当前位置:文档之家› 太阳能充放电控制器电路图文分析

太阳能充放电控制器电路图文分析

太阳能充放电控制器电路图文分析
太阳能充放电控制器电路图文分析

太阳能充放电控制器电路图文分析

太阳能控制器最主要功能是实现铅酸蓄电池的充放电保护。下图是一12V蓄电池充放电保护电路的结构原理图。系统主要由蓄电池充放电回路、充电比较电路、放电比较电路、充电控制电路、放电控制电路、稳压电路模块组成。

图3.21蓄电池充放电保护电路

1. 蓄电池充放电回路

蓄电池充放电回路由太阳能电池组件、保险丝、蓄电池及继电器组成。如图3.29所示,当继电器J1加正向电压,则J1-1开关与蓄电池导通,实现12V蓄电池的充电。如果继电器J1无正向电压,则J1-1开关与电阻R1及LED1导通,不给蓄电池充电,LED1指示灯点亮,表示不充电。

2. 充电比较器电路

蓄电池充电比较电路由R2、PR1、比较器A1、R7、ZD1、R6组成。该电路是一个正向迟滞比较电路。其中比较器LM393采用单电源接线方式,输出U OH=8V(LM317稳压电路输出8V),U OL=0V;R7为反馈电阻;蓄电池电压变化信号通过R2电阻接入A1同相端;电阻R2及可调电阻RP1构成蓄电池电压采集电路;反相端链接到基准电路,电压为6.2V。当蓄电池充电电压达到13.5V时,比较器A1的7号管脚输出高电平,通过充电控制电路关闭充电回路;当蓄电池不断的被使用,电压降低到13.1V时,比较器A1的7号管脚输出低电平,蓄电池充电电路被导通。实现蓄电池过充保护功能。

3. 放电比较器电路

蓄电池放电比较电路由R3、PR2、比较器A2、R8、ZD1、R6组成。该电路也是一个正

向迟滞比较电路。R8为比较电路的反馈电阻;蓄电池电压变化信号通过R3电阻接入A2同相端;电阻R2及可调电阻RP1构成蓄电池电压采集电路;反相端链接到基准电路,电压为6.2V。当蓄电池通过放电后,电压降低到10.8V时,比较器A2的1号管脚输出低电平,通过放电控制电路关闭放电回路(断开J2-1开关);当蓄电池电压上升到12.1V时,比较器A2的1号管脚输出高电平,通过放电控制电路导通放电回路(闭合J2-1开关),表示蓄电池可以放电。实现蓄电池过放保护功能。

3. 充电控制电路

充电控制电路由三极管Q1、Q2及继电器J1组成。

当蓄电池电压上升到13.5V时,过充比较器输出高电平,Q1的基极高电平,Q1导通,Q1的集电极为低电平,则Q2三极管截止,Q2集电极呈现高电平特性。所以,此时LED2不亮,表示不充电;J1电压控制端无电流,所以J1-1开关截止,断开充电回路。

当蓄电池电压下降到13.1V时,过充比较器输出低电平,Q1的基极低电平,Q1截止,Q1的集电极为高电平,则Q2三极管导通,Q2集电极呈现低电平特性。所以,此时LED2点亮,表示充电;J1电压控制端有电流,所以J1-1开关导通,蓄电池充电回路导通。

5. 放电控制电路

放电控制电路由三极管Q3、Q4及继电器J2组成。

当蓄电池电压下降到10.8V时,放充比较器输出低电平,Q3的基极低电平,Q3截止,Q3的集电极为高电平,则Q4三极管导通,Q4集电极呈现低电平特性。所以,此时LED3点亮,表示过放;J2电压控制端无电流,所以J2-1开关截止,断开放电回路。

当蓄电池电压上升到12.1V时,过放比较器输出高电平,Q3的基极高电平,Q3导通,Q3的集电极为低电平,则Q4三极管截止,Q4集电极呈现高电平特性。所以,此时LED3不亮,表示未过放电;J2电压控制端有电流,所以J2-1开关导通,蓄电池放电。

6.稳压电路模块

稳压电源模块有LM317三端可调稳压电路组成。其主要为比较电路及控制电路提供稳定电源。前面已阐述过LM317稳压电路的工作原理。

下图 3.22给出了本案例12V蓄电池充放电的过程。例如当蓄电池充电,电压上升到13.1V时(A点),蓄电池可以充电也可以放电;当蓄电池电压上升到13.5V时,只能通过放电降低蓄电池电压,即不能再充电;当蓄电池降低的13.1V时(C点),蓄电池有可以再次被充电或放电;当蓄电池电压放电后,降低到10.8V时,蓄电池只能充电;当充电电压上升到12.1V时(B点),蓄电池有可以再充电或放电。

图3.22 蓄电池充放电过程

太阳能充电器使用说明

太阳能充电器使用说明 太阳能移动电源系列产品,拥有智能调压专利技术,可以调节不同的输出电压及电流。可以在太阳光下对各类手机或USB接口数码产品直接充电,也可以在太阳光较弱或无阳光条件下通过内置蓄电池放电对手机或USB接口数码产品充电。适用于出差、旅游、长途乘车船、野外作业等环境的备用电源,具有安全保护、兼容性好,大容量、体积小、使用寿命长、性价比高。 产品规格: 1、太阳能硅板峰值功率:1.54W 2、工作电压:5.5V(最大) 3、充电电流:280mA 4、蓄电池容量:2000mAh 5、输出电压:4.5~9V(可调) 6、输出电流:1A(最大) 7、充电时间:8-10hrs(幅照度:100mW/C㎡) 3-4hrs(室内电源:5V/500mA) 充电说明: 1、在xx下充电 充电时,放电开关应置于OFF位置,以免充电缓慢,展开太阳能板放置阳光下,并正射太阳能板.太阳能充电器的Light1灯变为红色,此时光能转化为电能对太阳能充电器电池蓄存电.红色表明内置锂电池蓄存电能不多,如果Light1灯变为橙色,表明锂电池中蓄存电能较高,且电压在3.8V~4.1V.如果Light1灯变为绿色,证明充电器内置电池蓄存电已经饱和.当您合上太阳能面板时Light1灯将熄灭,太阳能面板停止充电.注: 如果展开太阳能板,在日光下Light1灯变为红色或橙色时,只是表明太阳能面板电压达到Light1灯亮,而不能证明太阳能板在充电.

2、使用AC充电 由于没有太阳光或阴天情况下,该用AC充电器的DC头连接太阳能充电器的DC接口.再将AC充电器插入110V或220V交流电,Light1灯将变为红色再由红色变为橙色再到绿色的过程.Light1灯变为绿色.表明内置电池已充满,并断开AC充电器的连接. 放电说明: 放电时,并将输出电压档位调到适当的电压对充电产品充电,然后根据你需要移动设备选择合适的转接头,也可以用USB插头对数码产品连接一起.并将开关切换到"ON"Light1与Light2同时亮时,Light2亮时表示开始放电,(此时内置电池已充满Light1出现红绿交替闪烁属正常现象,具体参考Light1显示说明),当你外接移动设备充电时,Light2亮时,表明正在对你的移动设备或手机充电,移动设备或手机充满后,请将开关切换到OFF位置,以免电量流失. 应用领域: 适用于充电电压在4.5~9V移动通讯、数码 注意事项: 1、强光下不能间段充电(直射太阳能面板)约8小时,可充满内置电池. 2、在夏季时请勿将充电器置于车内(车内温度过高).影响电池使用寿命 3、请勿隔着玻璃对本充电器进行充电.充电效果差. 4、必须在强光下充电,在弱光下(Light1)亮灯,只能代表检测到有光,并非代表已在充电(如在室内照明灯下).所以请勿在弱光下进行充电. 5、由于出厂时,每个充电器内所含电量不一致,所以,初次使用充电或放电的时间会不同. 6、请勿使用有腐蚀性溶液擦拭本机,以免损害本产品.

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

太阳能电池充电控制器电路图

太阳能电池充电控制器电路图(含原理说明) 采用专用蓄电池充电管理芯片UC3906设计太阳能充电控制器,经过实验室调试,其各项性能达到要求。控制器由切换电路、充电电路、放电电路三部分组成(见附图)。下面分别介绍其各个组成部分。 切换电路:太阳能电池接在常闭触点,继电器线圈受三极管Q2控制,当太阳能电池受光照时,Q1导通而02截止,使得继电器线圈绝大部分时间不耗电。在太阳能电池不受光照时,Q1截止而Q2导通,交流电经常开触点送出。 充电电路:由UC33906和一些附属元件共同组成了"双电平浮充充电器"。太阳电池的输入电压加入后.利用电阻R,检测出电流的大小,再利用R2、R3、R4、R5、R6检测蓄电池的工作参数,经过内部电路分忻.进而通过Q3对输出电压、电流进行控制。Rs取值为0.025Ω,充电电流最大为10A,根据蓄电池的容量大小.可改变R,以改变充电电流。 在恒流快速充电状态下,充电器输出恒定的充电电流Imax,同时充电器监视电池两端电压,当电池电压达到转换电压V12时,电池的电量已恢复到容量的70%~90%,,充电器转入过充电状态,在此状态下,充电器输出电压升高到V。。由于充电器输出电压恒定不变.所以充电电流连续下降.当充电电流下降到Io ct 时,电池容量已达到额定容量的100%,充电器输出电压下降到较低的浮充电压Vf蓄电池进入浮充状态。此时U C3906的⑩脚输出高电平,LM2903的①脚输出低电平,发光二极管发光,指示蓄电池已充足电。图中的电路还具有涓流充电的功能,涓流充电的电流值为It,R2为涓流充电的限流电阻。 放电电路:用LM2903接成双迟滞电压比较器,可使电路在比较电压的临界点附近不会产生振荡。R10、R Pl、RP2、LJ2B、Q4、Q5和K2组成过放电压检测比较控制电路。电位器RPl、RP2起设定过放电压的作用。可调三端稳压器LM317给LM2903提供稳定的8V工作电压。 当蓄电池端电压大于预先设定的过放电压值时,U2B的⑥脚电位高于⑤脚电位,⑦脚输出低电位使04截止,Q5导通,K2动作,其常开触点闭合,LED2发光指示负载工作正常;蓄电池对负载放电时端电压会逐渐降低,当端电压降低到小于预先设定的过放电址值时。U2B的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q 4导通,Q5截止,K2释放,LED2熄灭,指示过放电。该控制器能有效地防止蓄电池过充、过放、过流,可满足了太阳能充电控制器的需要。

基于单片机的太阳能充电器

本科生毕业设计便携式太阳能充电器 2013 年04 月

独创性声明 本人郑重声明:所呈交的毕业设计是本人在指导老师指导下取得的研究成果。除了文中特别加以注释和致谢的地方外,设计中不包含其他人已经发表的研究成果。与本研究成果相关的所有人所做出的任何贡献均已在设计中作了明确的说明并表示了谢意。 签名: 年月日 授权声明 本人完全了解许昌学院有关保留、使用本科生毕业设计的规定,即:有权保留并向国家有关部门或机构送交毕业设计的复印件和磁盘,允许毕业设计被查阅和借阅。本人授权许昌学院可以将毕业设计的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编设计。 本人设计中有原创性数据需要保密的部分为(如没有,请填写“无”): 学生签名: 年月日 指导教师签名: 年月日

便携式太阳能充电器 摘要 16到20世纪,随着工业革命的兴起,科学技术的不断发展,人们对自然界中化石能源的索取速度越来越快、数量越来越多。与此同时,化石能源的燃烧对于自然界的生态环境造成了难以弥补的破坏。作为可再生能源,太阳能有着广阔的应用前景,可以成为移动设备供电的有吸引力的能源。当我们外出或旅游时,常常因为手机没电所带来的麻烦而苦恼,但又不能及时找到可以充电的场所,影响了手机的正常使用。为了解决这一问题,本毕业设计介绍一种便携式的太阳能手机充电器,利用单片机控制,实现对移动设备充放电的自由与智能控制。与常规的充电器相比,太阳能充电器必将因为便携式而得到长远的发展。 关键词:能源;太阳能;电池;单片机;便携式

Portable Solar Charger based on Microcontroller Abstract From 16 to 20 century, with the rise of industrial revolution and continuous development of science and technology, people demand a large quantity of fossil energy with increasing speed. At the same time, the burning of fossil energy has caused irreparable damage to the environment. As a renewable energy, solar energy enjoys broad application prospect. Solar power is attractive, because it supplies power for portable devices. When we go out or travel, we are often bothered by the failing power of cellphone. And we can’t find places to charge in time, which affects the normal use of mobile phone. In order to solve this problem, this thesis will introduce a type of portable solar mobile charger, using single-chip microcomputer so that the charge and discharge of mobile devices can be freely and intelligently controlled. Compared with the conventional charger, solar energy charger will definitly have a long-term development for its portable type. Key words: energy;solar energy;battery;intelligent;portable

锂离子电池以及保护电路

锂离子电池保护电路包括过度充电保护、过电流/短路保护和过放电保护,要求过充电保护高精度、保护IC功耗低、高耐压以及零伏可充电等特性.本文详细介绍了这三种保护电路的原理、新功能和特性要 求. 近年来,PDA、数字相机、手机、便携式音频设备和蓝牙设备等越来越多的产品采用锂电池作为主要电源.锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,与镍镉、镍氢电池不太一样,锂电池必须考虑充电、放电时的安全性,以防止特性劣化.针对锂电池的过充、过度放电、过电流及短路保护很重要,所以通常都会在电池包内设计保护线路用以保护锂电池. 由于锂离子电池能量密度高,因此难以确保电池的安全性.在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而发生自燃或破裂的危险;反之,在过度放电状态下,电解液因分解导致电池特性及耐久性劣化,从而降低可充电次数.

保护电路图 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制M

太阳能充放电控制恒流一体机

太阳能充放电控制恒流一体机 YL-SH1031-67型说明书 一、产品概况 本产品专为太阳能路灯系统设计,支持多时段控制,具有防水功能。针对市场上一般太阳能路灯控制器做了有效改进,能大大提高路灯系统的可靠性,延长了控制器和蓄电池的使用寿命。本产品使用灵活方便,具有太阳能控制器和恒流调节双重功能,采用了有线读写方式,配置参数时,无需给控制器供电也可以读写参数,客户也可通过本公司提供的相关软件,自行给控制器设置相关参数。 二、控制器面板图 三、产品技术及优势 1、耐压值为100V ,远超同类产品的40-50V 耐压值,因此,适应性大大提高,实现了6、12V 光伏系统的自适应。安装过程中,光伏组件、蓄电池、负载接线顺序不再要求孰先孰后。 2、无电解电容设计,因此寿命远超市面上同类产品。 3、直接以蓄电池电压加载到LED 灯具,因此,在12V 系统时,LED 灯具每串 指示灯 电指示灯 放电指示灯 数据通信接口

固定是三颗(1W灯珠)或者固定使用四颗灯珠,若使用四颗灯珠一串,此时负载的功率会随着蓄电池电量的下降而下降。 4、每路最大恒定电流值为0.1A---3A,可以在配置软件中自由设定。恒流精 度为3%以内、效率最高为99%。以1W一颗的LED灯珠为例,在12V系统中,最大支持3串10并或4串10并。 5、有线读写方式,独创的通信接口,配置参数时,无需给控制器供电也可 以读写参数。 6、所有控制器运行参数可通过PC端软件设置,其中包括了光控、时控、过 充、过放等相关具体参数。出厂时有相关初始设置,客户也可以进行自由设置。 7、蓄电池充电方式为PWM三段式充电方式 8、五个时间段放电设置,可设置五个不同的时间段,增强了放电的灵活性。 9、本品具有蓄电池过充、过放、防反充保护。 10、具有控制器对蓄电池的温度补偿功能,避免了普通控制器在低温环境充 电不足以及高温环境过充损害蓄电池的情况。 11、本品防水,全金属外壳,防护等级IP67,可适用于各种恶劣环境下。 四、安装与使用 控制器安装要牢靠,选用与电流相匹配的电缆,应尽量减少连接线长度,以减少电损耗。 安装步骤如下: 1、连接蓄电池,注意正负极,不要接反,如果连接正确,则控制器红灯显 示闪烁状态。 2、连接太阳能板,注意正负极,不要接反。 3、连接负载,注意正负极,接反容易导致太阳能路灯的损坏。 以上安装步骤为常规安装步骤,由于本产品耐压值高,安装过程中,光伏组件、蓄电池、负载接线顺序不再要求孰先孰后。 五、使用说明

如何看懂太阳能控制器参数

如何看懂太阳能控制器参数。 当今人民的生活水平上了一个新台阶,加上国家大力提倡新能源,太阳能作为新能源的一种,也逐渐为人们所接受。那在选择太阳能控制器时如何看懂它的相关参数呢。下面以我司的一份说明书说起。 额定充电电流:当太阳能电池板给蓄电池充电时标准充电电流,实际充电电流允许

比标准充电电流稍大,但不能大太多。 额定负载电流:当负载工作时,负载回路的推荐标准电流,最好不要超过此值,以免烧坏控制器 系统电压:也就是说该太阳能控制器推荐的标准正常工作的电压,指你蓄电池和太阳能电池板的标准电压,二者的标准电压需一致。当然实际工作电压只要在一定范围内也是会正常工作的。“□12V;□24V/12V AUTO;”是什么意思呢?“□12V”,是指12V的系统;“□24V/12V AUTO”是指12V和24V自动识别的通用控制器。 过载、短路保护:“1.25倍额定电流60秒”是指当负载电流超过标准的1.25倍60秒后,会进行短路保护;“1.5倍额定电流5秒时过载保护动作”是指当负载电流超过标准的1.5倍5秒后会进行短路保护;“≥3倍额定电流短路保护动作”是指当负载电流超过标准的3倍后,立即进行短路保护。 空载损耗:是指当负载关闭或无负载时太阳能控制器本身损耗的电流。 充电回路压降:电池板给蓄电池充电时,太阳能电池板端口的电压与蓄电池端口的电压的差值 放电回路压降:当负载工作时,蓄电池端口电压与负载输出端口电压的差值 超压保护:当太阳能电池板或蓄电池上的电压超过该值时,太阳能控制器停止工作 工作温度:工业级,是指遵守工业上用的设备的一个工作温度。 提升充电电压:当蓄电池出现过度放电时,太阳能控制器会首先以提升充电的方式给蓄电池充电,此时充电电压即为该值,该充电方式会保持10分钟后进入下一充电方式(直充充电方式)。“14.6V;×2/24V;”是指当太阳能控制器工作在12V 系统时,充电电压是14.6V;当24V时,即×2 直充充电电压:太阳能电池板给蓄电池充电时,首先以该充电方式充电(如蓄电池出现过放,首先是提升充电),此时充电电压即为该值,也会保持10分钟后进入下一充电方式(浮充充电方式)

伏科太阳能充放电控制器

公司简介 作为一家德国独资企业,伏科集团是非并网电力系统太阳能产品部件全球最大供应商之一,从事设计、开发及制造各类型适合全球太阳能市场产品。 伏科致力于促进非并网电力系统的有效应用,提供高质量,高可靠性以及低成本的能源存储技术及系统部件。 伏科集团的分支机构遍布世界6大洲,其中包括3个生产基地和14个办事机构,建立了遍布全球范围的销售网络。 发展历史 伏科集团的历史可以追溯到20世纪80年代中期。德国乌尔姆市应用科技大学的工程师们研究开发了太阳能充电控制器新技术,从而大大增强了非并网电力系统的整体效率。 从1991年开始,这种高端技术应用于太阳能充电控制器系列产品中。 2000年底,在德国乌尔姆应用科技大学和德国乌尔姆市及斯图加特市太阳能源及氢能源研究中心工程师们的努力下,成立了伏科集团。自此,伏科集团集非并网电力系统太阳能产品部件研发、生产、销售于一身,快速发展壮大起来。 技术背景 伏科产品的研发重点在于解决独立供电系统的能量储存问题。目标是通过优化能量的生产、存储和消耗实现系统高效率、高可靠性和低成本。 伏科集团拥有经验丰富的工程师和高素质的合作团队,并且与德国乌尔姆应用科技大学等研究机构有多年的技术交流与合作。因此,伏科产品始终代表了先进的技术水平。 产品介绍 伏科为可再生能源非并网电力系统生产各种尖端科技部件。提供优质产品的同时,也为客户提供必要的技术保障和支持。 伏科产品分为6大类:系统管理器, 充放电控制器, 直流节能灯, 系统附件, 直流应用产品以及发电设备. 选择适合您的伏科产品,请参见应用案例. 技术品质 伏科致力于开发和生产严格符合高品质,高创新和高技术要求的产品。我们优秀的研发队伍为达到这个目标,不断提高创新新技术,极大地提高了电池寿命,改善了太阳能系统的应用效率。 可靠性及成本 可靠性及成本是太阳能系统的关键考虑因素。高科技含量先进技术的应用使伏科充电控制器等产品提高了蓄电池的可靠性,改善了系统的整体效率,并降低了能源储存的成本。 非并网系统中的特殊应用 伏科为可再生能源非并网电力系统提供各种尖端科技部件。太阳能充电控制器、系统管理器、燃料电池及太阳能混合系统、微型水利发电机、直流灯及冰箱等产品可以广泛应用于非并网系统中,如工业电源、通讯、交通指挥、照明及游艇航行等休闲娱乐。 灵活性

太阳能电源控制器使用说明书

JA系列太阳能电源控制器使用说明书 一:产品主要特点 1.使用了工业级MCU和专用软件,实现了智能控制。能在寒冷,高温,潮湿 环境运行自如。 2.利用放电率特性修正的准确放电控制,放电终了电压是由放电率修正的控 制点,消除了单纯的电压控制过放的不准确性,符合蓄电池固有的特性, 即不同的放电率具有不同的终了电压。 3.具有过充,过放,电子短路,过载保护,独特的防反接保护等全自动控制; 产品所有的保护功能均不损坏任何器件,不烧保险丝。 4.采用了串联式PWM充电电路,使充电回路的电压损失较小,比传统的二极 管式充电电路降低近一半的压降,充电效率较非PWM高5%以上,增加了用 电时间;过放恢复的提升充电,正常的直充,浮充自动控制方式使系统有 更长的使用寿命;同时具有高精度的温度补偿。 5.直观的LED发光指示充电和电量状态,让用户了解使用状况。 6.采用Flash存储器记录各工作点,使设置数字化,精度和可靠性更高。 7.使用了数字LED显示及设置,一键式操作即可完成所有设置,使用方便直 观。 8.系统电压自动识别。 二:系统说明 本控制器专为太阳能直流供电系统,太阳能直流路灯系统设计,并使用了专用电脑芯片智能化控制。采用一键式轻触开关,完成所有操作及设置。 具有短路,过载,独特的防反接保护,充满,过放自动关断,恢复等全功能保护措施,详细的充电指示,蓄电池状态,负载及各种故障指示。本控制住通过电脑芯片对蓄电池的端电压,放电电流,环境温度等涉及蓄电池容量的参数进行采样, 通过专用控制模型计算,实现符合蓄电池特性的放电率,温度补偿修正的高效高准确率控制,并采用了高效PWM充电模式,保证蓄电池工作在最佳的状态极大的延长蓄电池的使用寿命。具有多种工作模式,满足各种需要。并具有模式选择掉电保护功能。 三:控制器面板及外形尺寸 四:安装及使用 1.控制器的固定要牢靠,安装孔如图: 外形尺寸: 124 X 92 X 28(mm) 安装孔尺寸: 117 X 68 (mm) 2.导线的准备:建议使用多股铜芯绝缘导线。在保证安装位置的情况下,尽可 能减少连线的长度,减少损耗。按照不大于4A/mm2的电流密度选择铜导线面积,将控制器一侧的接线头剥去5mm的绝缘。 3.太阳能电池板、蓄电池及负载连接到控制器时不分先后,可按任意顺序连接, 但注意正负极不能接反,如若连接正确,控制器上的power指示灯就会亮起。 五:使用说明 充电指示:当系统连接正常,且有阳光照射到光电池板时,充电指示灯为常亮,表示系统充电电路正常;充电过程使用了PWM方式,如果发生过放动作,充电要达到提升充电电压,并保持60分钟,而后降到直充电压,保持60分钟,以激活蓄电池,避免硫化结晶,最后降到浮充电压,保持浮充充电。如果没有发生过放,将不会有提升充电方式,以防蓄电池失水。这些自动控制过程将使蓄电池达到最佳充电效果并保证或延长其使用寿命。当电池板对蓄电 开始充电数码管显示为流水作业。当停止充电或充满后,数码管停止充电指示,显示电量。 蓄电池状态指示:蓄电池电压由数码管显示(1-25%,2-50%,3-75%,4-100%);当电池电压降到过放/过压时故障指示灯常亮,此时控制器自动关闭输出。当电池电压恢复到正常工作范围时,将自动打开输出,故障指示灯灭。 负载指示:当负载开通/关断时,负载指示灯常亮/长灭。故障指示灯亮,负载关断,对应数码管显示对照表查看何种原因;如果负载电流超过控制器1.25倍额定电流60S时,或负载电流超过额定电流1.5倍5S时,故障指示灯为红色慢闪,表示过载,控制器将关闭输出。当负载或负载侧出现短路故障时,控制器立即关闭输出,故障指示灯慢闪。出现上述现象时,用户应当仔细检查负载连接情况。断开有故障的负载后,按一次按键,控制器自动恢复正常工作,或等到第二天可以正常工作。控制器默认第一次上电打开负载,用户可以自行按键开关负载,负载指示灯亮,负载输出;负载指示灯灭,负载关断。对应故障显示见下表。 注意:故障查看时请断开太阳能电池板! 六:技术指标 型号JA1205 JA1210 JA2405 JA2410 额定充电电流 5 10 5 10 额定负载电流 5 10 5 10 系统电压12 24 过载保护额定电流的1.25倍60秒保护,额定电流的1.5倍5秒保护 短路保护大于或等于额定电流的3倍进行短路保护动作 空载损耗≤6mA 充电回路压降≤0.26V 放电回路压降≤0.15V 过压保护16.5V/33V 过压恢复15V/30V 工作温度工业级:-35℃至+55℃ 提升充电电压14.6V/29.2V(维持时间:1H) 直充充电电压14.4V/28.8V(维持时间:1H) 浮充13.8V/27.6V 温度补偿-5mV/℃/2V(提升、直充、浮充电压补偿) 欠压电压12V/24V 过放电压11.1V/22.2V 过放恢复电压12.6V/25.2V 充电方式PWM脉宽调制 产品重量0.22kg 七:常见故障现象及处理方法 现象解决方法 有阳光照射到电池组件但充电 指示灯不亮 检测光电池两端接线是否正确、可靠 充电指示灯快闪蓄电池开路,或充电电路损坏 电源指示灯亮且故障指示灯不 亮,无输出 检测用电器连接是否正确、可靠 故障指示灯快闪且无输出输出有短路或过载,检测输出线路,移除所 有负载后,按一次按键恢复正常输出 电源指示灯不亮且故障指示灯 常亮,无输出 蓄电池过放,充足电后自动恢复 注:本公司保留变更的权利,恕不令行通知! 感谢您的使用,使用前,请仔细阅读产品说明书。 数码管显示对照表 25%电量1过放 50%电量2过压U 75%电量3短路E 100%电量4过载C

太阳能灯具控制器充电方法和参数设置问题

常规充电法 1.恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联的电阻,保持充电电流强度不变的充电方法。其控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,所以到充电后期,充电电流多用于电解水产生气体,使出气过多。 2. 阶段充电法 1)阶段法。首先以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。 2)三阶段充电法。在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,仍受到一定的限制。 3.恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成报废。 快速充电法 1.脉冲式充电法

脉冲充电方式首先是用脉冲电流对电池充电,然后让电池停充一段时间后再充,如此循环充电脉;中使蓄电池充满电量,间歇期使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加顺利地进行,使蓄电池可以吸收更多的电量。间歇脉;中使蓄电池有较充分的反应时间,减少了析气量,提高了蓄电池对充电电流的接受率。 2.变电流间歇充电法 变电流间歇充电法为一种限压变电流间歇充电方法。充电前期的各段采用变电流间歇充电,使蓄电池获得绝大部分充电量。充电后期采用定电压充电段,获得过充电量。通过间歇停充,使蓄电池经化学反应产生的氧气和氢气有时间重新化合而被吸收掉,使浓差极化和欧姆极化自然而然地得到消除,从而减轻了蓄电池的内压,使下一轮的恒流充电能够更加川页利地进行并使蓄电池可以吸收更多的电量。 3. 变电压间歇充电法 与变电流间歇充电方法不同之处在于第一阶段采用的不是间歇恒流,而是间歇恒压。在每个恒电压充电阶段,充电电流自然按照指数规律下降,具有符合电池电流可接受率随着充电的进行逐渐下降的特点。 4.变电压变电流波浪式间歇正负零脉冲快速充电法 脉冲电流幅值和PWM信号的频率均固定,PWM占空比可调,在此基础上加入间歇停充阶段,能够在较短的时间内充进更多的电量,提高蓄电池的充电接受能力。

太阳能发电与市电互补型充放电控制器

太阳能发电与市电互补型充放电控制器 --------- EPRC-G 系列 使用手册 亲爱的用户: 非常感谢您选用本公司产品! 此产品手册提供一些包括安装、使用、编程及故障排除等在内的重要信息和建议。在使用本产品前,请仔细阅读本手册。 特别注意手册中有关安全的使用建议。

目录 一、产品特点 (1) 二、主要功能 (1) 三、使用建议 (1) 四、安装和接线 (2) 五、产品外壳和安装尺寸 (3) 六、操作说明 (7) 七、工作指示灯指示说明 (8) 八、技术参数表 (9) 九、产品原理图 (11)

一、产品特点: ●太阳能发电与市电互补为负载供电,在太阳能发电不足时自动转 为市电为负载供电,具有极高的供电保障率。 ●PWM串联充电方式,具有相当高的充电效率。 ●全面的电子保护措施,过载、短路保护、防反接等电子保护。 ●具有温度补偿功能。 二、主要功能: ●控制器主要用来保护蓄电池,避免源自太阳能组件能量的过度充 电及负载运行造成的过度放电。 ●充电特性包括几个阶段,控制器可以根据环境温度自动调节充电 电压(自动温度补偿)。 ●在太阳能发电不足(即蓄电池电压到达过放点电压)时自动切换 到由市电供电。 ●可以通过按键数码管配合调整光控开启负载输出以及延时关闭输 出。还可以设置光控延时输出的延时时间。 ●本产品拥有一系列的显示和保护功能。 三、使用建议: ●本控制器主机在运行期间本身会发热,必须安装在有适当的通风 散热的环境中。避免安装在狭小的隔热的空间内。 ●本控制器本身不需要任何维护,如需清洁请使用干布擦拭。 ●蓄电池需要经常性的充满(至少一个月一次),才能有效的保证使 用寿命,否则蓄电池很容易永久损坏。 ●在系统运行期间,只有充入的能量大于放出的能量,蓄电池才会 被充满,在计算系统配置时请注意这一点,特别是在另外增加负 载时。 四、安装和接线: 安装注意事项 控制器可以检测周围环境的温度,以调节充电电压,因此控制器必须和蓄电池安装在同一温度环境内。 控制器运行期间自身温度要升高,所以要将其安装在不易燃的表面上。

太阳能充电控制器设计报告

太阳能充电控制器报告 内容摘要本小组设计了一种基于单片机的太阳能控制器,系统使用低功耗、高性能的AT89S51单片机作为控制电路的核心器件。此系统由太阳能电池模块,蓄电池,MC34063升压电路,充放电电路,电压采集电路,单片机控制电路和继电器驱动电路组成。提高部分设计使用PWM(脉宽调制)控制技术来控制蓄电池充放电,通过控制MOSFET 管开启和关闭达到控制电池充放电的目的。实验结果表明,该系统可以监视太阳能充电板和蓄电池电池状态,实现控制蓄电池最优充放电,达到延长蓄电池的使用寿命。 目录 一、方案的论证与选择 (2) 1.1 升压电路的方案选择 (2) 1.2 控制电路的方案选择 (2) 1.3 充电方式方案的选择 (2) 二、系统原理及框图 (3) 三、单元电路的设计与参数计算 (2) 3.1 直流稳压输出电路 (2) 3.2 A/D采样及转换电路 (2) 3.3 继电器控制电路 (2) 3.4 升压电路 (2) 3.5 蓄电池充放电电路 (2) 3.6 单片机供电电源 (2) 3.7 单片机及外围引脚 (2) 四、软件设计流程 (3) 五、测试方法和结果 (2) 六、测试结果分析 (2) 七、总结 (2) 八、参考文献 (2) 附录 (2)

关键词 AT89S51;控制器;继电器;MC34063;PWM 一、方案的论证与选择 1.1 升压电路的方案选择 方案1:采用555倍增电路,该电路电压输出为输入电压倍数,不易满足线性电压输入变化时输出一个恒定充电电压的题目要求。 方案2:采用MC34063经典升压电路,该电路可靠性强稳定,芯片价格便宜,当输入电压变化时(小于12V)升压后的充电电压稳定在13.5V左右,满足蓄电池充电要求。 1.2 控制电路的方案选择 方案1:采用tlp-521光耦控制,存在光耦敏感度不强,使用不稳定的情况。 方案2:采用单片机连接C9018型npn三极管放大电路连接HUIKE-HK19F-DC5V-SHG继电器控制电路选择;工作状态较稳定。1.3 充电方式方案的选择 方案1:恒压方式充电,最容易实现。

锂电池过充电过放短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电/压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以的容量,其厚度可薄至。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由

于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以放至支后 1. 1C恒流恒压充电到截止电流20mA搁置1小时再以放电至(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以放至支后,以1C恒流恒压充电到,截止电流10mA,在温度为20+_5下储存28天后,再以放电至计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到,截止电流10mA ,然后将其放在气压为,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液.

电动叉车铅酸蓄电池充电控制策略

电动叉车铅酸蓄电池充电控制策略 摘要:环境的污染和能源的减少使得电动叉车的发展越来越迅速,而电动叉车 的动力源是电池,应用于电动叉车[1]的电池主要以铅酸蓄电池为主,由于铅酸蓄 电池的化学特性受各个因素的影响,因此对其所使用的充电电源会有更严格的要求。充电电源主要分为两部分:电路的硬件部分和充电控制策略[2]的软件部分。 硬件部分已经很成熟,而充电控制策略会直接影响蓄电池的使用寿命。本文主要 针对充电控制策略来研究的。 关键词:电动叉车蓄电池控制策略 一、铅酸蓄电池充放电的工作原理 1.1电池的内部构造 铅酸蓄电池是一般由几个基本部分构成:正极板、负极板、隔板、电解液、 电池槽盖、极柱。它是一种能量转化系统,主要在内部发生化学变化。 铅酸蓄电池的正极和负极由正负合金板栅、正负活性物质、正极管套及添加 剂等材料组成。正极活性物质是由PbO?组成,负极活性物质是由金属Pb组成; 电解液是密度为1.280~1.295g/H?SO?水溶液(20℃);电池槽盖具有良好的耐酸性、耐温性和绝缘性,并具有良好的机械强度;极柱的作用是充放电时将电流导 入或导出电池。 1.2放电过程 蓄电池放电时是将化学能转化为电能,正极上PbO2生成 PbSO4 ,负极上Pb 生成 PbSO4。电解液中H2SO4浓度减少,电解液中H2O增加。其转变公式为: PbO2 +2H?SO?+Pb PbSO?+2H2O+PbSO? 1.3 充电过程 蓄电池充电时是将电能转化为化学能。正极上PbSO4生成PbO2,负极上PbSO4生成Pb。电解液中H2SO4浓度增加,电解液中H2O减少。其转变公式为: 2PbSO4+2H2O PbO2+Pb+2H2SO4 到了充电末期,为了使活性物质更好的反应,就要引起水的电解,正极放出 O2,负极放出H2,其公式为: 2H20 2H2 + O2 二、影响蓄电池的失效形式及原因 衡量蓄电池寿命的标准是以蓄电池充放电次数来衡量的,当蓄电池放电量达 到标称容量的80%以下时称之为寿命终止,充放电次数越多,表示电池的性能越好。不正确的充放电都会引起蓄电池的失效。失效形式主要是活性物质脱落和蓄 电池硫化。 2.1活性物质脱落 蓄电池正极板上的活性物质PbO2是金属氧化物,不具有韧性且是粉末状的,无法形成极板,只能借助栅板(网格状)使小颗粒吸附在网格上,从而形成正极板。如果活性物质受到外界因素的影响,则会损坏正极板,从而影响了蓄电池的 使用寿命。蓄电池活性物质脱落主要有以下原因: ①充电电流过大②过放电③过充电④补水不及时 2.2蓄电池硫化 对蓄电池不能及时充电、充电充不足、补水不及时以及长时间搁置不充电等 原因,使蓄电池极板的表面上会附着过量的PbSO?, PbSO?是难溶电解质阻碍了 电池内部的化学反应,长时间的累积使得正负极板上的部分硫酸铅在充电过程中

伏科太阳能充放电控制器

伏科太阳能充放电控制器

————————————————————————————————作者: ————————————————————————————————日期:

公司简介 作为一家德国独资企业,伏科集团是非并网电力系统太阳能产品部件全球最大供应商之一,从事设计、开发及制造各类型适合全球太阳能市场产品。 伏科致力于促进非并网电力系统的有效应用,提供高质量,高可靠性以及低成本的能源存储技术及系统部件。 伏科集团的分支机构遍布世界6大洲,其中包括3个生产基地和14个办事机构,建立了遍布全球范围的销售网络。发展历史 伏科集团的历史可以追溯到20世纪80年代中期。德国乌尔姆市应用科技大学的工程师们研究开发了太阳能充电控制器新技术,从而大大增强了非并网电力系统的整体效率。 从1991年开始,这种高端技术应用于太阳能充电控制器系列产品中。 2000年底,在德国乌尔姆应用科技大学和德国乌尔姆市及斯图加特市太阳能源及氢能源研究中心工程师们的努力下,成立了伏科集团。自此,伏科集团集非并网电力系统太阳能产品部件研发、生产、销售于一身,快速发展壮大起来。 技术背景 伏科产品的研发重点在于解决独立供电系统的能量储存问题。目标是通过优化能量的生产、存储和消耗实现系统高效率、高可靠性和低成本。 伏科集团拥有经验丰富的工程师和高素质的合作团队,并且与德国乌尔姆应用科技大学等研究机构有多年的技术交流与合作。因此,伏科产品始终代表了先进的技术水平。 产品介绍 伏科为可再生能源非并网电力系统生产各种尖端科技部件。提供优质产品的同时,也为客户提供必要的技术保障和支持。 伏科产品分为6大类:系统管理器,充放电控制器,直流节能灯,系统附件, 直流应用产品以及发电设备. 选择适合您的伏科产品,请参见应用案例. 技术品质 伏科致力于开发和生产严格符合高品质,高创新和高技术要求的产品。我们优秀的研发队伍为达到这个目标,不断提高创新新技术,极大地提高了电池寿命,改善了太阳能系统的应用效率。 可靠性及成本 可靠性及成本是太阳能系统的关键考虑因素。高科技含量先进技术的应用使伏科充电控制器等产品提高了蓄电池的可靠性,改善了系统的整体效率,并降低了能源储存的成本。 非并网系统中的特殊应用 伏科为可再生能源非并网电力系统提供各种尖端科技部件。太阳能充电控制器、系统管理器、燃料电池及太阳能混合系统、微型水利发电机、直流灯及冰箱等产品可以广泛应用于非并网系统中,如工业电源、通讯、交通指挥、照明及游艇航行等休闲娱乐。 灵活性 高度的灵活性使我们能满足客户的特殊需要,可以为大型农村偏远地区供电工程提供专业的工业系统方案和低成本离网型系统解决方案。

相关主题
文本预览
相关文档 最新文档