当前位置:文档之家› 流体通过颗粒层的流动

流体通过颗粒层的流动

流体通过颗粒层的流动
流体通过颗粒层的流动

第4章流体通过颗粒层的流动

概述

由众多固体堆积而成的静止颗粒层称为固定床。工业生产中流体通过固定床流动的典型例子:

1. 固定床反应器----催化剂颗粒堆积成的固定床。

2. 悬浮液的过滤----悬浮液中颗粒沉积形成的滤饼可看成固定床.

本章重点考查流体通过固定床的基本流动规律和过滤操作规律。

4.2 颗粒床层的特性

颗粒床层由不同大小和形状的颗粒组成,流体在其中的流动与管内流动类似。但颗粒床层内的流道尺寸不同,形状各异,具有复杂的网状结构。对其特性的了解应从组成通道的颗粒着手。

4.2.1 单颗粒的特性 ()

球形颗粒的几何特性可用单一参数d p全面表示,如:体积:

4-1)

面积:

(4-2)

球形颗粒比表面积:

(4-3)

非球形颗粒:非球形颗粒的几何特征不能用单一参数全面表示,通常以某种等当的球形颗粒近似表示,以使所考查领域内非球形颗粒的特征与球形颗粒等效。此球的直径称d e。当量直径可用不同方式定义。

(1). 体积当量直径:使当量球形颗粒的体积等于实际颗粒的体积V。

(4-4)

(2). 面积当量直径:使当量球形颗粒的表面积πd es2等于实际颗粒的表面积S。

(4-5)

(3). 比表面当量直径:使当量球形颗粒的6/d ea等于实际颗粒的比表面积a

(4-6)

非球形颗粒的形状系数:对非球形颗粒,只以一个当量直径不能确定其几何特征,因此定义形状系数。

(4-7)

4.2.2 颗粒群特性

由不同大小、形状颗粒组成的颗粒群,各单个颗粒的尺寸不会完全一样。颗粒群的大小分布用筛分分析得出。

筛分分析——用一组具有不同大小筛孔的利用筛孔的机械阻挡,将颗粒群按其粒度范围分为若干子群即对其分布进行测定(为促使颗粒通过筛孔,筛面应作某种运动)。通过筛孔的颗粒量称为筛过量,截留于筛面的颗粒量称为筛余量。称取各筛面上的颗粒筛余量,即得筛分分析基本数据,筛分分析适用于>70μm的颗粒 ()

标准筛--不同国家采用不同的标准筛制,其筛孔为正方形时,其尺寸可直接用边长(mm)表示;也可用筛号或筛目(筛网单位长度上的孔数)表示。相邻筛间尺寸变化通常为或倍。

筛分分析结果--粒度分布常用分布函数表或分布函数曲线、频率分布表或频率函数曲线表示.

分布函数--某号筛(筛孔尺寸为d pi)的筛过量(质量)占试样总量的分率(F i)。不同筛号的F i与d pi标绘在图上,成为分布函数曲线。其特性为:

(1)对应某一尺寸d pi的F i值表示直径小于d pi的所有颗粒占全部试样的质量分率;

(2)在该批试样的颗粒最大直径处,其F i=1。

频率函数--各种粒径相对应颗粒的质量分率f i或某号筛面上筛余量占全部试样的质量分率。将不同筛号的f i与d pi标绘在图上,成为频率函数曲线,其特性为:(1)在一定粒度范围内的颗粒占全部颗粒的质量分率等于该粒度范围内频率函数曲线下的面积;

图4-1 粒度分布函数

(2)频率函数曲线下的全部面积等于1.

图4-2 频率函数曲线

4.2.3 颗粒床特性

(1)颗粒群的平均直径

为简便起见,常用某个平均或当量直径来代替颗粒群的粒度分布。平均直径可用长度平均、表面积平均、体积平均或比表面积平均直径表示,它们可按颗粒计数平均或按筛分结果(质量分率)平均。对本章所考查的小颗粒,因其流动阻力主要由颗粒层中固体表面决定,所以采用比表面积平均直径d m

对球形颗粒定义(4-8)

式中:m--颗粒总质量㎏。 mi--相邻筛号间颗粒质量㎏,其直径为d pi,对非球形颗粒以(Ψde)代替式中d pi即可。

(2)床层特性

床层空隙率ε()——床层的空隙体积与床层总体积之比。其大小反映床层颗粒堆积疏密程度。它影响着:

①流体的通过能力或床层阻力;

②床层的总体积。

床层比表面积αB——单位体积床层中颗粒的比表面积m3/m3,它与颗粒比表面积α间有如下关系

αB=α(1-

ε)(4-9)床层的各向同性----固定床层中任意截面上各处性质均相同。对小颗粒堆积的床层,可以认为床层各向同性。其重要特点为:床层流通截面积/床层截面积=ε。

床层的壁效应----固定床的壁面处空隙率总大于床层内部,流体在近壁处因阻力小,其流速必大于床层内部。若床层直径D/颗粒直径d p>10,壁效应可忽略。

4.3流体通过固定床压降——数学模型法。

4.3.1颗粒床层的简化模型

床层简化物理模型——由大量细小颗粒堆积而成的固定床,空隙率较小,流体流过时因阻力较大,将产生很大压降。为解决压降问题,对颗粒床层进行简化。(1)将床层中的不规则通道简化成一组平行虚拟细管,其长度为L e;(2)细管的内表面积等于床中颗粒的全部表面积;(3)细管的全部流动空间等于颗粒床层的空隙容积

图4-3 颗粒床层的简化模型

床层简化数学模型——由简化物理模型知,流体通过复杂几何边界的压降已简化成通过一组当量直径为d e,长度为L e均匀细管的压降。应用流体通过圆管流动概念,作出数学描述。

虚拟细管当量直径d e=4ε/α(1-ε)(4-9)

流体通过细管的阻力h f=ΔP/ρ=λL e u12/2d e (4-10)

式中:u1--床层中颗粒间的实际流速m/s;ΔP--床层的虚拟压差,忽略重力时。ΔP=Δp

流体通过细管的压降 ()

∵(空床流速)u与实际流速的关系为:u1=u/ε,实际床层高度L与虚拟细管长度L e 的关系为:L e/L=常数C

(4-11)

(4-12)--模型参数(由实验定),重力忽略时

4.3.2模型的检验和模型参数的实验值

颗粒床层的简化模型是否有效必须由实验检验,即测定模型参数

(1)康采尼(Kozeny)实验:当床层雷诺数Re<2时,

(4-14)

式中 ----康采尼常数。的误差≤10% 此时:

(4-15)

----康采尼方程。

(2)欧根(Ergun)实验:当=~420时,

此时:

(4-16)

-----欧根方程。

<3时,上式右边第二项可忽略;当>100时,右边第一项可忽略。欧根方程误差±25%,且不适用于细长及环状颗粒。

床层雷诺数

(4-17)

(5)离心机

依靠旋转机械产生离心力场,使非均相混合物分离的设备通称为离心机。因离心机的转速可达很高,使其很大,故能分离极小的颗粒(2~5μm)和乳浊液。离心机可以间歇或连续操作,间歇离心机又可分为人工或自动卸料。

三足立式离心机:间歇操作,手工卸料,其主要部件为一篮式转鼓,壁面上开孔并内衬金属丝网及滤布,外壳、机座和传动装置悬挂在三个支柱上,以减轻运转时的振动,料液分批加入转鼓,滤液穿过转鼓从机座下排出,滤饼沉积在转鼓内壁。

活塞往复式离心机——连续操作,连续卸料。其主要部件为一侧卧式转鼓和装在转鼓底部与转鼓一起旋转的推料活塞。转鼓由内向外,依此分为过滤、洗涤、沥干、卸料等区域。料液加到转鼓的内侧,活塞与料斗一起沿转轴作往复运动,将生成的滤饼向外逐渐推出.

4.4 过滤原理及设备

4.4.1 过滤原理:

利用重力或人为造成的压差,使悬浮液通过能截留固体颗粒的过滤介质,使悬浮液中的固体分散相与流体连续相分离的操作.主要用于液--固分离.()

两种过滤方式:应用中的过滤方式有两种--过滤()与深层过滤,有关概念见下表.

滤饼过滤深层过滤

常用过滤介质

() 各种材料的织物(滤布)和金属丝网

烧结陶瓷.烧结金属.堆积砂砾.木

炭. 石棉粉和非编织纤维等

特征1.固体颗粒尺寸大部分大于介质通道.

2.过滤在介质表面进行.

3.颗粒在介质上堆积形成滤饼(固定床),不断

增厚的饼层为真正的过滤介质

1.颗粒尺寸小于介质的孔隙尺寸

2.颗粒沉积在弯曲细长的介质孔道

3.介质表面无滤饼形成

应用适用于悬浮液中固体含量>1%. 若固体含量在

0.1~1%间时,可选择增稠.在化工生产应用

很广.

适用于悬浮液中固体含量<%.主要

用于细小粒子的分离以得到清洁的

滤液,如饮用水的净化.

压缩滤饼。若滤饼的ε随压强增大而减小,流动阻力急剧增加,则称为可压缩滤饼。(实际上滤饼均是可压缩的,但对空隙结构随压力变化不大的滤饼,可近似认为是不可压缩的。)滤饼的洗涤:过滤结束后,滤饼孔道中会残留,无论是回收固体或滤液,均要用清水对滤饼进行洗涤,必要时还要通入压缩空气,进一步驱除滤饼中液体,然后进行滤饼卸除。

滤饼过滤的特点(本章仅讨论滤饼过滤)

(1)通过过滤介质和滤饼的流体,属于固定床中的流动,但床层厚度不断增加;

(2)因床层阻力不断增加,随过滤时间延长,过滤速率不断减小;

(3)过滤操作属非定态过程。

过滤速率定义(4-18)式中:v—过滤时间为τ时,所获滤液量m3;A—过滤面积m2;q—q=v/A,通

过单位过滤面积的滤液总量m3/m2。

4.4.2过滤设备()

为适应不同的过滤目的和不同性质的悬浮液,发展了各种各样的过滤设备。

(1)板框压滤机分类

板框压滤机是一种有较长历史,至今仍广泛用于生产的间歇式压滤机。

按压紧方式----手动,液压或电动(半自动),自动。

按滤液流出方式----和。

按框的容积性质----定容积滤室,变容积滤室。

板框压滤机结构:()

滤板:滤板为正方形,两面车有棱槽,用以支撑滤布并使滤液沿槽流动。板的四角各开一圆孔。

非洗涤板:非洗涤板在板的左右下角各有孔道和角上的圆孔相通。左上角为滤液出口通道,右上角为洗水出口通道。在板的外侧以一钮标识。

洗涤板:洗涤板在板的左上角和左下角各有孔道和角上的圆孔相通。左下角为洗水进口,左上角为滤液出口。在板的外侧以三钮标识。

滤框:滤框为正方形,两侧覆以滤布构成滤室。框的四角开有圆孔,右下角的圆孔与框内相通,滤浆(悬浮液)从此处进入滤框,在框外侧以二钮标识。

板框压滤机的操作:

组装:过滤开始前,先将滤框覆以四角开孔的滤布,然后将滤板和滤框交替排列在机架上。若滤饼需洗涤,排列方式为(以标识钮记)1–2–3–2–1–2–3–2–1……最后使螺杆转动压紧板和框。

过滤操作:过滤时,滤浆由管路送入板框右下角圆孔构成的通道,并从框的右下角进入框和滤布构成的滤室,滤液穿过框两侧的滤布分别流向相邻滤板,并从每板的左上角经孔道排出机外。框内滤饼不断增厚,直至充满滤框,即停止过滤。

洗涤操作:滤饼需洗涤时,洗液由三钮板左上角孔道进入洗涤板两侧,依此穿过整块框内的滤饼和滤布到达一钮板(非洗涤板)的表面并汇集由右上角小孔排出。此法称为。

卸渣:洗涤完成后,停车松开螺旋,卸除滤饼,清洗滤布,为下一次过滤作准备。

板框压滤机的特点:

1. 过滤时:过滤面积为2×框面积×框数;滤液所走路程为1/2框厚。

2. 洗涤时:洗涤面积为框面积×框数=1/2过滤面积;洗液所走路程为整个框厚=2×滤液所走路程。

3. 优点是:构造简单,结构紧凑,过滤面积大,承受压力高,可过滤细小颗粒或粘度较高物料。

4. 缺点是:采用手动或半自动过滤机时,劳动强度大。

(2)叶滤机是一种间歇式过滤设备

叶滤机的结构:

滤叶:由金属丝网构成圆柱形扁圆形或矩形框架,外包滤布。

叶滤机:将多片滤叶平行排列组装成一体,插入盛有滤浆的密闭滤槽中。

图4-4 叶虑机的结构

叶滤机操作

过滤操作:过滤时,滤液在压力下穿过滤布进入滤叶内,并汇集于下部总管中流出,滤饼沉积在滤叶的外表面上。过滤结束后排出剩余滤浆。

洗涤操作:滤饼需洗涤时滤槽中充入洗液或将滤叶吊入洗涤槽,洗液穿过滤叶表面上的全部滤饼,到达滤叶内部汇集排出,此法称为法。

叶滤机的特点:

1、过滤与洗涤时,滤液与洗液穿过的面积和通过的路程相同。

2、优点;过滤面积大,设备紧凑,灵活,劳动条件好,滤饼厚度均匀,洗涤充分,操作稳定。

缺点:构造较复杂,造价高,滤布更换较困难。

(3)厢式压滤机是一种间歇式过滤设备

厢式压滤机的外表与板框压滤机相似,其工作原理相同。但厢式压滤机仅有滤板没有滤框。每块滤板的两面均内凹,相邻两板叠合后,内凹部分形成滤室。滤浆从板中心孔进入,滤布也开有中心孔,并在此处压紧在板上,滤液从下角排出。滤饼洗涤也采用横穿洗涤法。

(4)回转真空过滤机是一种连续过滤设备

<1>回转真空过滤机的构造:

转鼓:主体为一水平放置的圆柱形(长/径=1/2~2)中空筒,柱体表面上覆以滤布,其下部有30~40%的表面浸在滤浆中。转鼓内分为12个扇形格,每格的表面均有孔道连至中心转轴端面上的分配头上,扇形格间互不相通。

分配头:分配头由一个转动盘和一个固定盘组成。转动盘上开12个孔,分别与转鼓上12个扇形格相通,它安装在转鼓的端面上,随其一起转动。固定盘上开有3至4条长孔,分别与滤液槽洗液槽和压缩空气系统相通,它固定在支架上,靠压紧弹簧与转动盘紧密叠合。

图4-5 回转真空过滤机操作简图

<2>回转真空过滤机的操作

回转真空过滤机在操作时,转鼓以~转/分的速度顺时针方向转动,每旋转一周,相继进行过滤,脱水,洗涤,吹松,卸渣等操作,即完成一个操作周期。当转鼓某一格转至滤槽液面以下时,与此格对应的转盘上小孔即和固定盘的槽1相通,随之进行真空抽吸过滤,滤饼沉积在转鼓表面;此格转离液面时,即与固定盘的槽2相通,真空抽干滤饼中的滤液;转筒继续转动,此格与固定盘槽3相通,这时转鼓表面淋洒洗液,对滤饼进行洗涤,洗液则由槽3

抽往储槽,此种洗涤方法也属置换洗涤;转鼓转至该格与固定盘上槽4相通时,吹入压缩空气,使滤饼变松,同时固定在滤槽边缘上的刮刀将滤饼卸掉;必要时可由固定盘上的槽吹入压缩空气,以再生和清洗滤布,重新开始下一周期的操作。

4.5过滤过程的计算

4.5.1过滤过程的数学描述

⑴悬浮液中固体含量的表示方法:质量分率(4-19)

体积分率(4-20)

质量分率与体积分率的关系(对颗粒在液体中不发生溶涨物系,按体积加和原则)

(4-21)

式中:ρp,ρ----分别为固体颗粒和滤液的密度K/m3,kg/m3

⑵物料衡算

总物料衡算 V悬=V+LA

式中:

V悬、V----分别为悬浮液、滤液的体积(m3);

L----滤饼厚度(m);

A----过滤面积(m2)。

固体物料衡算 V悬φ=LA (1-ε)

从上两式推出(4-22)

一般φ<<ε

(4-23)

上式表明:过滤时若滤饼空隙率ε不变,即滤饼不可压缩,滤饼厚度L与单位面积上累积滤液量q成正比。

⑶由于过滤所涉颗粒尺寸均很小,所以液体在所形成的滤饼层中流速均很低,即一般Re'<2,适用于康采尼公式。

由过滤速率u定义式和康采尼公式有:

(4-24)

过滤速

率(4-25)

式中--施加于滤饼两侧的压差。

将速率表示成正比于推动力,反比于阻力的形式,其优点在于:在串联过程中,推动力及阻力分别具有加和性。

⑷过滤过程基本方程过滤时滤液依次通过滤饼和过滤介质,过滤介质同样具有阻

力,其大小可视为单位过滤面积获得某当量滤液量qe所形成的虚拟滤饼层的阻力。设 1和 2分别为滤饼两侧和过滤介质两侧的压差,定常时:和

(4-26)

为过滤操作总压差,令,K(㎡/s)与qe(m3/m2)同称为过滤常数,由实验测定。由上式可得本章一个重要方程----过滤

速率基本方程或(4-27)

式中Ve=Aqe为形成与过滤介质阻力相等的滤饼层所得的滤液量(m3)

⑸滤饼的比阻: 系数r反咉了滤饼的特性,称为滤饼的.

前面已定义:比阻有下面一些特性:

① r表示滤饼结构对过滤速率的影响,其数值大小反咉了过滤操作的难易程度.

②对不可压缩滤饼,r仅取决于悬浮液的物性。ε↑,r↓;a↑,r↑;床层颗粒不均匀性↑,K‘↑,r↑。

③对可压缩滤饼,在一定的μ下,r随操作压差增加而加大,此时r服从经验关系:r=r0△p3

式中r0----

单位压差下的平均比阻,实验常数。

s----压缩性指数(),实验常数。不可压缩滤饼s=0; 可压缩滤饼s=~,压缩性越大,s越大。

4.5.2 间歇过滤的滤液量与过滤时间的关系

⑴过滤方式

①恒压过滤----恒压差,变速率(速率随滤饼增厚逐渐减小)操作;

②恒速过滤----恒速率,变压差(压差随滤饼增厚逐渐加大)操作;

③先恒速,后恒压操作----避免过滤初期压差过高引起滤布堵塞或破损。

⑵恒速过滤方程使用正位移泵或隔膜泵输送滤浆可实现恒速操作。

(4-28)

则:

或(4-29)要保持较高的过滤速率,压差要增至很大,而过高的压差受设备强度及电机能力限制,因此纯粹恒速过滤很少用。

⑶恒压过滤方程:恒压时K,q e为常数(4-30)得

或 V2+2VV e=KA2τ(4

-31)

若忽略过滤介质阻力,则:q2=Kτ或 V2=KA2τ(4-32)

⑷过滤常数的测定

过滤常数K,q e,及r,s的测定,是用同一种悬浮液在小型设备中进行的。

将恒压过滤方程变形(4-33)

上式表明与q间呈线性关系,实验时,在恒压下,测定在不同时间τ内,所得单位过滤面积上的滤液量q,将若干组数据标

绘在直角坐标系中,即可得到K,q e。若在不同压差下,重复上述实验,并由已知的,μ,φ值按

,

求出不同的r。对可压缩滤饼,可由r=r s或logr=slog +logr0求出相应的s和r。()

图4-6 恒压过滤常数的测定

4.5.3 与

当滤饼需洗涤时,单位面积洗涤液的用量q w需由实验定.洗涤过程中滤饼不再增厚,洗

涤速率为一常数。

⑴叶滤机的洗涤速率---

此类设备中,洗液流过滤饼的路程与过滤结束时滤液走过的路程相同,洗液通过的面积与过滤面积相同。按恒压过滤方程求导

洗涤速率(4-34)式中下标w表示洗涤

洗涤时间(4-35)

若洗涤与过滤结束时的操作压强相同,洗液与滤液粘度相等,则洗涤速率与最终过滤速率相等,即

(4-36)

(4-37)

(4-38)

⑵板框压滤机的洗涤速率---横穿洗涤法此类设备中,洗液穿过滤饼的路程是滤液在过滤结束时的两倍,洗液通过的面积是过滤面积的二分之一,若仍以过滤面积为基准的话,则洗涤

速率洗涤时间若洗涤与过滤结束时的操作压强相同,洗液与滤液粘度相等,则洗涤速率是最终过滤速率的四分之一,即:

(4-39)

(4-40)

4.5.4过滤过程的计算

⑴设计型计算

命题:设计得到一定滤液量V所需的过滤面积A。

已知条件:由小型过滤实验得到的K、q e,选择操作压强△p、过滤时间、悬浮液性质。

计算:过滤面积A

步骤:①由小型过滤实验,测定K,q e,V w及φ或φ';②选定过滤机型式,由经验确定τD、△p,并选择τ及τw

③由过滤方程求q和单位面积滤饼体积qφ’。

④由V=qA 求出A,m2

⑤选择滤框边长,计算滤框数和框厚

,框厚 = 2qφ’

(4-41)

⑵操作型计算

命题:现有设备操作状态的核算

已知条件:设备尺寸及参数(A、框边长、个数或滤叶数),操作条件(△p,K,q e,n,φ等)悬浮液性质(μ,φ,φ’)或生产能力

计算:生产能力或操作条件(如△p,n等)

过滤技术改造大致有两方面内容:

①寻找适当的方法和设备,以适应物料的性质;

②加快过滤速率以提高过滤机的生产能力。

过滤机的生产能力()

过滤机的生产能力是指在一个中,所能得到的滤液量Q。一个操作周期包括:过滤时间τ;洗涤时间τw;

组装、卸渣、清洗滤布等辅助时间τD。即操作周期的总时间:

⑴间歇过滤机的生产能力Q=V/Στ

对一定的过滤系统(过滤机的型式尺寸和滤浆一定)和一定的洗液量V w,τD,τw一定,在恒压时,过分延长过滤时间,并不能提高生产能力。如右图,上任一点至原点O的连线斜率即为生产能力Q,一定τw+τD时,必存在一最佳过滤时间τopt,在此时停止过滤,生产能力将最大。

图4-7 最佳过滤时间

⑵回转真空过滤机的生产能力

操作周期----转鼓旋转一周即完成一个操作周期。若转鼓转速为ns-1,则 =1/n。

过滤时间----回转真空过滤机是在恒压下操作,若转鼓浸入滤浆的表面(瞬间过滤表面)占全部表面的分率为φ(浸没度),φ=浸入角度/360°,则转鼓任一部分表面浸入滤浆中的时间,即为每周期中的过滤时间:

在一个操作周期中转鼓的全部表面都经历了τ的过滤时间,这样就把过滤机转鼓的部分表面连续过滤转换为全部表面的间歇过滤。此时恒压过滤方程仍适用。

生产能力Q = nqA, A = π×鼓径×鼓长

由恒压过滤方程

(4-42)

忽略介质阻力

(4-43)

(完整版)化工原理流体流动题库..

第一章《流体力学》练习题 一、单选题 1.单位体积流体所具有的()称为流体的密度。 A 质量; B 粘度; C 位能; D 动能。 A 2.单位体积流体所具有的质量称为流体的()。 A 密度; B 粘度; C 位能; D 动能。 A 3.层流与湍流的本质区别是()。

A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 D 4.气体是()的流体。 A 可移动; B 可压缩; C 可流动; D 可测量。 B 5.在静止的流体内,单位面积上所受的压力称为流体的()。 A 绝对压力; B 表压力; C 静压力; D 真空度。

C 6.以绝对零压作起点计算的压力,称为()。 A 绝对压力; B 表压力; C 静压力; D 真空度。 A 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 A 真空度; B 表压力; C 相对压力; D 绝对压力。 D 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A 大于; B 小于; C 等于; D 近似于。

A 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A 压力表; B 真空表; C 高度表; D 速度表。 A 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 A 大气压; B 表压力; C 相对压力; D 绝对压力。 D 11. 流体在园管内流动时,管中心流速最大,若

为湍流时,平均流速与管中心的最大流速的关系为()。 A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 B 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 A

流体流动 习题及答案

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管内流动流体,湍流时雷诺准数是()。B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为200mmHg ,当地大气压为101kPa, 则泵入口处的绝对压强为()。 A A. 74.3kPa; B. 101kPa; C. 127.6kPa。 19.在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的()倍。 C A. 2; B. 8; C. 4。 20.流体流动时产生摩擦阻力的根本原因是()。 C

化工原理选择题题库—流体流动解析

流体流动 【当前章节】流体流动内部结构【当前难度】1 1、如下各物理量中,与压强有关的有几个(B )①压强不太高时气体的黏度; ②压强不太高时气体的运动黏度③压强不太高时气体的流速;④压强不太 高时气体的质量流速 A.1 B.2 C.3 D.4 2、流体在管内流动时,如下有几项会使层流内层增厚?(B )* ①流体黏度变小;②流体流速减小;③如为液体,升高其温度;④如为气体,升高其温度 A.1 B.2 C.3 D.4 3、如下关于定态流动和非定态流动的说法,正确的是(B ) A.定态流动时,流体内各处的流动参数()均相同 B.定态流动时,流体内各处的流动参数()均不随时间而变化 C.非定态流动时,流体内各处的流动参数都不相同 D.非定态流动时,流体流量随时间的推移而减小 4、管内流体流动时,如下哪一项不利于形成湍流(B ) A.增大管径 B.减小流体密度 C.增加流体流量 D.减小流体粘度 5、 针对圆管内的流体流动,关于层流与湍流的区别,如下表述中正确的是 (C )* A.剪应力沿径向分布的数学规律不同 B.湍流时不存在由于分子热运动而造成的动量传递,而层流时存在 C.同种流体在同样的速度梯度下,湍流剪应力大于层流 D.湍流时流体所有的质点都在脉动,而层流时流体所有质点都不脉动 6、某黏度为50mPa.s的流体在内径为60mm的圆管内做定态流动,管截面上的速度分布服从u=20y-200y*y。式中y为管截面上某一点至管壁的距离,m;u为

该点处流速,m/s。则管内最大剪应力为(A)* A.1.0Pa B.0.4Pa C.0.021 D.条件不足,无法计算 7、某流体在内径为60mm的圆管内做定态流动,管截面上的速度分布服从u=20y-200y*y。式中y为管截面上某一点至管壁的距离,m;u为该点处流速,m/s。则管内最大速度为(C) A.0.5m/s B.0.48m/s C.0.42m/s D.1.0m/s 8、当圆管内流动充分发展时,其边界层的厚度(B ) A.等于管子的内直径 B.等于管子的内半径 C.大于管子的内半径 D.大于管子的内直径 9、 在研究流体流动问题时,最小的考察对象通常是( A) A.流体的质点 B.流体的分子 C.液滴或气泡 D.流体层 10、流体的连续介质假定是指(D ) A.流体分子之间没有间隙 B.液流之中没有气泡,气流之中没有液滴 C.流体层之间没有间隙 D.流体质点之间没有间隙 11、理想气体状态方程中的压强是指气体的(B ) A.表压强 B.绝对压强 C.真空度 D.以上压强都可用于气体状态方程 12、以下哪项为基准的压强称为真空度(A ) A.当地大气压 B.标准大气压 C.绝对0压强 D.其他三个都不是

化工原理实验

《化工原理实验》 讲稿 二0一四年二月

1.雷诺实验 一、实验目的 1.观察层流、湍流的流态及其转化特征; 2.测定临街雷诺准数,掌握圆管流动形态的判别准则; 3.观察紊流(或湍流)产生过程,理解紊流产生机理。 二、实验原理 1. 液体在运动时,存在着两种根本不同的流动状态。当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈紊流运动。这种从层流到紊流的运动状态,反应了液流内部结构从量变到质变的一个变化过程。 2.当初始状态流速较大时,从紊流到层流的过渡流速为下临界流速,对应的雷诺准数为下临界雷诺数,反之为上临界流速和上临界雷诺数。 μ ρu d = Re (1) 式中 d ——导管直径,m ; ρ——流体密度,kg ·m 3-; μ——流体粘度,Pa ·s ; u ——流体流速,m ·s 1-; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为4000时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 (雷诺实验仪CEA —F01型) 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注入并稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。

流体流动习题答案

第一章 流体流动习题解答 1. 某设备上真空表的读数为13.3×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为98.7×103 Pa 。 解:真空度=大气压-绝压 3(98.713.3)10atm p p p Pa =-=-?绝压真空度 表压=-真空度=-13.3310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底9.6 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为32.23×106 Pa ,问至少需要几个螺钉? 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z Pa ρ=?=??-=(表压) 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ?= 作用在孔盖上的净压力为 2282575(0.76) 3.7644 p p d N π π =?=??=?410 每个螺钉能承受的最大力为: 62332.23100.014 4.96104 F N π =?? ?=?钉 螺钉的个数为433.7610/4.96107.58??=个 p

所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试求A 、B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ=,故由气柱 高度所产生的压强差可以忽略。由此可以认为A C p p ≈, B D p p ≈。 由静力学基本方程式知 232A C H O Hg p p gR gR ρρ≈=+ 10009.810.05136009.810.05=??+?? 7161Pa =(表压) 417161136009.810.4 6.0510B D A Hg p p p gR Pa ρ≈=+=+??=? 4. 本题附图为远距离制量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H =1 m ,U 管压差计的指示液为水银,煤油的密度为820 kg/m 3。试求当压差计读数R=68 m 时,相界面与油层的吹气管出口距离h 。 解:如图,设水层吹气管出口处为a ,煤油层吹气管出口处为b ,且煤油层吹气管到液气界面的高度为H 1。则 1a p p = 2b p p = 1()()a p g H h g H h ρρ=++-油水(表压) 1b p gH ρ=油(表压) U 管压差计中,12Hg p p gR ρ-= (忽略吹气管内的气柱压力) 12a b p p p p gR ρ-=-= C D H 1 压缩空气 p

化工原理习题第一部分流体流动答案

化工原理习题:第一部分 流体流动 一、填空 1.流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。 2.离心泵的特性曲线通常包括 H-Q 曲线、 η-Q 和 N-Q 曲线,这些曲线表示在一定 转速 下,输送某种特定的液体时泵的性能。 3.处于同一水平面的液体,维持等压面的条件必须是 静止的 、 连通着的 、 同一种连续的液体 。流体在管内流动时,如要测取管截面上的流速分布,应选用 皮托 流量计测量。 4.牛顿粘性定律的表达式τ=μ,其应用条件是 牛顿型流体层(滞)流流体。 5.如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为????常数=++=g p g u z E ρ22 ??????????????; 单位重量流体的机械能衡算式为????? 常数=++=p u gz E 22 ρρ????????????; 单位体积流体的机械能衡算式为?????? 常数=++=g p g u z E ρ22???????????; 6.有外加能量时以单位体积流体为基准的实际流体柏努利方程为 z 1ρg+(u 12ρ/2)+p 1+W s ρ= z 2ρg+(u 22ρ/2)+p 2 +ρ∑h f ,各项单位为 Pa (N/m 2) 。 7.气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。 8.流体在变径管中作稳定流动,在管径缩小的地方其静压能 减小 。 9.并联管路中各管段压强降 相等 ;管子长、直径小的管段通过的流量 小 。 10 在离心泵工作时,用于将动能转变为压能的部件是____泵壳__________。 11.测流体流量时,随流量增加孔板流量计两侧压差值将 增加 ,若改用转子流量计,随流量增加转子两侧压差值将 不变 。 12. 离心泵的轴封装置主要有两种: 填料密封 和 机械密封 。 13.若被输送的流体粘度增高,则离心泵的压头 降低,流量减小,效率降低,轴

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

流体力学期末考试题(题库+答案)

1、作用在流体的质量力包括 ( D ) A压力B摩擦力C表面张力D 惯性力 2、层流与紊流的本质区别是: ( D ) A. 紊流流速>层流流速; B. 流道截面大的为湍流,截面小 的为层流; C. 层流的雷诺数<紊流的雷诺数; D. 层流无径向脉动,而紊流 有径向脉动 3、已知水流的沿程水力摩擦系数 只与边界粗糙度有关,可判断 该水流属于( D ) A 层流区; B 紊流光滑区; C 紊流过渡粗糙区; D 紊流粗糙区。 4、一个工程大气压等于( B )Pa; ( C )Kgf.cm-2。 A 1.013×105 B 9.8×104 C 1 D 1.5 5、长管的总水头线与测压管水头线 ( A ) A相重合; B相平行,呈直线; C相平行,呈阶梯状; D以上答案都不对。 6、绝对压强p abs、相对压强p 、真空值p v、当地大气压强p a之间的 关系是( C ) A p abs=p+p v B p=p abs+p a C p v=p a-p abs D p

= p a b s - p V 7、将管路上的阀门关小时,其阻力系数( C ) A. 变小 B. 变大 C. 不变 8、如果忽略流体的重力效应,则不需要考虑哪一个相似性参数?( B ) A弗劳德数 B 雷诺数 C.欧拉数 D马赫数 9、水泵的扬程是指 ( C ) A 水泵提水高度; B 水泵提水高度+吸水管的水头损失; C 水泵提水高度 + 吸水管与压水管的水头损失。 10、紊流粗糙区的水头损失与流速成( B ) A 一次方关系; B 二次方关系; C 1.75~2.0次方关系。 11、雷诺数是判别下列哪种流态的重要的无量纲数( C ) A 急流和缓流; B 均匀流和非均匀流; C 层流和紊流; D 恒定流和非恒定流。 12、离心泵的性能曲线中的H-Q线是在( B )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑le)一定。

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

化工原理第1章--流体流动-习题及答案

精选文档,供参考!一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测

压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 精选文档,供参考!10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。

化工原理流体流动章节习题

第一章 流体流动 一 基本概念 1、连续性方程 2、液体和气体混合物密度求取 3、离心泵特性曲线的测定 二、核心公式 第一章、流体流动与流体输送机械 (1)流体静力学基本方程 (例1-9) U 型管压差计 (2)柏努利方程的应用(例1-14) (3)范宁公式 (4)离心泵的安装高度(例2-5) 三.问答题 1. (7分)离心泵的特性曲线是如何测定的?其特性曲线主要由哪几条曲线构成? 答:离心泵的特性曲线是在一定转速和常压的清水为工质做实验测得的.主要曲线有:H-Q,N-Q,η-Q 三条曲线,在曲线中要注明泵型号、转速. 2. (8分)试说明层流和湍流的主要区别。 答:1.质点的运动运动方式不同,层流只有轴向的运动,没有径向的脉动,而湍流质点是杂乱无章的运动,两个方向的运动都存在. 2. 流体流动速度分布不同:层流为抛物线形式,而湍流则是严格的抛物线,它的速度分布线前端基本是平直的. 3.运动的受力情况不同:层流主要是内摩擦力,服从牛顿粘性定律,而湍流由湍流应力和内摩擦力共同作用,可以仿造牛顿粘性定律写为:dy du ) e (+ν=τ 3. 离心泵启动前,为什么要先灌满水?与离心泵安装高度有关的性能指标有那些? 4.选择输送管路的管径时,从技术经济角度应考虑那些因素?如何选择? 5.离心泵的实验中,泵启动前与关闭时注意什么问题,为什么?流量调节采用什么方法,其优缺点各是什么? 6. 搞清楚离心泵的扬程与升扬高度、允许吸上高度和安装高度各组概念的区别和联系。(6 分) (1)扬程又称压头,是泵对1N 液体所提供的有效能J/N ;而升扬高度指泵上、下游两液面的垂直高度,它只是扬程中位能差一项。 (2)允许吸上高度Hg 是指上游贮槽液面与泵吸入口之间允许达到的最大垂直距离。

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

单元练习 流体流动及输送机械(答案)

单元练习:流体流动及输送机械 一、填空题(仅供练习使用,需掌握基本概念与基本公式) 1. 层流时,摩擦系数λ与Re的关系为λ=64/Re。 2. U型管压差计指示液为水,若所测压差不变,要使读数R增大,应更换一种密度比水 小的指示液。 3. 流体输送机械向流体提供的能量主要用于流体势能提高和 阻力损失。 4. 离心泵前必须先灌泵是因为空气密度小,造成的压差或泵吸入口的真空度小 而不能将液体吸入泵内。 5. 用离心泵将地面敞口容器中的碱液送至离地面10m高处密闭容器中,容器上方真空表读数 为P,现在表的读数增大,其他管路条件不变,则管路总阻力损失将增大。6. 水由敞口高位槽通过一管路流向压力恒定的反应器,当管路上的阀门开度减小(湍流态变 为层流态),水流量将减小,摩擦系数增大,管路总阻力损失增大。(增大,减小,不变) 二、选择题 1. 对离心泵允许安装高度没有影响的是下列情况中的 D 。 A. 安装处的大气压; B. 输送液体温度; C. 吸入管道的流动阻力; D. 排出管道的流动阻力 2.流体在圆管内层流流动时,最大速度是平均速度的( C ) A. 四分之一 B. 一半 C .二倍 D. 四倍 3. 当被测流体的绝对压强大于外界大气压强时,所用的测压仪表称为( A ) A. 压力表 B. 真空表 C. 高度表 D. 速度表 4. 流体在直管中流动,当Re≤2000时,流体的流动类型属于( A ) A.层流 B. 湍流 C.过渡流 D. 漩涡流 三、简答题 1. 离心泵在开车前为何要先关闭出口阀门? 答:离心泵开动时的瞬时启动电流为正常工作电流的5~7倍,为保护电机,关闭出口阀以减小负荷,减小电流,防止电极因瞬时电流过大而烧毁。 2. 汽蚀现象产生的原因是什么?会造成什么样的结果?

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

第一章流体流动试题集及参考答案

流体流动试题集及参考答案 一、填空题: 1、按照化工单元操作所遵循得基本规律得不同,可将单元操作分为 动量传递、热量传递、质量传递。 2、化工生产中,物料衡算得理论依据就是质量守恒定律, 热量衡算得理论基础就是能量守恒定律。 3、当地大气压为750mmHg时,测得某体系得表压为100mmHg,则该体系得绝 对压强850mmHg为真空度为-100mmHg、 4、液柱压力计量就是基于流体静力学原理得测压装置,用U形管压强计测压时, 当压强计一端与大气相通时,读数R表示得就是表压或真空度。 从流体静力学基本方程了解到U型管压力计测量其压强差就是 与指示液密度、液面高度有关,与U形管粗细无关 5、转子流量计得设计原理就是依据流动时在转子得上、下端产生了压强差。 6、静止液体中两处压力相等得条件就是连续、同一液体、同一水平面。 7、流体体积流量用Q=uS来计算;质量流量用G=Qρ来计算;而流体流速用 u=Q/S来计算。 8、当流体得体积流量一定时,流动截面扩大,则流速减少,动压头减少,静压头增加。 9、柏努利方程实验中,在一定流速下某测压管显示得液位高度为静压头,当流速再增大时,液位高度降低;因为阻力损失增大, 10、理想流体就是指没有粘性或没有摩擦阻力而实际流体就是指具有粘性或有摩擦力。流体流动时产生摩擦阻力得根本原因就是流体具有粘性。

11、压头转换实验中,在一定流速下某测压管显示得液位高度为静压头值,流速再增大时,液位高度降低;因为阻力损失增大 12、P/(ρg)得物理意义就是表示流动系统某截面处单位重量流体所具有得静压能,称为静压头。mu2/2得物理意义就是表示流动系统某截面处1kg流体具有得动能。 13、雷诺准数得表达式为Re=duρ/μ。当密度ρ=1000kg/m粘度μ=1厘泊得水,在内径为d=100mm,以流速为1m、s在管中流动时,其雷诺准数等于10其流动类型为湍流 14、流体在圆直管内流动,当Re≥4000时得流型称为湍流, 其平均速度与最大流速得关系为Wm=0.8Wmax Re≤2000得流型称为滞流,其平均速度为Wm=0、5Wmax。 15、流体在圆管内作稳定连续流动时,当Re≤2000时为滞流流动,其摩擦系数λ=64/Re;当Re≥4000时为湍流流动。当Re在2000-4000之间时为过渡流。流体沿壁面流动时,有显著速度梯度得区域称为流动边界层。在管内呈湍流时,摩擦系数λ与Re; ε/d有关。当Re继续增大到大于某一定值时,则流体流动在完全湍流区,当ε/d为一常数时,其λ值为常数。 16、当密度ρ=1000kg/m,粘度=1(厘泊)得水,在内径为d=15mm,以流速为0、1 m/s在管内流动时,雷诺数等于1500,流动类型为层流。 17、当20℃得水(ρ=998、2kg/m,μ=1、005 厘泊)在内径为100mm得圆管内流动时,若流速为1、0 m、s时,其雷诺数Re为9、93×10,流动型态为湍流。 18、管出口得局部阻力系数等于1、0管入口得局部阻力系数等于0、5、 19、计算流体局部阻力损失得方法有当量长度法;阻力系数法;其相应得阻力损失

第一章流体流动东南大学化工考研复试化工原理考试题库

第一章流体流动 一、单项选择题(每小题1分) 1.在SI单位制中,通用气体常数R的单位为( ) A. atm·cm / mol·K B. Pa·m /mol·K C. Kf·m / mol·K D. Ibf·ft / Ibmol·K 2.系统处于稳态指的是( ) A. 系统操作参数不随时间改变 B. 系统操作参数不随位置改变 C. 系统操作参数随位置改变,但不随时间改变 D. 系统操作参数随时间改变,但不随位置改变 3.下列流体中,认为密度随压力变化的是( ) A.甲烷 B.辛烷 C.甲苯 D. 水 4. 下列关于压力的表述中,正确的是( ) A. 绝对压强= 大气压强+ 真空度 B. 绝对压强= 大气压强- 真空度 C. 绝对压强= 大气压- 表压强 D. 绝对压强= 表压强+ 真空度 5.某系统的绝对压力为0.06MPa,若当地大气压为0.1MPa,则该系统的真空度为( ) A. 0.1MPa B. 0.14MPa C. 0.04MPa D. 0.06MPa 6. 容器中装有某种液体,任取两点A,B,A点高度大于B点高度,则( ) A. p A > p B B. p A < p B C. p A = p B D. 当液面上方的压强改变时,液体内部压强不发生改变 7.在一水平变径管路中,在小管截面A和大管截面B连接一U型压差计,当流体流过该管时,压差计读数R值反映( )。 A.A、B两截面间的压强差;B.A、B两截面间的流动阻力; C.A、B两截面间动压头变化;D.突然扩大或缩小的局部阻力。 8. 使用U型管压差计测量较小压差时,为了准确读数,下列方法中正确的做法是() A. 选择较大密度的指示液 B. 选择较小密度的指示液 C. 使用与被测流体密度相近的指示液 D. 加大指示液与被测流体密度的差别 9.用一U型管压差计测定正辛烷在管中两点间的压强差,若两点间的压差较小,为了提高读数精度,你认为较好的指示剂为( ) A. 乙醇 B. 水 C. 汞 D. 甲苯 10.所谓理想流体,指的是() A. 分子间作用力为零的流体 B. 牛顿流体 C. 稳定的胶体 D. 气体 11.牛顿粘性定律适用于牛顿型流体,且流体应呈( )。 A.过渡型流动;B.湍流流动;C.层流流动;D.静止状态。12.有两种关于粘性的说法:( ) (1) 无论是静止的流体还是运动的流体都具有粘性。 (2) 粘性只有在流体运动时才会表现出来。 A.这两种说法都对B.第一种说法对,第二种说法不对 C.这两种说法都不对D.第二种说法对,第一种说法不对

流体流动习题答案

流体流动习题 1. 雷诺准数的表达式为_________ 。当密度p = 1000kg/m3,粘度卩=1厘泊的水, 在内径为d=100mm,以流速为1m/s在管中流动时,其雷诺准数等于,其流动类型为___ . 答案:Re二dup / 口; 105 ; 湍流2. 某流体在圆管中呈层流流动, 今用皮托管测得管中心的最大流速为2m/s, 此 时管内的平均流速为_________ . 答案:1m/s 3. 圆管中有常温下的水流动,管内径d=100m m测得其中的质量流量为 11.8kg/s/, 其体积流量为________ .平均流速为_______ .答案:0.0118m3/s ; 1.5m/s 4. 管出口的局部阻力系数等于__1.0___, 管入口的局部阻力系数等于__0.5__. 5. 流体在园直管内流动,当Re>4000时的流型称为______ , 其平均速度与 最大流速的关系为_____ ,而Re< 2000的流型称为 _____ ,平均速度与最大流速的关系为____ 。 答案:湍流;Q 0.8umax; 层流; =0.5 umax 6. 某设备上,真空度的读数为80mmH g其绝压二 _____ mH2O ___ Pa.(该地区 的大气压为720mmHg)答案:8.7mH2O ; 8.53 X 104pa 7. 应用柏努利方程所选取的截面所必须具备的条件是__________________ 。 8. 流体静压强P的作用方向为(B ) A .指向受压面 B.垂直指向受压面 C .垂直受压面 D .平行受压面

9. 层流与湍流的本质区别是( D ) 10. 在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的( C )倍 A. 2 B. 8 C. 4 11. 某液体在一等径直管中作稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则层流时,流动阻力变为原来的(C ) 12. 如图所示,三个容器A、B、C内均装有水,容器C敞口。密闭容器A B间的液面高度差为z1 = 1m容器B、C间的液面高度差为z2=2m,两U形管下部液体均为水银,其密度0=13600kg/m3,高度差分别为R=0.2m, H=0.1m,试求:容器A、B上方压力表读数pA、pB的大小。 13. 用离心泵经? 57 X 3.5mm的钢管,将敞口贮槽内的有机溶剂(密度为 800kg/m3,粘度为20cp)输送到反应器中。设贮槽内的液面离反应器内的液面高 度Z保持20m见附图。已知钢管总长度(包括局部阻力当量长度)为25m反应器内的压力恒定为4kgf/cm2(表压),有机溶液输送量为6nVh,泵的效率为60%试确定泵提供的轴功率。

化工原理流体流动部分模拟试题及答案

化工原理流体流动部分模拟试题及答案 一填空 (1)流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。 (2)离心泵的特性曲线通常包括 H-Q 曲线、 η-Q 和 N-Q 曲线,这些曲线表示在一定 转速 下,输送某种特定的液体时泵的性能。 (3) 处于同一水平面的液体,维持等压面的条件必须是 静止的 、 连通着的 、 同一种连续的液体 。流体在管内流动时,如要测取管截面上的流速分布,应选用 皮托 流量计测量。 (4) 如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为????常数=+ + =g p g u z E ρ22 ???少乘一个g ???????????; 单位体积流体的机械能衡算式为????? 常数=++ =p u gz E 2 2 ρρ????????????; 单位重量流体的机械能衡算式为?????? 常数=+ + =g p g u z E ρ22 ???????????; (5) 有外加能量时以单位体积流体为基准的实际流体柏努利方程为 z 1ρg+(u 12 ρ/2)+p 1+W s ρ= z 2ρg+(u 22ρ/2)+p 2 +ρ∑h f ,各项单位为 Pa (N/m 2) 。 (6)气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。 (7) 流体在变径管中作稳定流动,在管径缩小的地方其静压能 减小 。 (8) 流体流动的连续性方程是 u 1A ρ1= u 2A ρ2=······= u A ρ ;适 用于圆形直管的不可压缩流体流动的连续性方程为 u 1d 12 = u 2d 22 = ······= u d 2 。 (9) 当地大气压为745mmHg 测得一容器内的绝对压强为350mmHg ,则真空度为 395mmHg 。测得另一容器内的表压强为1360 mmHg ,则其绝对压强为2105mmHg 。 (10) 并联管路中各管段压强降 相等 ;管子长、直径小的管段通过的流量 小 。 (11) 测流体流量时,随流量增加孔板流量计两侧压差值将 增加 ,若改用转子流量计,随流量增加转子两侧压差值将 不变 。 (12) 离心泵的轴封装置主要有两种: 填料密封 和 机械密封 。 (13) 离心通风机的全风压是指 静风压 与 动风压 之和,其单位为 Pa 。 (14) 若被输送的流体粘度增高,则离心泵的压头 降低,流量减小,效率降低,轴功率增加。 降尘室的生产能力只与 沉降面积 和 颗粒沉降速度 有关,而与 高度 无关。 (15) 分离因素的定义式为 u t 2 /gR 。 (16) 已知旋风分离器的平均旋转半径为0. 5m ,气体的切向进口速度为20m/s ,则该分离器的分离因数为 800/9.8 。 (17) 板框过滤机的洗涤速率为最终过滤速率的 1/4 。 (18) 在层流区,颗粒的沉降速度与颗粒直径的 2 次方成正比,在湍流区颗粒的沉降速度与颗粒直径的 0.5 次方成正比。 二选择

相关主题
文本预览
相关文档 最新文档