的多少倍 (3)当其它条件不变,过滤压强差加倍,则获得的滤液量为原来的多少倍 解:(1)过滤介质阻力忽略不计,则恒压过滤方程可变为:θ22KA V =,于是2'

'==A

A V V (2)

707.02

1

'

'===θ

θV V (3)由于滤饼不可压缩,压缩性指数0=s ,因此压强增加滤饼比阻不变,由过滤常的定义rc p K μ?=

2可知,2''=??=

p p K K 。于是414.12'

'

===K

K V

V 12、恒压过滤某悬浮液,已知过滤5min 得滤液1L ,若又过滤5min 后,试求:

1. 得到滤液量(L );

2. 过滤速率(L/min )。 设:过滤介质阻力可忽略。

解:过滤介质阻力可忽略时的恒压过滤方程为 θ22KA V =

则 1221θKA V = (1)

2222θKA V = (2)

两式相除得

5.010

5212

221===

θθV V (3) 依题意 11=V L 由(3)式得 414.15

.012

2==

V L 414.012=-=?V V V L

0707.010

2414

.122/222=?====θθθV V V V KA d dV L/min

化工原理流体流动

化工原理绪论、流体流动、流体输送机械 、填空题 一个生产工艺是由若干个 各单元操作的操作原理及设备计算都是以 四个概念为依据的。 常见的单位制有 一个过程在一定条件下能否进行,以及进行到什么程度,只有通过 断。 单位时间过程的变化率称为 问答题 7. 什么是单元操作?主要包括哪些基本操作? 8. 提高过程速率的途径是什么? 第一章流体流动 填空题 流体垂直作用于单位面积上的力,称为 两种。 当管中流体形成稳定流动时,管中必定充满流体,即流体必定是 因。另外,管壁粗糙度和管子的长度、直径均对流体阻力 流体在管道中的流动状态可分为 点运动方式上的区别是 判断液体处于同一水平面上的各点压强是否相等的依据是 流体若由低压头处流向高压头处时,所加入外加功的作用是 在测量流体的流量时,随流量的增加孔板流量计两侧的压差将 ________ ,若改用转 子流量计,随流量增加转子两侧压差值 ___________________ 。 选择题 构成的。 由于在计量各个物理量时采用了不同的 ,因而产生了不同的单位制。 来判 单位体积流体的质量称为 ,它与 互为倒数。 单位时间流经管道任一截面的流体量称为 ,其表示方法有 的。 产生流体阻力的根本原因是 ;而 是产生流体阻力的第二位原 .两种类型,二者在部质 10 . 液体的密度随温度的升高而

11 表压值是从压强表上读得的,它表示的是 D 大气压强 13 - 气体在等截面的管道中流动时,如质量流量不变则其质量流速 14 - 粘度愈大的流体其流动阻力 15 - 柏努利方程式既可说明流体流动时的基本规律也能说明流体静止时的基本规律, 响却越来越明显。 18 - 当液体部任一点的压强有变化时,将使液体部其它各点的压强 二' 判断题 19 - 气体的粘度随压力的升高而增大。 () 20 - 层流层的厚度随流体湍动程度的增加而增加。 21 -流体在管路中作稳定流动时,任一截面处流体的流速、密度与截面积的乘积均相等。 22 ■当液体部某点压强一定时,则液体的密度越大,此点距液面的高度也越大。 23 -流体阻力的主要表现之一是静压强下降。 24 ■ 真空度为定值时,大气压强越大,则绝对压强越大。 A 增大 B 减小 C 不变 不一定 A 比大气压强高出的部分 B 设备的真实压力 比大气压强低的部分 12 ■ 流体的流动类型可以用 的大小来判定。 A 流速 B 雷诺准数 C 流量 摩擦系数 A 随温度大小变化 B 随压力大小变化 C 不变 D 随流速大小变化 A 愈大 B 愈小 C 二者无关系 D 不会变化 表明静止流体任一点流体的 是常数。 A 总能量 B 静压能与动压能的和 C 压强 静压 台匕 冃匕 16 -流体的流动状态是由多方面因素决定的, 增大,都使流体向 向移动, 增大,使流体向 方向移动。 A 湍流 B 滞流 C 过渡流 D 稳流 17 ■ 湍流流动的流体随 Re 值的增大,摩擦系数与 关系不大,而 的影 A 雷诺准数 B 粘度 C 管壁粗糙度 D 流体阻力 A 发生变化 B 发生同样大小的变化 C 不变化 D 发生不同情况的变

化工原理答案第四章 传热

第四章 传 热 热传导 【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。试求加热器平壁外表面温度。 解 2375℃, 30℃t t == 计算加热器平壁外表面温度1t ,./()W m λ=?016℃ (1757530025005016016) t --= ..145 025********t =?+=℃ 【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。软木的热导率λ= W/(m·℃)。若外表面温度为28℃,内表面温度为 3℃,试计算单位表面积的冷量损失。 解 已 知 .(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==?=, 则单位表面积的冷量损失为 【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。若所测固体的表面积为0.02m 2 ,材料的厚度为0.02m 。现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。 解 根据已知做图 热传导的热量 .28140392Q I V W =?=?= .().() 12392002 002280100Qb A t t λ?= = -- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。 耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。 (1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。 (2) 若普通砖层厚度为240mm ,试计算普通砖层外表面温度。 解 (1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。通过耐火砖层的热传导计算热流密度q 。 绝热砖层厚度2b 的计算 每块绝热砖的厚度为023m .,取两块绝热砖的厚度为 习题4-1附图 习题4-3附图 习题4-4附图

化工原理实验

《化工原理实验》 讲稿 二0一四年二月

1.雷诺实验 一、实验目的 1.观察层流、湍流的流态及其转化特征; 2.测定临街雷诺准数,掌握圆管流动形态的判别准则; 3.观察紊流(或湍流)产生过程,理解紊流产生机理。 二、实验原理 1. 液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 2.当初始状态流速较大时,从紊流到层流的过渡流速为下临界流速,对应的雷诺准数为下临界雷诺数,反之为上临界流速和上临界雷诺数。 μ ρu d = Re (1) 式中 d ——导管直径,m ; ρ——流体密度,kg ·m 3-; μ——流体粘度,Pa ·s ; u ——流体流速,m ·s 1-; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 (雷诺实验仪CEA —F01型) 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。

(完整版)化工原理流体流动题库..

第一章《流体力学》练习题 一、单选题 1.单位体积流体所具有的()称为流体的密度。 A 质量; B 粘度; C 位能; D 动能。 A 2.单位体积流体所具有的质量称为流体的()。 A 密度; B 粘度; C 位能; D 动能。 A 3.层流与湍流的本质区别是()。

A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 D 4.气体是()的流体。 A 可移动; B 可压缩; C 可流动; D 可测量。 B 5.在静止的流体内,单位面积上所受的压力称为流体的()。 A 绝对压力; B 表压力; C 静压力; D 真空度。

C 6.以绝对零压作起点计算的压力,称为()。 A 绝对压力; B 表压力; C 静压力; D 真空度。 A 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 A 真空度; B 表压力; C 相对压力; D 绝对压力。 D 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A 大于; B 小于; C 等于; D 近似于。

A 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A 压力表; B 真空表; C 高度表; D 速度表。 A 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 A 大气压; B 表压力; C 相对压力; D 绝对压力。 D 11. 流体在园管内流动时,管中心流速最大,若

为湍流时,平均流速与管中心的最大流速的关系为()。 A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 B 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 A

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

颗粒与流体之间的相对运动

第三章 颗粒与流体之间的相对运动 一、前言:(本章:本质上讲:属于流体流动过程,从方法或手段上讲:属于非均相分离过程,下册讲的 蒸馏、吸收、萃取等单元操作都是均相分离过程)。 1、相:体系中具有相同组成,相同物理性质和相同化学性质的均匀物质。相与相之间有明确的 界面。 例如:气、液、固称为三态,每一态又称为一相。再例如:空气(或溶液)虽是混合物,但 由于内部完全均匀,所以是一个相。水和冰共存时,其组成虽同是O H 2,但因有不同的物理性质,所以是两个相;水、冰和蒸汽共存时是三个相。两块晶体相同的硫磺是一个相,两块晶体不同的硫磺(如 斜方硫和单斜硫)是两个相。 2、均相:凡物系内部各处物理料质均匀而不存在相界面者,称为均相混合物或均相物系。溶 液及混合气都是均相混合物。 3、非均相:凡物系内部有隔开两相的界面存在,而界面两侧的物料性质截然不同者,称为非 均相混合物或非均相物系。 非均相??? ?? ?? 属于气体非均相间煤气中夹杂煤渣子)合成氨厂造气车(如尘气体气体与固体微粒组成含 沫液)(含有气泡的液体即泡 液态非均相)(如碎木屑放在水面上浮液液体与固体离子组成悬 ,:,,, 非均相物系里,处于分散状态的物质称为分散物质(或分散相),包围着分散物质而处于 连续状态的流体,称为分散介质(或连续相)。如:浮悬液中的固体颗粒,称为分散物质,液体是分散介质。 4、非均相物系的分离:通过机械方法分离非均相物系的单元操作。具体点讲机械方法:沉降和过滤。 二、工业上非均相物系分离的目的 1、 收取分散物质:如从催化反应器出来的气体中,往往带有催化剂颗粒,必须把这些有 价值的颗粒回收利用。 2、 净化分散介质:合成氨生产,半水煤气中含有2CO 、S H 2灰尘等杂质,为了防止合 成触媒中毒,必须将这些杂质一一去除,以保证触媒的活性。 3、 环境保护:对三废:废气、废液、废渣的处理,地球由于被污染加剧,环保越来越受 到人们的重视。综上所述,非均相物系分离的目的是除害收益。 三、本章解决的问题 以硫铁矿为原料生产硫酸,在沸腾炉中进行的主化学反应为: 23222 82114SO O Fe O FeS +=+ 在焙烧时还有一些副反应,如生成3SO 、 硫酸盐、砷与硒的氧化物、氟化氢等。同时2SO 炉气中含有大量矿尘,它们主要是铁、铅、铜、钴、钡、锑、铋的氧化物和硫酸盐,此外 还含有气体杂质。如:三氧化硫、三氧化二砷、二氧化硒、氟化氢等。这些杂质能够堵塞管路和催化床,并使催化剂(52O V )中毒,(二氧化硫催化氧化变成三氧化硫)。故炉气需

化工原理课后习题答案详解第四章.doc

第四章多组分系统热力学 4.1有溶剂A与溶质B形成一定组成的溶液。此溶液中B的浓度为c B,质量摩尔浓度为b B,此溶液的密度为。以M A,M B分别代表溶剂和溶质的摩尔质量,若溶液的组成用B的摩尔分数x B表示时,试导出x B与c B,x B与b B之间的关系。 解:根据各组成表示的定义 4.2D-果糖溶于水(A)中形成的某溶液,质量分数,此溶液在20 C时的密度。求:此溶液中D-果糖的(1)摩尔分数;(2)浓度;(3)质量摩尔浓度。 解:质量分数的定义为

4.3在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度b B介于 和之间时,溶液的总体积 。求: (1)把水(A)和醋酸(B)的偏摩尔体积分别表示成b B的函数关系。(2)时水和醋酸的偏摩尔体积。 解:根据定义

当时 4.460 ?C时甲醇的饱和蒸气压是84.4 kPa,乙醇的饱和蒸气压是47.0 kPa。二者可形成理想液态混合物。若混合物的组成为二者的质量分数各50 %,求60 ?C 时此混合物的平衡蒸气组成,以摩尔分数表示。 解:质量分数与摩尔分数的关系为 求得甲醇的摩尔分数为

根据Raoult定律 4.580 ?C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为38.7 kPa。两液体可形成理想液态混合物。若有苯-甲苯的气-液平衡混合物,80 ?C时气相中苯的摩尔分数,求液相的组成。 解:根据Raoult定律 4.6在18 ?C,气体压力101.352 kPa下,1 dm3的水中能溶解O2 0.045 g,能溶解N2 0.02 g。现将 1 dm3被202.65 kPa空气所饱和了的水溶液加热至沸腾,赶出所溶解的O2和N2,并干燥之,求此干燥气体在101.325 kPa,18 ?C下的体积及其组成。设空气为理想气体混合物。其组成体积分数为:,

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

【采矿课件】第4章颗粒在流体中的运动

【采矿课件】第4章颗粒在流体中的运动 习题解答 1.什么是体积分数、质量分数?两者的关系如何?已知石英与水的密度分不为2650kg/m3和 1000kg/m3,将相同质量的石英砂和水配置成悬浮液,求悬浮液的质量分数、体积分数、物理密度和黏度? 【解】悬浮体的体积分数ΦB(旧称容积浓度λ)是指悬浮体中固体颗粒(或气泡、液滴)的体积占有率,它是无量纲数,数值上等于单位体积的悬浮体中固体颗粒(或气泡、液滴)占有的体积。悬浮体的质量分数w B(旧称重量浓度C)是指悬浮体中固体颗粒的质量占有率,它也是无量纲数。若颗粒和流体的密度分不用δ和ρ表示,体积分数ΦB与质量分数w B有下面的关系: 已知δ=2650kg/m3和ρ=1000kg/m3,设石英砂和水的质量差不多上W,则有 故质量分数、体积分数、物理密度和黏度分不为0.5000、0.2740、1452kg/m3和2.2902μ。 2.牛顿流体和非牛顿流体的有效黏度和微分黏度有何特点?什么叫屈服切应力?哪些非牛顿流体的流变特性可用幂律模型描述?幂律模型中的参数K和n有何物理意义? 【解】有效粘度是流变曲线上指定点到原点的直线斜率;微分粘度是流变曲线上指定点的切线斜率。牛顿流体的有效黏度等于微分黏度,同时差不多上常数;宾汉流体,微分粘度为常数,但有效黏度不为

常数,同时有效黏度大于微分黏度,当剪切速率趣近于零时有效黏度变为无穷大;假塑性流体的有效黏度大于微分黏度;胀塑性流体的有效黏度小于微分黏度;屈服假塑性流体与宾汉流体有些类似,只是微分黏度不是常数。 宾汉认为,当悬浮液的浓度大到其中的颗粒互相接触之后,就有塑性现象发生,欲使系统开始流淌,施加的剪切力必须足以破坏使颗粒形成的网架结构,那个刚好能够破坏颗粒网架结构的切应力确实是屈服切应力。 假塑性流体(包括胀塑性流体)的流变特性可用如下幂律模型描述: 幂律模型中的参数K也是流体黏性的量度,它不同于黏度,流体越黏,K值越大;指数n是液体非牛顿性的量度,n值与1相差越大,则非牛顿性越明显;关于假塑性流体的n<1(关于胀塑性流体n>1)。 3.什么是自由沉降?什么是干涉沉降? 【解】颗粒在流体中沉降时,若不受周围颗粒或容器壁干扰,称为自由沉降。颗粒在有限空间中的沉降称之为干涉沉降。矿物加工中粒群在矿浆中的沉降确实是典型的干涉沉降,球体在窄管中的沉降也是干涉沉降。 4.已知石英与水的密度分不为2650kg/m3和1000kg/m3,水的运动黏度为1.007x10-6 m2/s,求直径为0.2mm的球形石英颗粒在水中的自由沉降速度、雷诺数和阻力系数? 【解】已知δ=2650kg/m3、ρ=1000kg/m3、ν=1.007x10-6 m2/s和d=0.0002m,则 先试用通用公式运算:

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

化工原理 流体流动

化工原理绪论、流体流动、流体输送机械 一、填空题 1.一个生产工艺是由若干个__________ 和___________构成的。 2.各单元操作的操作原理及设备计算都是以__________、___________、___________、和___________四个概念为依据的。 3.常见的单位制有____________、_____________和_______________。 4.由于在计量各个物理量时采用了不同的__________,因而产生了不同的单位制。 5.一个过程在一定条件下能否进行,以及进行到什么程度,只有通过__________来判断。 6.单位时间内过程的变化率称为___________。 二问答题 7.什么是单元操作?主要包括哪些基本操作? 8.提高过程速率的途径是什么? 9.第一章流体流动 一填空题 1.单位体积流体的质量称为________,它与________互为倒数。 2.流体垂直作用于单位面积上的力,称为____________。 3.单位时间内流经管道任一截面的流体量称为________,其表示方法有________和________两种。 4.当管中流体形成稳定流动时,管中必定充满流体,即流体必定是_________的。 5.产生流体阻力的根本原因是________;而___________是产生流体阻力的第二位原因。另外,管壁粗糙度和管子的长度、直径均对流体阻力_______________。 6.流体在管道中的流动状态可分为______ 和__________两种类型,二者在内部质点运动方式上的区别是_____________________________________。 7.判断液体内处于同一水平面上的各点压强是否相等的依据是_________、___________、________________。 8.流体若由低压头处流向高压头处时,所加入外加功的作用是______________________________。 9.在测量流体的流量时,随流量的增加孔板流量计两侧的压差将_______,若改用转子流量计,随流量增加转子两侧压差值________。 一、选择题 10.液体的密度随温度的升高而_________。

化工原理课后习题(第四章)

化工原理课后习题(第四章)

第4章 传热 4-1、燃烧炉的平壁由下列三种材料构成: 耐火砖的热导率为,K m W 05.111 --??=λ 厚度 mm 230=b ;绝热砖的热导率为1 1 K m W 151.0--??=λ;普通砖的热导率为11K m W 93.0--??=λ。若耐火砖内侧温度为C 10000 , 耐火砖与绝热砖接触面最高温度为C 9400 ,绝热砖与普通砖间的最高温度不超过C 1300 (假设每两种砖之间接触良好界面上的温度相等) 。试求:(1)绝热砖的厚度。绝热砖的尺寸为:mm 230mm 113mm 65??; (2) 普通砖外测的温度。普通砖的尺寸为:mm 240mm 1200mm 5??。(答: ⑴m 460.02=b ;⑵C 6.344 ?=t ) 解:⑴第一层:1 1 2 1λb t t A Q -= 第二层:2 2 32 λb t t A Q -= ? ()()322 22111 t t b t t b -=-λλ ?()()130940151.0940100023.005 .12 -=-b ?m 446.02 =b 因为绝热砖尺寸厚度为mm 230,故绝热砖层厚度2 b 取m 460.0, 校核: ()()3 940460 .0151.0940100023.005 .1t -=- ?C 3.1053 ?=t ; ⑵()()4 33 3 2111t t b t t b -=-λλ ?C 6.344?=t 。

4-2、某工厂用mm 5mm 170?φ的无缝钢管输送水蒸气。为了减少沿途的热损失,在管外包两层绝热材料:第一层为厚mm 30的矿渣棉,其热导率为 11 K m 0.065W --?? ;第二层为厚mm 30的石棉灰, 其热导率为1 1 K m 0.21W --??。管内壁温度为C 3000 ,保温层外表面温度为C 400 。管道长m 50。试求该管道的散热量。无缝钢管热导率为1 1K m 45W --?? (答:kW 2.14=Q ) 解:已知:11棉K m 0.065W --??=λ,1 1灰 K m 0.21W --??=λ 查表得:1 1K m W 54--??=钢 λ ()3 4 323 2 1 2 1 4 1ln 1ln 1ln 12d d d d d d t t l Q λλλπ++ -= 其中:0606.016.017.0ln ln 12==d d , 302.017.023.0ln ln 23==d d , 231.023 .029.0ln ln 34==d d ()1 m W 28421 .0231.0065.0302.0450606.0403002-?=++-=πl Q , kW 2.14W 1042.1502844 =?=?=Q 。 4-3、冷却水在mm 1mm 19?φ,长为m 0.2的钢管中以1 s 1m -?的流速通过。水温由88K 2升至K 298。求管壁对水的对流传热系数。 (答:1 2 K m 4260W --??) 解:设为湍流 水的定性温度K 2932 298 288=+=t , 查表得:1 1 C kg kJ 183.4--???=p c , 1 1 K m W 5985.0--??=λ, s Pa 10004.13 ??=-μ,

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

柴诚敬化工原理课后答案(01)第一章 流体流动

第一章 流体流动 流体的重要性质 1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 kPa ,温度为40 ℃。已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、C H 4 1%,大气压力为 101.3 kPa ,试计算气柜满载时各组分的质量。 解:气柜满载时各气体的总摩尔数 ()mol 4.246245mol 313 314.86000 0.10005.53.101t =???+== RT pV n 各组分的质量: kg 197kg 24.246245%40%4022H t H =??=?=M n m kg 97.1378kg 284.246245%20%2022N t N =??=?=M n m kg 36.2206kg 284.246245%32%32CO t CO =??=?=M n m kg 44.758kg 444.246245%7%722CO t CO =??=?=M n m kg 4.39kg 164.246245%1%144CH t CH =??=?=M n m 2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。设混合油为理想溶液。 解: ()kg 120kg 606021t =+=+=m m m 33 122 1 1 21t m 157.0m 7106083060=??? ? ??+=+ = +=ρρm m V V V 3 3t t m m kg 33.764m kg 157 .0120=== V m ρ 流体静力学 3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同? 解:(1)设备内绝对压力 绝压=大气压-真空度= () kPa 3.65Pa 1020103.8533=?-?

化工原理 第四章 重点习题

【4-6】某工厂用1705mm mm φ?的无缝钢管输送水蒸气。为了减少沿途的热损失,在管外包两层绝热材料,第一层为厚30mm 的矿渣棉,其热导率为./()W m K ?0065;第二层为厚30mm 的石棉灰,其热导率为./()W m K ?021。管内壁温度为300℃,保温层外表面温度为40℃。管路长50m 。试求该管路的散热量。 解 () ln ln ln 14234 112233 2111l t t q r r r r r r πλλλ-= ++ () ln ln ln ..230040185111511454580006585021115 π-= ++ /W m =284 .42845014210l Q q l W ==?=? .kW =142 【4-7】水蒸气管路外径为108mm ,其表面包一层超细玻璃棉毡保温,其热导率随温度/℃t 的变化关系为 ../()0033000023t W m K λ=+?。水蒸气管路外表面温度为150℃,希望保温层外表面温度不超过50℃,且每米管路的热量损失不超过/160W m 。试确定所需保温层厚度。 解 保温层厚度以b 表示 (..)220033000023l dt dt q r t r dr dr λππ=-=-+ (..)2 21 1 20033000023r t l r t dr q t dt r π=-+? ? .ln .()()2221212100023200332l r q t t t t r π? ?=-+-???? 已知/12150℃,50 160t t q W m ===℃, ,.1210.0540054r m r r b b ==+=+ ..()..() ln .220066314150500000233141505016010054b ??-+??-= ?? + ??? ..ln .2073144510054160b +? ?+= ??? 解得保温层厚度为 ..00133133b m mm == 保温层厚度应不小于13.3mm 【4-9】空气以4m s /的流速通过..755375mm mm φ?的钢管,管长5m 。空气入口温度为32℃,出口温度为68℃。(1)试计算空气与管壁间的对流传热系数。(2)如空气流速增加一倍,其他条件均不变,对流传热系数又为多少?(3)若空气从管壁得到的热量为578W ,钢管内壁的平均温度为多少。 解 已知/,.,,,124 0068 5 32 68℃u m s d m l m t t =====℃ (1)对流传热系数α计算 空气的平均温度 3268 502 m t += =℃

化工原理实验流体流动阻力系数的测定实验报告

化工原理实验-流体流动阻力系数的测定实验报告

————————————————————————————————作者: ————————————————————————————————日期:

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re和相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性和涡流 的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运 动的速度和方向突然变化,产生局部阻力。影响流体阻力的因素较多,在 工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意 义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l/ d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法 =△P/ρ=λ(l /d)u2/2 直接测定。h f ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差 计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根 据伯努利方程找出静压强差和摩擦阻力系数的关系式,即可求出摩擦阻 力系数。改变流速可测出不同Re下的摩擦阻力系数,这样就可得出某一 相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数

化工原理第1章流体流动习题与答案

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。

10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管流动时,管中心流速最大,若为湍流时,平均流速与管中心的 最大流速的关系为()。 B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管流动流体,湍流时雷诺准数是()。 B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa, 则泵入

相关主题
文本预览
相关文档 最新文档