当前位置:文档之家› 流体通过颗粒层的流动

流体通过颗粒层的流动

流体通过颗粒层的流动
流体通过颗粒层的流动

第4章流体通过颗粒层的流动

4.1概述

由众多固体堆积而成的静止颗粒层称为固定床。工业生产中流体通过固定床流动的典型例子:

1. 固定床反应器----催化剂颗粒堆积成的固定床。

2. 悬浮液的过滤----悬浮液中颗粒沉积形成的滤饼可看成固定床.

本章重点考查流体通过固定床的基本流动规律和过滤操作规律。

4.2 颗粒床层的特性

颗粒床层由不同大小和形状的颗粒组成,流体在其中的流动与管内流动类似。但颗粒床层内的流道尺寸不同,形状各异,具有复杂的网状结构。对其特性的了解应从组成通道的颗粒着手。

4.2.1 单颗粒的特性 (有关知识)

球形颗粒的几何特性可用单一参数d p全面表示,如:体积:

4-1)

面积:

(4-2)

球形颗粒比表面积:

(4-3)

非球形颗粒:非球形颗粒的几何特征不能用单一参数全面表示,通常以某种等当的球形颗粒近似表示,以使所考查领域内非球形颗粒的特征与球形颗粒等效。此球的直径称当量直径d e。当量直径可用不同方式定义。

(1). 体积当量直径:使当量球形颗粒的体积等于实际颗粒的体积V。

(4-4)

(2). 面积当量直径:使当量球形颗粒的表面积πd es2等于实际颗粒的表面积S。

(4-5)

(3). 比表面当量直径:使当量球形颗粒的比表面积6/d ea等于实际颗粒的比表面积a

(4-6)

非球形颗粒的形状系数:对非球形颗粒,只以一个当量直径不能确定其几何特征,因此定义形状系数。

(4-7)

4.2.2 颗粒群特性

由不同大小、形状颗粒组成的颗粒群,各单个颗粒的尺寸不会完全一样。颗粒群的大小分布用筛分分析得出。

筛分分析——用一组具有不同大小筛孔的筛利用筛孔的机械阻挡,将颗粒群按其粒度范围分为若干子群即对其粒度分布进行测定(为促使颗粒通过筛孔,筛面应作某种运动)。通过筛孔的颗粒量称为筛过量,截留于筛面的颗粒量称为筛余量。称取各筛面上的颗粒筛余量,即得筛分分析基本数据,筛分分析适用于>70μm的颗粒 (有关知识) 标准筛--不同国家采用不同的标准筛制,其筛孔为正方形时,其尺寸可直接用边长(mm)

表示;也可用筛号或筛目(筛网单位长度上的孔数)表示。相邻筛间尺寸变化通常为或

倍。

筛分分析结果--粒度分布常用分布函数表或分布函数曲线、频率分布表或频率函数曲线表示.

分布函数--某号筛(筛孔尺寸为d pi)的筛过量(质量)占试样总量的分率(F i)。不同筛号的F i与d pi标绘在图上,成为分布函数曲线。其特性为:

(1)对应某一尺寸d pi的F i值表示直径小于d pi的所有颗粒占全部试样的质量分率;

(2)在该批试样的颗粒最大直径处,其F i=1。

频率函数--各种粒径相对应颗粒的质量分率f i或某号筛面上筛余量占全部试样的质量

分率。将不同筛号的f i与d pi标绘在图上,成为频率函数曲线,其特性为:(1)在一定粒度范围内的颗粒占全部颗粒的质量分率等于该粒度范围内频率函数曲线下的面积;

图4-1 粒度分布函数

(2)频率函数曲线下的全部面积等于1.

图4-2 频率函数曲线

4.2.3 颗粒床特性

(1)颗粒群的平均直径

为简便起见,常用某个平均或当量直径来代替颗粒群的粒度分布。平均直径可用长度平均、表面积平均、体积平均或比表面积平均直径表示,它们可按颗粒计数平均或按筛分结果(质量分率)平均。对本章所考查的小颗粒,因其流动阻力主要由颗粒层中固体表面决定,所以采用比表面积平均直径d m

对球形颗粒定义(4-8)

式中:m--颗粒总质量㎏。 mi--相邻筛号间颗粒质量㎏,其直径为d pi,对非球形颗粒以(Ψde)代替式中d pi即可。

(2)床层特性

床层空隙率ε(有关知识)——床层的空隙体积与床层总体积之比。其大小反映床层颗粒堆积疏密程度。它影响着:

①流体的通过能力或床层阻力;

②床层的总体积。

床层比表面积αB——单位体积床层中颗粒的比表面积m3/m3,它与颗粒比表面积α间有如下关系

αB=α(1-

ε)(4-9)床层的各向同性----固定床层中任意截面上各处性质均相同。对小颗粒堆积的床层,可以认为床层各向同性。其重要特点为:床层流通截面积/床层截面积=ε。

床层的壁效应----固定床的壁面处空隙率总大于床层内部,流体在近壁处因阻力小,其流速必大于床层内部。若床层直径D/颗粒直径d p>10,壁效应可忽略。

4.3流体通过固定床压降——数学模型法。

4.3.1颗粒床层的简化模型

床层简化物理模型——由大量细小颗粒堆积而成的固定床,空隙率较小,流体流过时因阻力较大,将产生很大压降。为解决压降问题,对颗粒床层进行简化。(1)将床层中的不规则通道简化成一组平行虚拟细管,其长度为L e;(2)细管的内表面积等于床中颗粒的全部表面积;(3)细管的全部流动空间等于颗粒床层的空隙容积

图4-3 颗粒床层的简化模型

床层简化数学模型——由简化物理模型知,流体通过复杂几何边界的压降已简化成通过一组当量直径为d e,长度为L e均匀细管的压降。应用流体通过圆管流动概念,作出数学描述。

虚拟细管当量直径d e=4ε/α(1-ε)(4-9)

流体通过细管的阻力h f=ΔP/ρ=λL e u12/2d e (4-10)

式中:u1--床层中颗粒间的实际流速m/s;ΔP--床层的虚拟压差,忽略重力时。ΔP=Δp

流体通过细管的压降 (有关知识)

∵表观流速(空床流速)u与实际流速的关系为:u1=u/ε,实际床层高度L与虚拟细管长度L e的关系为:L e/L=常数C

(4-11)

(4-12)--模型参数(由实验定),重力忽略时

4.3.2模型的检验和模型参数的实验值

颗粒床层的简化模型是否有效必须由实验检验,即测定模型参数

(1)康采尼(Kozeny)实验:当床层雷诺数Re<2时,

(4-14)

式中 ----康采尼常数。的误差≤10% 此时:

(4-15)

----康采尼方程。

(2)欧根(Ergun)实验:当=0.17~420时,

此时:

(4-16)

-----欧根方程。

<3时,上式右边第二项可忽略;当>100时,右边第一项可忽略。欧根方程误差±25%,且不适用于细长及环状颗粒。

床层雷诺数

(4-17)

(5)离心机

依靠旋转机械产生离心力场,使非均相混合物分离的设备通称为离心机。因离心机的转速可达很高,使其分离因数很大,故能分离极小的颗粒(2~5μm)和乳浊液。离心机可以间歇或连续操作,间歇离心机又可分为人工或自动卸料。

三足立式离心机:间歇操作,手工卸料,其主要部件为一篮式转鼓,壁面上开孔并内衬金属丝网及滤布,外壳、机座和传动装置悬挂在三个支柱上,以减轻运转时的振动,料液分批加入转鼓,滤液穿过转鼓从机座下排出,滤饼沉积在转鼓内壁。

活塞往复式离心机——连续操作,连续卸料。其主要部件为一侧卧式转鼓和装在转鼓底部与转鼓一起旋转的推料活塞。转鼓由内向外,依此分为过滤、洗涤、沥干、卸料等区域。料液加到转鼓的内侧,活塞与料斗一起沿转轴作往复运动,将生成的滤饼向外逐渐推出.

4.4 过滤原理及设备

4.4.1 过滤原理:

利用重力或人为造成的压差,使悬浮液通过能截留固体颗粒的过滤介质,使悬浮液中的固体分散相与流体连续相分离的操作.主要用于液--固分离.(有关知识)

两种过滤方式:应用中的过滤方式有两种--滤饼过滤(有关知识)与深层过滤,有关概念

滤饼的压缩性:若颗粒形成的滤饼具有一定刚性,其空隙结构ε不随压强变化,称为不可压缩滤饼。若滤饼的ε随压强增大而减小,流动阻力急剧增加,则称为可压缩滤饼。(实际上滤饼均是可压缩的,但对空隙结构随压力变化不大的滤饼,可近似认为是不可压缩的。)滤饼的洗涤:过滤结束后,滤饼孔道中会残留滤液,无论是回收固体或滤液,均要用清水对滤饼进行洗涤,必要时还要通入压缩空气,进一步驱除滤饼中液体,然后进行滤饼卸除。

滤饼过滤的特点(本章仅讨论滤饼过滤)

(1)通过过滤介质和滤饼的流体,属于固定床中的流动,但床层厚度不断增加;

(2)因床层阻力不断增加,随过滤时间延长,过滤速率不断减小;

(3)过滤操作属非定态过程。

过滤速率定义(4-18)式中:v—过滤时间为τ时,所获滤液量m3;A—过滤面积m2;q—q=v/A,通

过单位过滤面积的滤液总量m3/m2。

4.4.2过滤设备(有关知识)

为适应不同的过滤目的和不同性质的悬浮液,发展了各种各样的过滤设备。

(1)板框压滤机分类

板框压滤机是一种有较长历史,至今仍广泛用于生产的间歇式压滤机。

按压紧方式----手动,液压或电动(半自动),自动。

按滤液流出方式----明流和暗流。

按框的容积性质----定容积滤室,变容积滤室。

板框压滤机结构:(有关知识)

滤板:滤板为正方形,两面车有棱槽,用以支撑滤布并使滤液沿槽流动。板的四角各开一圆孔。

非洗涤板:非洗涤板在板的左右下角各有孔道和角上的圆孔相通。左上角为滤液出口通道,右上角为洗水出口通道。在板的外侧以一钮标识。

洗涤板:洗涤板在板的左上角和左下角各有孔道和角上的圆孔相通。左下角为洗水进口,左上角为滤液出口。在板的外侧以三钮标识。

滤框:滤框为正方形,两侧覆以滤布构成滤室。框的四角开有圆孔,右下角的圆孔与框内相通,滤浆(悬浮液)从此处进入滤框,在框外侧以二钮标识。

板框压滤机的操作:

组装:过滤开始前,先将滤框覆以四角开孔的滤布,然后将滤板和滤框交替排列在机架上。若滤饼需洗涤,排列方式为(以标识钮记)1–2–3–2–1–2–3–2–1……最后使螺杆转动压紧板和框。

过滤操作:过滤时,滤浆由管路送入板框右下角圆孔构成的通道,并从框的右下角进入框和滤布构成的滤室,滤液穿过框两侧的滤布分别流向相邻滤板,并从每板的左上角经孔道排出机外。框内滤饼不断增厚,直至充满滤框,即停止过滤。

洗涤操作:滤饼需洗涤时,洗液由三钮板左上角孔道进入洗涤板两侧,依此穿过整块框内的滤饼和滤布到达一钮板(非洗涤板)的表面并汇集由右上角小孔排出。此法称为横穿洗涤。

卸渣:洗涤完成后,停车松开螺旋,卸除滤饼,清洗滤布,为下一次过滤作准备。

板框压滤机的特点:

1. 过滤时:过滤面积为2×框面积×框数;滤液所走路程为1/2框厚。

2. 洗涤时:洗涤面积为框面积×框数=1/2过滤面积;洗液所走路程为整个框厚=2×滤液所走路程。

3. 优点是:构造简单,结构紧凑,过滤面积大,承受压力高,可过滤细小颗粒或粘度较高物料。

4. 缺点是:采用手动或半自动过滤机时,劳动强度大。

(2)叶滤机是一种间歇式过滤设备

叶滤机的结构:

滤叶:由金属丝网构成圆柱形扁圆形或矩形框架,外包滤布。

叶滤机:将多片滤叶平行排列组装成一体,插入盛有滤浆的密闭滤槽中。

图4-4 叶虑机的结构

叶滤机操作

过滤操作:过滤时,滤液在压力下穿过滤布进入滤叶内,并汇集于下部总管中流出,滤饼沉积在滤叶的外表面上。过滤结束后排出剩余滤浆。

洗涤操作:滤饼需洗涤时滤槽中充入洗液或将滤叶吊入洗涤槽,洗液穿过滤叶表面上的全部滤饼,到达滤叶内部汇集排出,此法称为置换洗涤法。

叶滤机的特点:

1、过滤与洗涤时,滤液与洗液穿过的面积和通过的路程相同。

2、优点;过滤面积大,设备紧凑,灵活,劳动条件好,滤饼厚度均匀,洗涤充分,操作稳定。

缺点:构造较复杂,造价高,滤布更换较困难。

(3)厢式压滤机是一种间歇式过滤设备

厢式压滤机的外表与板框压滤机相似,其工作原理相同。但厢式压滤机仅有滤板没有滤框。每块滤板的两面均内凹,相邻两板叠合后,内凹部分形成滤室。滤浆从板中心孔进入,滤布也开有中心孔,并在此处压紧在板上,滤液从下角排出。滤饼洗涤也采用横穿洗涤法。

厢式压滤机动态演示

(4)回转真空过滤机是一种连续过滤设备

<1>回转真空过滤机的构造:

转鼓:主体为一水平放置的圆柱形(长/径=1/2~2)中空筒,柱体表面上覆以滤布,其下部有30~40%的表面浸在滤浆中。转鼓内分为12个扇形格,每格的表面均有孔道连至中心转轴端面上的分配头上,扇形格间互不相通。

分配头:分配头由一个转动盘和一个固定盘组成。转动盘上开12个孔,分别与转鼓上12个扇形格相通,它安装在转鼓的端面上,随其一起转动。固定盘上开有3至4条长孔,分别与滤液槽洗液槽和压缩空气系统相通,它固定在支架上,靠压紧弹簧与转动盘紧密叠合。

图4-5 回转真空过滤机操作简图

<2>回转真空过滤机的操作

回转真空过滤机在操作时,转鼓以0.1~0.3转/分的速度顺时针方向转动,每旋转一周,相继进行过滤,脱水,洗涤,吹松,卸渣等操作,即完成一个操作周期。当转鼓某一格转至滤槽液面以下时,与此格对应的转盘上小孔即和固定盘的槽1相通,随之进行真空抽吸过滤,滤饼沉积在转鼓表面;此格转离液面时,即与固定盘的槽2相通,真空抽干滤饼中的滤液;转筒继续转动,此格与固定盘槽3相通,这时转鼓表面淋洒洗液,对滤饼进行洗涤,洗液则由槽3抽往储槽,此种洗涤方法也属置换洗涤;转鼓转至该格与固定盘上槽4相通时,吹入压缩空气,使滤饼变松,同时固定在滤槽边缘上的刮刀将滤饼卸掉;必要时可由固定盘上的槽吹入压缩空气,以再生和清洗滤布,重新开始下一周期的操作。

4.5过滤过程的计算

4.5.1过滤过程的数学描述

⑴悬浮液中固体含量的表示方法:质量分率(4-19)

体积分率(4-20)

质量分率与体积分率的关系(对颗粒在液体中不发生溶涨物系,按体积加和原则)

(4-21)

式中:ρp,ρ----分别为固体颗粒和滤液的密度K/m3,kg/m3

⑵物料衡算

总物料衡算 V悬=V+LA

式中:

V悬、V----分别为悬浮液、滤液的体积(m3);

L----滤饼厚度(m);

A----过滤面积(m2)。

固体物料衡算 V悬φ=LA(1-ε)

从上两式推出

(4-22)

一般φ<<ε

(4-23)

上式表明:过滤时若滤饼空隙率ε不变,即滤饼不可压缩,滤饼厚度L与单位面积上累积滤液量q成正比。

⑶过滤速率由于过滤所涉颗粒尺寸均很小,所以液体在所形成的滤饼层中流速均很低,即一般Re'<2,适用于康采尼公式。

由过滤速率u定义式和康采尼公式有:

(4-24)

过滤速

率(4-25)

式中--施加于滤饼两侧的压差。

将速率表示成正比于推动力,反比于阻力的形式,其优点在于:在串联过程中,推动力及阻力分别具有加和性。

⑷过滤过程基本方程过滤时滤液依次通过滤饼和过滤介质,过滤介质同样具有阻力,其大小可视为单位过滤面积获得某当量滤液量qe所形成的虚拟滤饼层的阻力。设 1

和 2分别为滤饼两侧和过滤介质两侧的压差,定常时:和

(4-26)

为过滤操作总压差,令,K(㎡/s)与qe(m3/m2)同称为过滤常数,由实验测定。由上式可得本章一个重要方程----过滤

速率基本方程或(4-27)

式中Ve=Aqe为形成与过滤介质阻力相等的滤饼层所得的滤液量(m3)

⑸滤饼的比阻: 系数r反咉了滤饼的特性,称为滤饼的比阻.

前面已定义:比阻有下面一些特性:

① r表示滤饼结构对过滤速率的影响,其数值大小反咉了过滤操作的难易程度.

②对不可压缩滤饼,r仅取决于悬浮液的物性。ε↑,r↓;a↑,r↑;床层颗粒不均匀性↑,K‘↑,r↑。

③对可压缩滤饼,在一定的μ下,r随操作压差增加而加大,此时r服从经验关系:r=r0△p3

式中r0----

单位压差下的平均比阻,实验常数。

s----压缩性指数(有关知识),实验常数。不可压缩滤饼s=0; 可压缩滤饼s=0.2~0.8,压缩性越大,s越大。

4.5.2 间歇过滤的滤液量与过滤时间的关系

⑴过滤方式

①恒压过滤----恒压差,变速率(速率随滤饼增厚逐渐减小)操作;

②恒速过滤----恒速率,变压差(压差随滤饼增厚逐渐加大)操作;

③先恒速,后恒压操作----避免过滤初期压差过高引起滤布堵塞或破损。

⑵恒速过滤方程使用正位移泵或隔膜泵输送滤浆可实现恒速操作。

(4-28)

则:

或(4-29)要保持较高的过滤速率,压差要增至很大,而过高的压差受设备强度及电机能力限制,因此纯粹恒速过滤很少用。

⑶恒压过滤方程:恒压时K,q e为常数(4-30)得

或 V2+2VV e=KA2τ(4

-31)

若忽略过滤介质阻力,则:q2=Kτ或 V2=KA2τ(4-32)

⑷过滤常数的测定

过滤常数K,q e,及r,s的测定,是用同一种悬浮液在小型设备中进行的。

将恒压过滤方程变形(4-33)

上式表明与q间呈线性关系,实验时,在恒压下,测定在不同时间τ内,所得单位过滤面积上的滤液量q,将若干组数据标

绘在直角坐标系中,即可得到K,q e。若在不同压差下,重复上述实验,并由已知的,μ,φ值按

,

求出不同的r。对可压缩滤饼,可由r=r s或logr=slog +logr0求出相应的s和r。(有关知识)

图4-6 恒压过滤常数的测定

4.5.3 洗涤速率与洗涤时间

当滤饼需洗涤时,单位面积洗涤液的用量q w需由实验定.洗涤过程中滤饼不再增厚,洗

涤速率为一常数。

⑴叶滤机的洗涤速率---置换洗涤法

此类设备中,洗液流过滤饼的路程与过滤结束时滤液走过的路程相同,洗液通过的面积与过滤面积相同。按恒压过滤方程求导

洗涤速率(4-34)式中下标w表示洗涤

洗涤时间(4-35)

若洗涤与过滤结束时的操作压强相同,洗液与滤液粘度相等,则洗涤速率与最终过滤速率相等,即

(4-36)

(4-37)

(4-38)

⑵板框压滤机的洗涤速率---横穿洗涤法此类设备中,洗液穿过滤饼的路程是滤液在过滤结束时的两倍,洗液通过的面积是过滤面积的二分之一,若仍以过滤面积为基准的话,则洗涤

速率洗涤时间若洗涤与过滤结束时的操作压强相同,洗液与滤液粘度相等,则洗涤速率是最终过滤速率的四分之一,即:

(4-39)

(4-40)

4.5.4过滤过程的计算

⑴设计型计算

命题:设计得到一定滤液量V所需的过滤面积A。

已知条件:由小型过滤实验得到的K、q e,选择操作压强△p、过滤时间、悬浮液性质。

计算:过滤面积A

步骤:①由小型过滤实验,测定K,q e,V w及φ或φ';②选定过滤机型式,由经验确定τD、△p,并选择τ及τw

③由过滤方程求q和单位面积滤饼体积qφ’。

④由V=qA 求出A,m2

⑤选择滤框边长,计算滤框数和框厚

,框厚 = 2qφ’

(4-41)

⑵操作型计算

命题:现有设备操作状态的核算

已知条件:设备尺寸及参数(A、框边长、个数或滤叶数),操作条件(△p,K,q e,n,φ等)悬浮液性质(μ,φ,φ’)或生产能力

计算:生产能力或操作条件(如△p,n等)

过滤技术改造大致有两方面内容:

①寻找适当的方法和设备,以适应物料的性质;

②加快过滤速率以提高过滤机的生产能力。

过滤机的生产能力(有关知识)

过滤机的生产能力是指在一个操作周期中,所能得到的滤液量Q。一个操作周期包括:过滤时间τ;洗涤时间τw;

组装、卸渣、清洗滤布等辅助时间τD。即操作周期的总时间:

⑴间歇过滤机的生产能力Q=V/Στ

对一定的过滤系统(过滤机的型式尺寸和滤浆一定)和一定的洗液量V w,τD,τw一定,在恒压时,过分延长过滤时间,并不能提高生产能力。如右图,过滤曲线上任一点至原点O的连线斜率即为生产能力Q,一定τw+τD时,必存在一最佳过滤时间τopt,在此时停止过滤,生产能力将最大。

图4-7 最佳过滤时间

⑵回转真空过滤机的生产能力

操作周期----转鼓旋转一周即完成一个操作周期。若转鼓转速为ns-1,则 =1/n。

过滤时间----回转真空过滤机是在恒压下操作,若转鼓浸入滤浆的表面(瞬间过滤表面)占全部表面的分率为φ(浸没度),φ=浸入角度/360°,则转鼓任一部分表面浸入滤浆中的时间,即为每周期中的过滤时间:

在一个操作周期中转鼓的全部表面都经历了τ的过滤时间,这样就把过滤机转鼓的部分表面连续过滤转换为全部表面的间歇过滤。此时恒压过滤方程仍适用。

生产能力Q = nqA, A = π×鼓径×鼓长

由恒压过滤方程

(4-42)

忽略介质阻力

(4-43)

化工流动过程综合实验

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。. 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。. 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法、加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ')

流体流动 习题及答案

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管内流动流体,湍流时雷诺准数是()。B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为200mmHg ,当地大气压为101kPa, 则泵入口处的绝对压强为()。 A A. 74.3kPa; B. 101kPa; C. 127.6kPa。 19.在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的()倍。 C A. 2; B. 8; C. 4。 20.流体流动时产生摩擦阻力的根本原因是()。 C

流体流动习题答案

流体流动习题 1. 雷诺准数的表达式为_________。当密度ρ=1000kg/m3,粘度μ=1厘泊的水,在内径为d=100mm,以流速为1m/s 在管中流动时,其雷诺准数等于__________,其流动类型为______. 答案:Re=d uρ/μ ; 105; 湍流 2. 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流速为2m/s,此时管内的平均流速为_________. 答案: 1m/s 3. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为s/,其体积流量为______.平均流速为_______.答案:s ;s 4. 管出口的局部阻力系数等于,管入口的局部阻力系数等于. 5. 流体在园直管内流动,当Re≥4000时的流型称为___, 其平均速度与最大流速的关系为___,而Re≤2000的流型称为___,平均速度与最大流速的关系为___。 答案:湍流; ≈; 层流; = umax 6. 某设备上,真空度的读数为80mmHg ,其绝压=____mH2O= _____Pa. (该地区的大气压为720mmHg) 答案: ; ×104pa 7. 应用柏努利方程所选取的截面所必须具备的条件是______________。 8.流体静压强P 的作用方向为( B ) A .指向受压面 B .垂直指向受压面 C .垂直受压面 D .平行受压面 9. 层流与湍流的本质区别是 ( D ) A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 10. 在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的( C )倍 A. 2 B. 8 C. 4 11. 某液体在一等径直管中作稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则层流时,流动阻力变为原来的( C ) 2 22322642d lu u d l du u d l h f ρμμ ρλ= ??=??=

化工原理实验讲义(doc 55页)

化工原理实验讲义化工与环境学院化学工程与控制系化工原理实验室

编写说明 近几年来,本实验室的实验装置中的大部分都进行了更新或改造。过去编写的实验讲义已经不能适应目前的状况,兄弟院校的相关实验教程也由于装置、内容、重点等方面的差异而有一定的局限。所以有必要重新编写一本适用的实验讲义。这有助于提高实验教学质量,改善教学效果。 本实验讲义的大部分内容,曾经以补充讲义电子版的形式提供给2003和2004级两个年级的本科生700多名同学试用,取得了比较满意的效果。此次正式交付印刷,又增补了一些必要的基础知识,各个实验项目的思考题,以及选修实验项目的内容。第一、第二章由毋俊生执笔,其余章节由邓文生,康惠宝执笔,全书由刘文芳排版编辑。本次又根据2011年更换的设备,对流体阻力测定、干燥实验、雷诺实验部分进行了修订,并对其它部分的一些笔误进行了更正。虽然编者都具有较长期指导本实验课程的经历,但受知识结构、理解深度、认识水平等方面的局限,不当之处在所难免。期望使用本讲义的老师和同学提出您的意见、建议和指正。 2007年7月编 2012年4月修订

目录 第 1 章化工基础实验技术 (2) 1.1 温度的测量 (2) 1.2 压力的测量 (3) 1.3 流量的测量 (5) 第 2 章实验数据分布及基本数据处理 (9) 2.1 实验数据的分布 (9) 2.2 实验数据的基本处理 (9) 2.3 实验报告的基本要求 (10) 第 3 章化工原理基本实验 (12) 3.1 流体流动阻力的测定 (12) 3.2 离心泵特性曲线的测定 (16) 3.3 对流传热系数的测定 (20) 3.4 填料塔压降曲线和吸收系数的测定 (23) 3.5 精馏塔效率的测定 (28) 3.6 干燥速率曲线的测定 (32) 3.7 扩散系数的测定 (35) 3.8 液—液萃取塔的操作 (39) 第 4 章演示实验 (42) 4.1 雷诺实验 (42) 4.2 机械能守恒与转换 (45) 4.3 边界层形成与分离 (47) 第 5 章化工流动过程综合实验 (48)

流体流动习题答案

第一章 流体流动习题解答 1. 某设备上真空表的读数为13.3×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为98.7×103 Pa 。 解:真空度=大气压-绝压 3(98.713.3)10atm p p p Pa =-=-?绝压真空度 表压=-真空度=-13.3310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底9.6 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为32.23×106 Pa ,问至少需要几个螺钉? 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z Pa ρ=?=??-=(表压) 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ?= 作用在孔盖上的净压力为 2282575(0.76) 3.7644 p p d N π π =?=??=?410 每个螺钉能承受的最大力为: 62332.23100.014 4.96104 F N π =?? ?=?钉 螺钉的个数为433.7610/4.96107.58??=个 p

所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试求A 、B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ=,故由气柱 高度所产生的压强差可以忽略。由此可以认为A C p p ≈, B D p p ≈。 由静力学基本方程式知 232A C H O Hg p p gR gR ρρ≈=+ 10009.810.05136009.810.05=??+?? 7161Pa =(表压) 417161136009.810.4 6.0510B D A Hg p p p gR Pa ρ≈=+=+??=? 4. 本题附图为远距离制量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H =1 m ,U 管压差计的指示液为水银,煤油的密度为820 kg/m 3。试求当压差计读数R=68 m 时,相界面与油层的吹气管出口距离h 。 解:如图,设水层吹气管出口处为a ,煤油层吹气管出口处为b ,且煤油层吹气管到液气界面的高度为H 1。则 1a p p = 2b p p = 1()()a p g H h g H h ρρ=++-油水(表压) 1b p gH ρ=油(表压) U 管压差计中,12Hg p p gR ρ-= (忽略吹气管内的气柱压力) 12a b p p p p gR ρ-=-= C D H 1 压缩空气 p

第一章.流体流动习题及答案

一、单选题 1.单位体积流体所具有的( A )称为流体的密度。 A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的( A )。 A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是( D )。 A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是( B )的流体。 A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的( C )。 A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为( A )。 A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的( D )大于外界大气压力时,所用的测压仪表称为压力表。 A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力( A )外界大气压力时,所用的测压仪表称为压力表。 A 大于; B 小于; C 等于; D 近似于。 9.( A )上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的( D )小于外界大气压力时,所用测压仪表称为真空表。 A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为( B )。 A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( A )。 A. 与指示液密度、液面高度有关,与U形管粗细无关;

化工综合实验考试题A答案

哈工大 2006 年 秋 季学期 化工综合实验 A 答案 试 题 一 填空(每题1分,共10分) 1.雷诺实验的目的是为了测定流体流动的型态,临界雷诺数 。 2.在流动阻力测定实验中,对于固定的管道其摩擦系数是 雷诺数 的函数。 3.传热实验中由于忽略了污垢和管壁热阻,因此总的传热系数和热水的传热膜系数数值关系近似为 1/2,一半 。 4.吸收实验测定二氧化碳在水中的浓度时,空白实验取 10 mL 的氢氧化钡用标准盐酸溶液滴定。 5.蒸馏实验中,分析塔顶和塔釜样品乙醇和丙醇的摩尔分数时,我们使用 阿贝折光仪 测得的实验数据。 6.干燥实验湿空气的相对湿度可以通过 湿球温度计 温度计测得,对干燥而言空气的湿度对于干燥操作影响很大。 7.离心泵特性曲线是在一定的条件下用清水测定的,主要有 压头-流量,效率-流量和功率-流量 组成。 8.转子流量计有用于测量空气和水的流量之分,使用时需要校正流量曲线,其正确的安装方法是 垂直向上 。 第 1 页 (共 4 页)

9.伯努力实验中,某一个截面的动压头等于该截面的冲压头与静压头之差。 10.在化工综合实验中,为了简化实验,便于数据处理,得到准数关联式。我们采用了量纲分析法,因次分析法 二简答题(20分) 1.U型压差计中指示液的选择原则是什么?(3分) 答:(1)指示液与管路流体互不相溶; (2)为了提高实验的精度,根据待测压差可能的最大值选择密度合理的指示液,待测压差较大的就应选择密度较大的指示液。 2.离心泵实验操作时,为何用控制出口阀的开度调节流量?(3分) 答:一个输送系统是由泵和管路共同构成,其工作状况也是由泵的特性与管路特性共同决定。控制出口阀的开度调节流量好处在于:(1)方便;(2)改变管路特性。 第2 页(共4 页)

流体力学期末考试题(题库+答案)

1、作用在流体的质量力包括 ( D ) A压力B摩擦力C表面张力D 惯性力 2、层流与紊流的本质区别是: ( D ) A. 紊流流速>层流流速; B. 流道截面大的为湍流,截面小 的为层流; C. 层流的雷诺数<紊流的雷诺数; D. 层流无径向脉动,而紊流 有径向脉动 3、已知水流的沿程水力摩擦系数 只与边界粗糙度有关,可判断 该水流属于( D ) A 层流区; B 紊流光滑区; C 紊流过渡粗糙区; D 紊流粗糙区。 4、一个工程大气压等于( B )Pa; ( C )Kgf.cm-2。 A 1.013×105 B 9.8×104 C 1 D 1.5 5、长管的总水头线与测压管水头线 ( A ) A相重合; B相平行,呈直线; C相平行,呈阶梯状; D以上答案都不对。 6、绝对压强p abs、相对压强p 、真空值p v、当地大气压强p a之间的 关系是( C ) A p abs=p+p v B p=p abs+p a C p v=p a-p abs D p

= p a b s - p V 7、将管路上的阀门关小时,其阻力系数( C ) A. 变小 B. 变大 C. 不变 8、如果忽略流体的重力效应,则不需要考虑哪一个相似性参数?( B ) A弗劳德数 B 雷诺数 C.欧拉数 D马赫数 9、水泵的扬程是指 ( C ) A 水泵提水高度; B 水泵提水高度+吸水管的水头损失; C 水泵提水高度 + 吸水管与压水管的水头损失。 10、紊流粗糙区的水头损失与流速成( B ) A 一次方关系; B 二次方关系; C 1.75~2.0次方关系。 11、雷诺数是判别下列哪种流态的重要的无量纲数( C ) A 急流和缓流; B 均匀流和非均匀流; C 层流和紊流; D 恒定流和非恒定流。 12、离心泵的性能曲线中的H-Q线是在( B )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑le)一定。

颗粒与流体之间的相对运动

第三章 颗粒与流体之间的相对运动 一、前言:(本章:本质上讲:属于流体流动过程,从方法或手段上讲:属于非均相分离过程,下册讲的 蒸馏、吸收、萃取等单元操作都是均相分离过程)。 1、相:体系中具有相同组成,相同物理性质和相同化学性质的均匀物质。相与相之间有明确的 界面。 例如:气、液、固称为三态,每一态又称为一相。再例如:空气(或溶液)虽是混合物,但 由于内部完全均匀,所以是一个相。水和冰共存时,其组成虽同是O H 2,但因有不同的物理性质,所以是两个相;水、冰和蒸汽共存时是三个相。两块晶体相同的硫磺是一个相,两块晶体不同的硫磺(如 斜方硫和单斜硫)是两个相。 2、均相:凡物系内部各处物理料质均匀而不存在相界面者,称为均相混合物或均相物系。溶 液及混合气都是均相混合物。 3、非均相:凡物系内部有隔开两相的界面存在,而界面两侧的物料性质截然不同者,称为非 均相混合物或非均相物系。 非均相??? ?? ?? 属于气体非均相间煤气中夹杂煤渣子)合成氨厂造气车(如尘气体气体与固体微粒组成含 沫液)(含有气泡的液体即泡 液态非均相)(如碎木屑放在水面上浮液液体与固体离子组成悬 ,:,,, 非均相物系里,处于分散状态的物质称为分散物质(或分散相),包围着分散物质而处于 连续状态的流体,称为分散介质(或连续相)。如:浮悬液中的固体颗粒,称为分散物质,液体是分散介质。 4、非均相物系的分离:通过机械方法分离非均相物系的单元操作。具体点讲机械方法:沉降和过滤。 二、工业上非均相物系分离的目的 1、 收取分散物质:如从催化反应器出来的气体中,往往带有催化剂颗粒,必须把这些有 价值的颗粒回收利用。 2、 净化分散介质:合成氨生产,半水煤气中含有2CO 、S H 2灰尘等杂质,为了防止合 成触媒中毒,必须将这些杂质一一去除,以保证触媒的活性。 3、 环境保护:对三废:废气、废液、废渣的处理,地球由于被污染加剧,环保越来越受 到人们的重视。综上所述,非均相物系分离的目的是除害收益。 三、本章解决的问题 以硫铁矿为原料生产硫酸,在沸腾炉中进行的主化学反应为: 23222 82114SO O Fe O FeS +=+ 在焙烧时还有一些副反应,如生成3SO 、 硫酸盐、砷与硒的氧化物、氟化氢等。同时2SO 炉气中含有大量矿尘,它们主要是铁、铅、铜、钴、钡、锑、铋的氧化物和硫酸盐,此外 还含有气体杂质。如:三氧化硫、三氧化二砷、二氧化硒、氟化氢等。这些杂质能够堵塞管路和催化床,并使催化剂(52O V )中毒,(二氧化硫催化氧化变成三氧化硫)。故炉气需

化工原理流体综合实验报告

流体综合实验 实验目的 1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图; 3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作; 离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: (1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有 (1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m; ρ——流体密度,kg/m3 ; g——重力加速度m/s2; p 1、p 2 ——分别为泵进、出口的真空度和表压,Pa;

H 1、H 2 ——分别为泵进、出口的真空度和表压对应的压头,m; u 1、u 2 ——分别为泵进、出口的流速,m/s; z 1、z 2 ——分别为真空表、压力表的安装高度,m。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N电×k (W)(1-3) 其中,N 电 为电功率表显示值,k代表电机传动效率,可取k=0.95 3.效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: N e=HQρg (1-4)故泵效率为 (1-5)四、实验步骤及注意事项 (一)实验步骤: 1.实验准备: (1)实验用水准备:清洗水箱,并加装实验用水。 (2)离心泵排气:通过灌泵漏斗给离心泵灌水,排出泵内气体。 2、开始实验: (1)仪表自检情况,打开泵进口阀,关闭泵出口阀,试开离心泵,检查电机运转时声音是否正常,,离心泵运转的方向是否正确。 (2)开启离心泵,当泵的转速达到额定转速后,打开出口阀。 (3)实验时,通过组态软件或仪表逐渐改变出口流量调节阀的开度,使泵出口流量从1000L/h 逐渐增大到4000L/h,每次增加500L/h。在每一个流量下,待系统稳定流动5分钟后,读 取相应数据。离心泵特性实验主要需获取的实验数据为:流量Q、泵进口压力p 1 、泵出

【采矿课件】第4章颗粒在流体中的运动

【采矿课件】第4章颗粒在流体中的运动 习题解答 1.什么是体积分数、质量分数?两者的关系如何?已知石英与水的密度分不为2650kg/m3和 1000kg/m3,将相同质量的石英砂和水配置成悬浮液,求悬浮液的质量分数、体积分数、物理密度和黏度? 【解】悬浮体的体积分数ΦB(旧称容积浓度λ)是指悬浮体中固体颗粒(或气泡、液滴)的体积占有率,它是无量纲数,数值上等于单位体积的悬浮体中固体颗粒(或气泡、液滴)占有的体积。悬浮体的质量分数w B(旧称重量浓度C)是指悬浮体中固体颗粒的质量占有率,它也是无量纲数。若颗粒和流体的密度分不用δ和ρ表示,体积分数ΦB与质量分数w B有下面的关系: 已知δ=2650kg/m3和ρ=1000kg/m3,设石英砂和水的质量差不多上W,则有 故质量分数、体积分数、物理密度和黏度分不为0.5000、0.2740、1452kg/m3和2.2902μ。 2.牛顿流体和非牛顿流体的有效黏度和微分黏度有何特点?什么叫屈服切应力?哪些非牛顿流体的流变特性可用幂律模型描述?幂律模型中的参数K和n有何物理意义? 【解】有效粘度是流变曲线上指定点到原点的直线斜率;微分粘度是流变曲线上指定点的切线斜率。牛顿流体的有效黏度等于微分黏度,同时差不多上常数;宾汉流体,微分粘度为常数,但有效黏度不为

常数,同时有效黏度大于微分黏度,当剪切速率趣近于零时有效黏度变为无穷大;假塑性流体的有效黏度大于微分黏度;胀塑性流体的有效黏度小于微分黏度;屈服假塑性流体与宾汉流体有些类似,只是微分黏度不是常数。 宾汉认为,当悬浮液的浓度大到其中的颗粒互相接触之后,就有塑性现象发生,欲使系统开始流淌,施加的剪切力必须足以破坏使颗粒形成的网架结构,那个刚好能够破坏颗粒网架结构的切应力确实是屈服切应力。 假塑性流体(包括胀塑性流体)的流变特性可用如下幂律模型描述: 幂律模型中的参数K也是流体黏性的量度,它不同于黏度,流体越黏,K值越大;指数n是液体非牛顿性的量度,n值与1相差越大,则非牛顿性越明显;关于假塑性流体的n<1(关于胀塑性流体n>1)。 3.什么是自由沉降?什么是干涉沉降? 【解】颗粒在流体中沉降时,若不受周围颗粒或容器壁干扰,称为自由沉降。颗粒在有限空间中的沉降称之为干涉沉降。矿物加工中粒群在矿浆中的沉降确实是典型的干涉沉降,球体在窄管中的沉降也是干涉沉降。 4.已知石英与水的密度分不为2650kg/m3和1000kg/m3,水的运动黏度为1.007x10-6 m2/s,求直径为0.2mm的球形石英颗粒在水中的自由沉降速度、雷诺数和阻力系数? 【解】已知δ=2650kg/m3、ρ=1000kg/m3、ν=1.007x10-6 m2/s和d=0.0002m,则 先试用通用公式运算:

实验四化工流体过程综合实验

实验四 化工流体过程综合实验 一、 实验目的 1?掌握光滑直管、粗糙直管阻力系数的测量方法,并绘制光滑管及粗糙管的 '-R e 曲线,将 其与摩擦系数图进行比较; 2?掌握阀门的局部阻力系数的测量方法; 3?了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节 流式流量计标定方法,会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线(流量 -压差 关系)及流量系数和雷诺数之间的关系( C 。- R e 关系); 4?了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,并能绘制相应曲线。 二、 实验内容 1?测定光滑直管和粗糙直管摩擦阻力系数,绘制光滑管及粗糙管的 ? - Re 曲线; 2?测定阀门的局部阻力系数; 3?测定并绘制文丘里、孔板、喷嘴流量计(三选一)流量标定曲线(流量 -压差关系)及流 量系数和雷诺数之间的关系( C 。- R e 关系); 4?测量离心泵的特性曲线,并绘制相应曲线,确定其最佳工作范围。 三、 实验原理、方法和手段 1. 流体阻力实验 a. 直管摩擦系数,与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即 ?二f (Re, ;/d ),对一定的相 对粗糙度而言,,=f (Re )。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) h f Pi - P 2 P

i_u 2 d 2 整理⑴⑵两式得 h f P f

2d ■:Pf u 2 d -管径,m ; :Pf -直管阻力引起的压强降,Pa ; I -管长,m ; u -流速,m / s ; 3 『-流体的密度,kg / m ; 亠-流体的粘度,N ?s / m 2。 在实验装置中,直管段管长 I 和管径d 都已固定。若水温一定,则水的密度 p 和粘度卩也是 定值。所以本实验实质上是测定直管段流体阻力引起的压强降 , ;p f 与流速u (流量V )之间 的关系。 根据实验数据和式⑶可计算出不同流速下的直管摩擦系数 入用式⑷计算对应的 Re ,从 而整理出直管摩擦系数和雷诺数的关系,绘出 入与Re 的关系曲线。 b. 局部阻力系数'的测定: 式中: ■ -局部阻力系数,无因次; p 'f -局部阻力引起的压强降,Pa ; h 'f -局部阻力引起的能量损失, J /kg 。 式中: hf =

化工原理第1章--流体流动-习题及答案

精选文档,供参考!一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测

压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 精选文档,供参考!10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。

单元练习 流体流动及输送机械(答案)

单元练习:流体流动及输送机械 一、填空题(仅供练习使用,需掌握基本概念与基本公式) 1. 层流时,摩擦系数λ与Re的关系为λ=64/Re。 2. U型管压差计指示液为水,若所测压差不变,要使读数R增大,应更换一种密度比水 小的指示液。 3. 流体输送机械向流体提供的能量主要用于流体势能提高和 阻力损失。 4. 离心泵前必须先灌泵是因为空气密度小,造成的压差或泵吸入口的真空度小 而不能将液体吸入泵内。 5. 用离心泵将地面敞口容器中的碱液送至离地面10m高处密闭容器中,容器上方真空表读数 为P,现在表的读数增大,其他管路条件不变,则管路总阻力损失将增大。6. 水由敞口高位槽通过一管路流向压力恒定的反应器,当管路上的阀门开度减小(湍流态变 为层流态),水流量将减小,摩擦系数增大,管路总阻力损失增大。(增大,减小,不变) 二、选择题 1. 对离心泵允许安装高度没有影响的是下列情况中的 D 。 A. 安装处的大气压; B. 输送液体温度; C. 吸入管道的流动阻力; D. 排出管道的流动阻力 2.流体在圆管内层流流动时,最大速度是平均速度的( C ) A. 四分之一 B. 一半 C .二倍 D. 四倍 3. 当被测流体的绝对压强大于外界大气压强时,所用的测压仪表称为( A ) A. 压力表 B. 真空表 C. 高度表 D. 速度表 4. 流体在直管中流动,当Re≤2000时,流体的流动类型属于( A ) A.层流 B. 湍流 C.过渡流 D. 漩涡流 三、简答题 1. 离心泵在开车前为何要先关闭出口阀门? 答:离心泵开动时的瞬时启动电流为正常工作电流的5~7倍,为保护电机,关闭出口阀以减小负荷,减小电流,防止电极因瞬时电流过大而烧毁。 2. 汽蚀现象产生的原因是什么?会造成什么样的结果?

流体力学练习题及答案

流体力学练习题及答案 一、单项选择题 1、下列各力中,不属于表面力的是()。 A.惯性力B.粘滞力 C.压力 D.表面张力 2、下列关于流体粘性的说法中,不准确的说法是()。 A.粘性是实际流体的物性之一 B.构成流体粘性的因素是流体分子间的吸引力 C.流体粘性具有阻碍流体流动的能力 D.流体运动粘度的国际单位制单位是m2/s 3、在流体研究的欧拉法中,流体质点的加速度包括当地加速度和迁移加速度,迁移加速度反映()。 A.由于流体质点运动改变了空间位置而引起的速度变化率 B.流体速度场的不稳定性

C .流体质点在流场某一固定空间位置上的速度变化率 D .流体的膨胀性 4、重力场中平衡流体的势函数为( )。 A .gz -=π B .gz =π C .z ρπ-= D .z ρπ= 5、无旋流动是指( )流动。 A .平行 B .不可压缩流体平面 C .旋涡强度为零的 D .流线是直线的 6、流体内摩擦力的量纲[]F 是( )。 A. []1-MLt B. []21--t ML C. []11--t ML D. []2-MLt 7、已知不可压缩流体的流速场为xyj zi x 2V 2+= ,则流动属于( )。 A .三向稳定流动 B .二维非稳定流动 C .三维稳定流动 D .二维稳定流动 8、动量方程 的不适用于in out QV QV F )()(ρρ∑-∑=∑

( ) 的流场。 A.理想流体作定常流动 B.粘性流体作定常流动 C.不可压缩流体作定常流动 D.流体作非定常流动 9、不可压缩实际流体在重力场中的水平等径管道内作稳定流动时,以下陈述错误的是:沿流动方向 ( ) 。 A.流量逐渐减少 B.阻力损失量与流经的长度成正比 C.压强逐渐下降 D.雷诺数维持不变10、串联管道系统中,其各支管内单位质量流体的能量损失()。 A.一定不相等 B.之和为单位质量流体的总能量损失 C.一定相等 D.相等与否取决于支管长度是否相等

(A-10)化工传热综合实验

换热器传热系数测定 实验装置 说明书 天津大学化工基础实验中心 2014.08

一、实验目的: 1.了解套管换热器和列管换热器的结构,掌握对流传热系数i α和总传热系数的测定方法,加深对其概念和影响因素的理解。 2.学会并应用线性回归分析方法,确定传热管关联式Nu=ARe m Pr 0.4中常数A 、m 数值。 二、实验内容: 1.测定不同流速下套管换热器的对流传热系数i α。 2.测定不同流速下列管换热器的总对流传热系数K 。 3.对i α实验数据进行线性回归,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的数值。 三、实验原理: 1.套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定 在该传热实验套管换热器中,空气走内管,热水走外管。 对流传热系数i α可以根据牛顿冷却定律,用实验来测定 i i i S t Q ??= α (1) 式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ; S i —管内换热面积,m 2; t ?—内壁面与流体间的温差,℃。 t ?由下式确定: 2 2 1t t T t w +- =? (2) 式中:t 1,t 2 —冷流体(空气)的入口、出口温度,℃; T w —壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示。 管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ; L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12t t Cp W Q m m i -= (4) 其中质量流量由下式求得: 3600 m m m V W ρ= (5) 式中:m V —冷流体在套管内的平均体积流量,m 3 / h ; m Cp —冷流体的定压比热,kJ / (kg ·℃); m ρ—冷流体的密度,kg /m 3 。 m Cp 和m ρ可根据定性温度t m 查得,2 2 1t t t m += 为冷流体进出口平均温度。t 1,t 2, T w , m V 可采取一定的测量手段得到。 (2)对流传热系数准数关联式的实验确定 流体在管内作强制湍流,被加热状态,准数关联式的形式为 n m A Nu Pr Re =. (6) 其中: i i i d Nu λα= , m m i m d u μρ=Re , m m m Cp λμ=P r 物性数据m λ、m Cp 、m ρ、m μ可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr 变化不大,可以认为是常数,则关联式的形式简化为: 4.0Pr Re m A Nu = (7) 这样通过实验确定不同流量下的Re 与Nu ,然后用线性回归方法确定A 和m 的值。 2.列管换热器传热系数的测定: 管壳式换热器又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。一种在管内流动,称为管程流体(冷流体);另一种在管外流动,称为壳程流体(热流体)。 传热系数Ko 用实验来测定

第一章流体流动试题集及参考答案

流体流动试题集及参考答案 一、填空题: 1、按照化工单元操作所遵循得基本规律得不同,可将单元操作分为 动量传递、热量传递、质量传递。 2、化工生产中,物料衡算得理论依据就是质量守恒定律, 热量衡算得理论基础就是能量守恒定律。 3、当地大气压为750mmHg时,测得某体系得表压为100mmHg,则该体系得绝 对压强850mmHg为真空度为-100mmHg、 4、液柱压力计量就是基于流体静力学原理得测压装置,用U形管压强计测压时, 当压强计一端与大气相通时,读数R表示得就是表压或真空度。 从流体静力学基本方程了解到U型管压力计测量其压强差就是 与指示液密度、液面高度有关,与U形管粗细无关 5、转子流量计得设计原理就是依据流动时在转子得上、下端产生了压强差。 6、静止液体中两处压力相等得条件就是连续、同一液体、同一水平面。 7、流体体积流量用Q=uS来计算;质量流量用G=Qρ来计算;而流体流速用 u=Q/S来计算。 8、当流体得体积流量一定时,流动截面扩大,则流速减少,动压头减少,静压头增加。 9、柏努利方程实验中,在一定流速下某测压管显示得液位高度为静压头,当流速再增大时,液位高度降低;因为阻力损失增大, 10、理想流体就是指没有粘性或没有摩擦阻力而实际流体就是指具有粘性或有摩擦力。流体流动时产生摩擦阻力得根本原因就是流体具有粘性。

11、压头转换实验中,在一定流速下某测压管显示得液位高度为静压头值,流速再增大时,液位高度降低;因为阻力损失增大 12、P/(ρg)得物理意义就是表示流动系统某截面处单位重量流体所具有得静压能,称为静压头。mu2/2得物理意义就是表示流动系统某截面处1kg流体具有得动能。 13、雷诺准数得表达式为Re=duρ/μ。当密度ρ=1000kg/m粘度μ=1厘泊得水,在内径为d=100mm,以流速为1m、s在管中流动时,其雷诺准数等于10其流动类型为湍流 14、流体在圆直管内流动,当Re≥4000时得流型称为湍流, 其平均速度与最大流速得关系为Wm=0.8Wmax Re≤2000得流型称为滞流,其平均速度为Wm=0、5Wmax。 15、流体在圆管内作稳定连续流动时,当Re≤2000时为滞流流动,其摩擦系数λ=64/Re;当Re≥4000时为湍流流动。当Re在2000-4000之间时为过渡流。流体沿壁面流动时,有显著速度梯度得区域称为流动边界层。在管内呈湍流时,摩擦系数λ与Re; ε/d有关。当Re继续增大到大于某一定值时,则流体流动在完全湍流区,当ε/d为一常数时,其λ值为常数。 16、当密度ρ=1000kg/m,粘度=1(厘泊)得水,在内径为d=15mm,以流速为0、1 m/s在管内流动时,雷诺数等于1500,流动类型为层流。 17、当20℃得水(ρ=998、2kg/m,μ=1、005 厘泊)在内径为100mm得圆管内流动时,若流速为1、0 m、s时,其雷诺数Re为9、93×10,流动型态为湍流。 18、管出口得局部阻力系数等于1、0管入口得局部阻力系数等于0、5、 19、计算流体局部阻力损失得方法有当量长度法;阻力系数法;其相应得阻力损失

化工原理流体流动试题(跟答案)

化工原理第1章 化工原理试题(附答案) 姓名 _________ 班级 _________ 学号 __________ 一、填空题: 1.( 3分) 题号 1001 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=1000 kg.m,粘度μ=1[厘泊]的水,在内径为d=100[mm],以流速为1 [m.s]在管中流动时,其雷诺准数等于__________,其流动类型 为_____. ***答案*** Re=duρ/μ ; 10; 湍流 2.( 3分) 题号 1002 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=1000 kg. m,粘度μ=1[厘泊]的水,在内径为d=10[mm],以流速为0.15 [m. s]在管中流动时,其雷诺准数等于__________,其流动类型 为_____. ***答案*** Re=duρ/μ ; 1500; 层流 3.( 3分) 题号 1003 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=820 kg. m,粘度μ=3[厘泊]的水,在内径为d=100[mm],以流速为2[m.s] 在管中流动时,其雷诺准数等于__________,其流动类型为_____. ***答案*** Re=duρ/μ ; 5,46X10; 湍流 4.( 3分) 题号 1004 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=820 kg. m,粘度μ=3[厘泊]的水,在内径为d=10[mm],以流速为0.5[m. s]在管中流动时,其雷诺准数等于__________,其流动类型为__ ___. ***答案*** Re=duρ/μ ; 1366; 层流 5.( 2分) 题号 1005 第 1章知识点: 600 难度: 易 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流 速为2m.s,此时管内的平均流速为_____________. ***答案*** 1m.s 6.( 2分) 题号 1006 第 1章知识点: 600 难度: 易 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流 速为3m.s,此时管内的平均流速为_____________.

相关主题
文本预览
相关文档 最新文档