当前位置:文档之家› 铝合金压铸零件设计

铝合金压铸零件设计

铝合金压铸零件设计
铝合金压铸零件设计

对组件E1的外壳模具设计

指导老师:熊伟

组长:高科文

组员:任伯韬韩钊王建康马晓骁

王定刚赵造标贺泽成吴昌军班级:成型112班

2014 年 6 月 10 日

一前言及分组 (2)

二E1组件形状及尺寸 (3)

三E1组件外壳对组件的保护和美观 (4)

四外壳的初步设计 (4)

1 结构密封分析 (5)

2 E1件固定与上下板连接分析 (5)

3 散热分析 (6)

4 外壳材料的选择 (6)

5 E1组件外壳厚度的设计 (7)

五外壳成型零件设计形状及分析 (8)

1压铸件结构设计的工艺性 (10)

2外壳技术要求 (11)

2加工余量 (12)

4铸造和圆角 (13)

5起模斜度 (14)

七压铸成型设计 (14)

1压铸机的选用及相关 (14)

2压铸模具基本结构 (15)

3压铸成型过程 (16)

4分型面的设计 (17)

5浇注系统的设计 (18)

浇注系统的结构与分类 (18)

内浇口的设计 (19)

横浇道的设计 (19)

直浇道的设计 (20)

6排溢系统的设计 (21)

7模架的设计 (22)

对组件E1的外壳模具设计

一、前言及分工

关于这次对E1组件的外形设计我想每个人拿着都有一种自己心目中的外形,但这次老师的分组设计,在我们第二组九个人必须且只能有一种方案。对于我们的设计思路,我先这是一个很重要的问题,最开始我们大家很茫然,没有清楚我们对E1件外壳应该从那些方面着手,我也在想老师经常提及用现代模具设计的方法,现代模具设计我想应该是结合CAD和CAE软件去完成这次作业,但是对软件,确实不是那样的熟悉,也就只能用我们自己的方式去表达这次设计内容。对于这次设计,并不是重要的不是这次设计的结果,应该是这次设计过程中设计本专业的知识要点和原理分析,这次设计突出的要点,着重在E1外壳的压铸件设计,分型面设计,浇注排溢系统上。分组讨论合作

第一组:任伯韬韩钊马晓骁王定刚

共同完成组件外壳设计主要

1、尺寸分析;

2、材料选择;

3、壳体的密封;

4、壳体的链接;

5、功能分析;

6、UG作图。

2、第二组:王建康赵造标贺泽成吴昌军

完成成型方式及模具生产方式

1、压铸机选择;

2、压铸模具基本结构;

3、分型面设计;

4、浇注系统的设计;

5、排溢系统设计;

6、模架的设计;

7、推出机构设计;

8、复位机构设计。

二、E1组件形状、尺寸

通过测量确定零件外形的具体尺寸

对电路板的描述

长:140.0mm 宽:111.0 mm

厚2.0mm

高:34.0mm

定位螺纹孔M3 边界4.5mm 处

大插孔与外形相关外形尺寸: 长59.0mm 宽30.5mm 左上角

22.0mm

小插孔外形尺寸:长20.0mm 宽8.0mm 高9.0mm 左下角

38.5mm

组件上部

组件下部

三、E1组件外壳对组件的保护和美观

这应该是我们对外壳设计前要考虑的所设计外壳应具备的功能因素了,E1件是汽车的控制油路的一个零件,从运用场合和作用分析E1外壳件应该对E1组件具有1、保护作用从1)密封防湿、防尘,2)支撑、散热,方面设计;2、还有审美,外观方面设计。1、为让组件E1拥更长的使用寿命主要起到保护的作用,

1)E1组件各电路板线路免受避免水进入以及灰尘、粉末等不良物质堆积于线路板,保证组件的内部干净整洁其它尖锐物品的刮伤,在电路板外侧,外壳可以对于内部电路有很好的保护作用,防止不小心碰到损坏电源电路、电路各种小部件,造成的电路不能正常工作的情况

2)必须支撑内部组件,一方面为保护E1正常工作;另一方面,留一定空间方便散热

2、设计合理的空间放置和审美外观

四、外壳初步设计分析

通过观察组件的结构和形状,并结合零件功能因素确定外壳外形设计图样。从外壳对组件的密封、定位、散热方面分析,把外壳做成下底板、上盖板和一些小件(如支撑座、螺钉、塑料圈)组成。

其结构特征如下:

1、结构密封分析

由于E1组件是汽车上的零件,要满足防潮,防尘的功能,所以要严格密封:

1)在对外壳设计时的表面不打孔,除了大插口和小插口处,还有上盖板五个螺纹连接孔口外。

2)在大插口和小插口与外壳配合时加加塑料圈,在上下板支撑座连接处加塑料圈。

3)上下盖板合盒时要能达到严格密封把接触处上盖板为外凸内凹,下底板外凹内凸,用三个面组合达到密封效果;另外,为了与支撑座一致,在配合处加塑料圈达到很好密封。

2、E1件固定与上下板连接分析,

设计用五个支撑座对E1板进行固定,E1板厚度2mm,底板最低处距离下板面5mm最高出离上板面18mm,大插座口上部离底板上24mm,所以下支撑座高6mm,上支撑柱26mm,为了让支撑座在E1组件内减小占用电路空间支撑座直径5mm,螺纹孔和电路板孔一致3mm。根据5个链接柱体的大小(外直径7mm内径5mm)以及考虑到整个壳体的重量,选用M3型号的。Dk3.6 K1.1又根据上下壳体的厚度分别设计为28mm和10mm所以选用长L9的螺钉,链接柱体

5根,其中四角各一根中间一根。这样做的目的是让壳体更稳定,四个角体的柱体链接限制自由度和保证密封性更好,靠右边重量集中,右边中间柱体除保证密封链接外,同时起到支撑中间空间较大部分,保证强度保护壳体。

3、散热分析

由于E1电路板工作会产生热量,又由于外壳对E1的保护防潮,防尘的严格密封,造成散热收到影响,所以散热方面应考虑:1)从E1组件外壳材料选择上,选择散热性好的材料。

2)在组件内部必须有足够散热空间,方便散热。

3)外壳表面加散热片,增加散热面积,提高对E1板的散热输的速度。

4、外壳材料的选择

在外壳材料的选择方面,首先我们应该从那些方面选择材料:

1)由于前面散热要求对材料的选择,选择的E1组件外壳材料必须是具有良好的导热能力,散热性能好的。

2)E1板外壳是汽车上的零件,所选材料必须拥有一定的强度起支撑作用,具有良好的抗震性,抗冲击能力。

3)需要拥有良好的铸造性能,所谓的铸造性能就是能获得优良铸件的能力包括:流动性要好、收缩率要小、防止氧化等。

4)在满足性能的情况下,必须减低成本,节约能源和材料。

从散热要求方面,散热性能好坏排名Cu、Ag、Al、Fe;因为Cu 、Ag价格太贵,成本太高,并且强度也是不怎么好。Fe散热效果太差,

所以选择Al,成本也不高,但是纯铝的硬度很低,用铝硅合金挺高其强度,另一方面ZL102 合金的良好性能如:

1)ZL102合金具有结晶温度间隔小、合金中硅相有很大的凝固潜热和较大的比热容、线收缩系数也比较小等特点,因此其铸造性能一般要比其他铝合金为好,其充型能力也较好,热裂、缩松倾向也都比较小。

2)ZL102共晶体中所含的脆性相(硅相)数量最少,质量分数仅为10%左右,因而其塑性比其他铝合金的共晶体好,仅存的脆性相还可通过变质处理来进一步提高塑性。

3)ZL102共晶体有良好的塑性,能较好的兼顾力学性能和铸造性能两方面的要求,所以ZL102合金是目前应用最为广泛的压铸铝合金

4)ZL102合金的化学性能稳定,表面形成致密保护膜,增强使用寿命

5)ZL102合金具有良好的导热能力,散热性能好

ZL102合金适用于做仪表,电路仪器外壳,所以所用材料选择ZL102合金。

5、E1组件外壳厚度的设计

E1件外壳的厚度设计应从哪些方面考虑:

1)所设计的厚度必须满足支撑、抗震强度要求,使用一定的年限。

2)拥有的厚度成型方便必须有利于成型性能和方便成型,有利

于保证ZL102合金液的流动性。

3)须减低成本,节约能源和材料。

1)为了成型方便和成本的问题选用2MM(大部分壳体),这样的厚度也好压铸成型,厚度均匀,这样有助于减小压铸过程中所易产生的缺陷,如;裂纹冷隔现象等等。铝硅合金在这样的厚度的抗压强度符合要求,不易在使用中破坏或是变形。

2)上盖的长宽高分别为:149mm 111mm 32mm厚度为2mm.其中散热片共11片厚度2mm.长度60mm,高15mm.这样增加了壳体与空气的接触面积,有利于散热。保护内部机构。

3)产品的形状要求,每个连接孔或是外轮廓之间的距离所限制,除去连接柱的直径大小,这是最合理的厚度。铝的抗拉强度80~100MPa,其合金的强度高于纯铝。

五、外壳成型零件设计形状及分析

外壳形状图及尺寸

下底板外形图

上盖板外形图

1外壳结构设计的工艺性

E1外壳件的质量除了受到各种工艺因素的影响外,其外壳零件压铸设计的工艺性也是一个重要的因素,其结构合理性和工艺适应性决定了后续工作能否顺利进行。如分型面的选择,浇道的设计,推出机构的设置,收缩规律的掌握,精度的保证,缺陷的种类及其程度等,都是与压铸机本身的压铸工艺性的优劣相关的。

压铸工艺对压铸件的结构设计要求:

1)方便讲压铸件从模具中取出;为了方便铸件从模具中取出,对压铸件设计时对分型面的选着必须合理和对压铸外壳的脱模斜度的设置。

2)尽量消除侧凹和深腔;在初步功能结构设计时没有对外壳件设计侧凹,为了分型面平整,把外壳分型面处的阶梯口不铸出,采用机加工的方式成型。

3)尽量减少抽芯部位;为了减少抽芯部位,把螺纹孔去掉不铸出来。

4)消除模具型芯出现交叉的部位;不设置侧抽芯机构

5)壁厚均匀;初步设计时将壁厚设计为2mm

6)消除尖角;为了消除尖角,对E1外壳进行铸造圆角设计。

2外壳件技术要求

1)尺寸精度

外壳件能达到的尺寸精度和尺寸稳定性基本上依压铸模制造精度而定。导致压铸件尺寸偏差的原因有很多,包括

(1)工作环境温度的高底;

(2)铝硅合金自身化学成分的偏差;

(3)合金金属收缩率的波动、开模、抽芯及推出机构运动状态的稳定程度;

(4)模具使用过程中的磨损量引起的误差等。

这些原因又互相交织在一起,彼此互相影响。

压铸外壳件的尺寸精度不仅与其尺寸大小有关,而且受其结构和形状的影响。

所以为了控制E1外壳拥有较高的尺寸精度必须严格控制模具和Al-Si合金液的温度、化学成分,以及模具的稳定性。

2)表面质量

在填充条件良好的情况下,压铸件E1外壳的表面粗糙度一般比模具成形表面的粗糙度低两级。通过提高模具表面粗糙度提高压铸外壳件的表面质量。为了压铸件表面质量有所保证;需要对压铸模具精心保护和按时维修。

3)机械加工余量

由于铸件具有较为精确的尺寸和良好的铸造表面,所以一般情况下,可以不进行机械加工。同时,由于压铸件内部可能有气孔,所以应尽量避免再进行机械加工。但是,某些部位还是应该进机械加工。如装配表面、装配孔、成型困难没有铸出的一些形状,去除内浇口、溢流口后的多余部分等。需要进行机加工的地方有:

(1)对于上下板没有铸出的螺纹孔,需要对其进行机加工钻孔和攻螺纹。

(2)对于没铸造出的上下板阶梯口要机加工,且上下板配合处有精度要求。

(3)内浇口和溢流槽断口处必须机加工。

械加工余量是为了保证E1外壳压铸件机械加工面尺寸和零件加工精度,在设计铸件和铸造工艺时,预先增加并在机械加工时应予以切除的金属层厚度。铸件的加工余量数值按照有加工要求的表面上最大基本尺寸和该表面距它的加工基准间尺寸两者中较大的尺寸所在尺寸范围,从铸件加工余量表中选取。另外,铸件的不同加工表面,可以采用相同的加工余量数值。

外壳铸件的加工余量选取根据参考文献[15]中推荐的加工余量选择。

3铸造圆角

对于E1件外壳在挤压壁面与壁面连接处的直角,锐角或钝角,都设计成圆角,只有预计选定为分型面的部位上才不采用圆角连接。我们为什么需要铸造圆角呢?

1)铸造圆角有助于铝合金液的流动,减少涡流,气体容易排出,有利于成形;

2)同时又避免尖角处产生应力集中而开裂。

3)对于模具来讲,铸造圆角能延长模具的使用时间。没有铸造圆角会产生应力集中,模具容易崩角,这一现象对熔点较高的铝合金尤其显著。

至于怎样确定铸造圆角,圆角的选择不能太小,太小造成以上问题对模具和零件损坏。外壳圆角也就是型腔圆角半径R,内部圆角也就是型芯圆角半径小r,因为壁厚h均匀2mm。R=r+h=4mm,在压铸铝合金r=选择1mm到2mm之间,选2mm。

4脱模斜度

1)为什么要有脱模斜度:在铸型凝固后,为了保证压铸件从模具中顺利脱出,表面刮伤,延长模具寿命应该在模具的相应位置设置一定的倾斜角度,即起模斜度。

2)脱模斜度的大小和压铸件的壁厚以及合金种类有关。关于E1外壳件的脱模斜度如何取;

(1)一般压铸件厚度越厚,合金对型芯的包紧力越大。

(2)合金的收缩率越大,熔点越高,脱模斜度越大,也是包紧力问题。

(3)压铸件内表面应比外表面脱模斜度大,这是由于合金液的收缩,使铸件对型芯的包紧力很大,所以铸件内表面需要很大脱模斜度。而外表面没包紧力作用,不需要太大的脱模斜度。

3)E1件外壳脱模斜度如何设置,我们都知道在与脱模方向一致的平面都应设置脱模斜度,在外表面,上下板的四周平面和上板散热片都应该有脱模斜度;内表面,内表面四周与支撑柱需要脱模斜度。

4)脱模斜度的选取标准

对于E1外壳压铸件。为了保证铸件组装时不受阻碍,型腔尺寸以大端为基准,另一端按脱模斜度相应减少;型芯尺寸以小端为基准,另一端按脱模斜度相应增大。

5)脱模斜度的尺寸

E1件外壳属于非配合面外表面,精度要求不高,为了满足以上要求外表面脱模斜度α取'?300, 内表面脱模斜度β取1°。

六压铸成型设计

1成型过程及压铸机的选用

至于这次E1外壳件的成型为什么选择卧式冷室压铸机,是源于卧式冷室压铸机的优良特性也是我们需要的,结合外壳件的生产工艺该是大批量生产,可以说我们需要的就是简单、方便、达到要求。对于这种压铸机恰恰满足了我们需要的这种自动化、和高性能特点。

卧式冷室压铸机的特点:

1)操作工序简单,生产效率高,容易实现自动化。

2)压铸可以代替部分装配,且原材料消耗少,能节省装配工时。

3)金属液在浇道中流动时转折少,有利于发挥增压的作用,提高压铸件质量。

4)压铸铝合金件力学性能好。

5)互换性好,便于维修。

6)压铸产品轮廓清晰,压铸薄壁、复杂零件以及花纹、图案、文字等,能获得很高的清晰度。

7)压铸设备投资高,适合于大批量生产。

卧式冷室压铸机非常适用于ZL102这种铝合金的工艺成型。

2压铸模具基本结构

卧式冷室压铸模具由定模和动模两个主要部分组成。

1)定模固定在压铸机压室一方的定模座板上,其作用:

(1)是金属液开始进入模具型腔的部分;

(2)也是模具型腔的所在部分之一;

(3)定模上有直浇道直接与压铸机的喷嘴或压室连接。

2)动模固定在压铸机的动模座板上,随动模座板向左、向右移

动与定模分开和合拢

(1)抽芯和铸件顶出机构设于其内。

(2)相对于本次零件的压铸工业把设计压铸机的结构为定模和动模成型零件部分、浇注系统、模体结构、顶出和复位机构

3)该套模具用在卧式冷室压铸机上,其基本结构如下:

(1)成型零件部分

在合模后,由动模镶块和型腔镶块形成一个构成压铸件形状的空腔,通常称为成型镶块。构成成型部分的零件即为成型零件。成型零件包括固定的和活动的镶块与型芯,如图中的镶块、主型芯、小型芯以及侧型芯等。成型零件还构成浇注系统的一部分,内浇口、横浇道、溢流口和排气道等。

(2)浇注系统

浇注系统是熔融金属由压铸机压室进入模具成型空腔的通道,有浇口套、浇道镶块以及横浇道、内浇口、排溢系统等。

由于成型零件和浇注系统的零件均与高温的金属液直接接触,所以它们应选用经过热处理的耐热钢制造。

(3)模体结构。各种模板、座架等构架零件按一定程序和位置加以组合和固定,将模具的各个结构件组成一个模具整体,并能够安装到压铸机上,如的垫块、支撑板、动模压板、定模套板、定模座板和动模座板等。

导柱和导套是导向零件,又被称为导准零件。它们的作用是引导动模板与定模板在开模和合模时能沿导滑方向移动,并准确定位。

(4)。将压铸件或浇注余料从模具上脱出的机构,包括推出零件和复位零件,如推杆、推杆固定板和推板。同时,为使顶出机构在移动时平稳可靠,往往还设置自身的导向零件推板导柱和推板导套。为便于清理杂物或防止杂物影响推板的正确复位,还在推板底部设置限位钉。

(5)其它。除以上各结构单元外,模具内还有其它用于固定各相关零件的螺栓以及销钉等。

3压铸成型过程

利用卧式冷室压铸机来实现半固态挤压成型工艺主要需经历4

个步骤,

(a)合模过程模具闭合后,压射冲头复位至压室的端口处,将足量的液态金属注入压室内。

(b)压射过程压铸成型是将液态合金压入型腔内进行凝固成型。利用卧式冷室压铸机进行半固态挤压时,当液态合金进入型腔后不是任由其凝固至固态。

(c)开模过程压铸成型后,开启模具,使压铸件脱离型腔,同时压射冲头将浇注余料顶出压室。

(d)推出铸件过程在压铸机顶出机构作用下,将压铸件及其浇注余料顶出,并脱离模体,压射冲头同时复位。

4分型面设计

压铸件的分型面必须按照其原则进行选择,对E1的外壳分型面的讨论结合上面分型面的选择特点,选上下板配合处平面为分型面,在外壳件成型零件设计,阶梯口不铸出来作为分型面其优点:1)在此铸件中其最大的外形轮廓尺寸断面,如果不是不是在其最大外形尺寸处,外壳件在分型时就可能无法处模具中将其取出。

2)分型面选在这里是为了在分型后能够有效的将铸件留在动模上,我们设计的铸件为方体的壳体,在成型后对型芯有包紧力,虽然在其他的地方也可以,但我认为在此处的铸件的包紧力最大,并且更便于分型。

3)有利于浇注系统、溢流系统和排气系统的布置,此处选择的分型面已经处于金属液流动的末端,金属液由定模处的交口开始流动将型腔中的气体赶往此处,使得整个型腔中的气体都能够得到有效的排出,所以最大程度的增加了模具的溢流效果和排气条件。

4)分型面选择在这里也便于磨具的加工可行性,此处是平面且加工的面积并不大,模具加工方便工作量小,提高了模具的加工效率

以及节约了成本。

以此为分型面

5浇注系统的设计

金属液在压力的作用下充填型腔的通道;组成:直浇道、横浇道、内浇口和余料等;作用:浇注系统对金属液流动的方向、溢流排气条件、压力的传递、充填速度、模具的温度分布、充填时间的长短等各个方面都起着重要的控制与调节作用。

1)浇注系统的结构及分类

浇注系统主要由直浇道及侧浇道、横浇道、内浇口。

2)内浇口的设计内浇口的作用是根据压铸件的结构、形状、大小,以最佳流动状态把金属液引入型腔而获得优质压铸件。

主要是确定内浇道的位置、形状和尺寸,要善于利用金属液充填型腔时的流动状态,使得压铸件的重要部位尽员减少气孔和疏松,才保证压铸件的表面要光洁完整无缺陷。

内浇口设计的原则

(1)有利于压力的传递,内浇道一般设置在压铸件的厚壁处。

有利于型腔的排气

(2)薄壁复杂的压铸件.宜采用较薄的内浇道,以保证较高的充填速度;一般结构的压铸件,宜采用较厚的内浇道,使金属液流动平稳。

(3)金属液进入型腔后不宜正面冲击型芯,以减少动能损耗,防止型芯冲蚀。

(4)应使金属液充填型腔时的流程尽可能短,以减少金属液的热量损失:

(5)内浇道的数量以单道为主,以防止多道金属液进入型腔后从几路汇合,相互冲击,产生涡流、裹气和氧化夹渣等缺陷。

压铸件上精度、表面粗糙度要求较高且不加工的部位,不宜设置内浇道。

(6)内浇道的设置应便于切除和清理

(7)内浇口的位置

对于上板:根据上面的原则,同时由外壳的分型位置的确定,在图中的外壳中散热片处的数量大,在压铸的过程中不好冲型,因为有十多片,在充型的过程中阻碍金属液的阻力相对较大。为保证其质量,把浇注口设计为分支流内浇口。同时要靠近散热片,以便金属液能够充满型腔。采用分支型内浇口分别在上板的散热片两侧。

对于下板:同样为了使铸件能够保证其质量,使充型更好,而上板没有太多的凸凹部位,且厚度均匀,采用中心浇注

.

(8)内浇口的尺寸

内浇口的截面积的计算有两种方式,分别是理论和经验公式。在此我们并无实践经验,所以采用理论计算并参考一些理论数据的方式。内浇口一般是浇注系统中截面积最小、阻力最大的部位、它的截面积与该处的金属液流动速度的乘积和压室的截面积与压室中金属液流动速度的乘积相等。A=v/u*t U=k*K*u(u为充填速度)(kK都为速度修正系数)常去15m/s t为充填时间。当压铸件厚度在1~4mm时,k 取1.25,K取2。充填时间t1常取0、06s

最佳充填时间:t=K1*K2*t1

对于铝合金;K1取0.9

对于厚度不均匀的:K2取1 对于厚度均匀的:K2取1.5

3)横浇道的设计

横浇道是连接直浇道和内浇口的通道

作用:

(1)把金属液从直浇道引入内浇口内;

(2)横浇道中的金属液还能改善模具热平衡,在压铸件冷却凝固时起到补缩与传递静压力的作用。

(3)横浇道的形式及尺寸横浇道的结构形式和尺寸,主要取决于压铸件的形状、大小、型腔个数,以及内浇道的形式、位置、方向和流入口的宽度等因素。

横浇道的设计原则:

(1)横浇道截面积应从直浇道向内浇道方向逐渐缩小。

(2)横浇道截面积都不应小于内浇道截面积。

(3)横浇道应具有一定的厚度和长度。

(4)金属液通过横浇道时的热损失应尽可能地小,保证横浇道比压铸件和内浇口后凝固。

压铸产品结构设计

压铸产品结构设计准则 铝合金压铸件的结构设计经验 1。考虑壁厚的问题,厚度的差距过大会对填充带来影响 2。考虑脱模问题,这点在压铸实际中非常重要,现实中往往回出现这样的问题,这比注塑脱模讨厌多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1 到3度,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模也就1度,而内拔模要2~3度左右 3。设计时考虑到模具设计的问题,如果有多个位置的抽心位,尽量的放两边,最好不要放在下位抽心,这样时间长了下抽心会容易出问题 4。有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要时结构避开重要外观位置便于设置浇口溢流槽。 5。在结构上尽量的避免出现导致模具结构复杂的结构出现,如,不得不使用多个抽心或螺旋抽心等 6。对于需进行表面加工的零件,注意,需要在零件设计时给适合的加工留量,不能太多,否则加工人员会骂你的,而且会把里面的气孔都暴露出来的,不能太少,否则粗精定位一加工,黑皮还没干掉,你就等再在模具上打火花了,那给多少呢,留量最好不要大于0.8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 7。再有就是注意选料了,是用ADC12还是A380等,要看具体的要求了 8。铝合金没有弹性,要做扣位只有和塑料配合。 9。一般不能做深孔!在开模具时只做点孔,然后在后加工! 10。如果是薄壁零件与不能太薄,而且一定要用加强肋,增加抗弯能力!由于铝铸件的温度要在800摄氏度左右!模具寿命一般比较短一般做如电机外壳的话只有80K左右就再见了!

1.压铸件的设计与塑胶件的设计比较相似,塑胶件的一些设计常规也适用于压铸件。 2.对于铝合金,模具所受温度和压力比塑胶的大很多,对设计的正确性要求特严。即使很好的模具材料,一旦有焊接,模具就几乎无寿命可言。锌合金跟塑胶差不多,模具寿命较好。 3.不能有凹的尖角,避免模具崩角。 4.压铸件的精度虽然比较高,但比塑胶差,而且拔模力比塑胶大,通常结构不能太复杂,必要时应将复杂的零件分解成两件或多件。 5.铝合金的螺孔通常模具只做锥坑,采用后加工。对于要求严的配合部位通常留 0.3mm的后加工量。 6.铝合金压铸易产生气孔,在外观上需加以考虑。 铝合金压铸件(含硅)表面做阳极氧化很难的,一般时间稍长回出现黑色。 铝合金压铸件不能做阳极氧化,可用喷油或喷塑。 常用的合金铝6061、7075,铸铝A356着色效果都不错的。 压铸件和阳极氧化之间没有必然的联系。 铸铝的种类很多,不一定要选硅铝合金(铸铝分Al-Si系、AL-Cu系、AL-Mg系、AL-Zn系等,还有参杂稀土元素的)。即使选用硅铝合金,阳极氧化也并非不可行。一般来说,合金铝中多多少少都含硅元素,比如6061含硅0.4~0.8%,7075含硅0.4%,这样的含硅量对合金阳极化影响是很小的(顺便说一句,铜含量对铝合金阳极氧化影响不大,但在硬质氧化、瓷质氧化时,铜、锰影响很大)。但当合金中硅含量很大(>7%)时,对合金的阳极氧化就会有影响。主要体现在氧化耗时较长,膜层显得灰暗等,这些问题通过工艺可以解决(比如不用直流、而用脉冲电流氧化),这就需要表面处理厂家有一定的技术能力。所以,铸铝≠硅铝合金≠不能阳极氧化。 另外再说说着色的问题。铝合金的阳极氧化和着色是两个不同的工序,这与钢铁的发蓝不同。

我国铝合金压铸件市场发展现状

国铝合金压铸件市场发展现状https://www.doczj.com/doc/9518509675.html, 2010年03月05日10:11 中国压铸网 生意社03月05日讯 目前全球压铸件的生产和消费主要集中在美国、日本、中国、意大利、德国、墨西哥等国家。随着经济的不断增长,全球对汽车、电子通讯等产品的需求多,压铸行业得到快速发展。从全球金属压铸件情况看,黑色金属压铸件占比高达80%以上,而有色金属压铸件的占比不足20%,这其中铝合金压铸件的占比达2/3。再从有色金属压铸件的生产消费情况看,主要集中在欧美日等国家和地区,每年 的增长幅度在9%左右。 我国的压铸生产始于20世纪40年代末,经过几十年的发展,已成为世界上压铸件的生产和消费大国之一。从压铸件的品种构成来看,铝合金压铸件和镁合金压铸件发展迅速,1995年-2003年,年均增长率分别为11.95%和35.45%。 目前在中国汽车工业以“汽车发动机汽缸、活塞、水泵、变速箱、制动器”为代表,通讯行业以“通讯系统(GSM、CDMA、3G、小灵通等)发射接收基站”为主,电梯行业以“自动扶梯和自动人行道具”为代表,而电子信息产业以“计算机设备”为代表的应用领域是压铸件的热点产品。 (一)汽车、摩托车及配件工业 目前,汽车工业已成为我国压铸行业最大的需求市场。铝合金压铸件已广泛应用于汽车发动机汽缸、活塞、水泵、变速箱、制动器等四十多种关键零部件的 制造。 1.汽车发动机铝合金缸体压铸近年发展迅猛主要企业有:广州东风本田发动机公司、重庆长安汽车集团、长安铃木汽车公司、上海乾通汽车附件公司、乔治费歇尔汽车产品苏州有限公司以及哈尔滨东安动力公司等;此外,长春一汽集团、重庆渝江压铸集团、宜兴江旭铸造公司、广东鸿图科技公司、徐航压铸有限公司、重庆渝美合资公司、重庆蓝黛实业公司、以及高要鸿泰精密压铸有限公司等均引进大型压铸机自动生产线,开发大型铝合金压铸件。特别是2005年以来跨国汽车巨头在我国掀起新一轮发动机投资热,其势越来越旺,这将有力地推动铝合金 发动机缸体压铸的加速发展。 2.汽车摩托车铝合金轮毂 全国铝合金轮毂生产企业近百家,2006年产量6600万只,2007年近8000万只。我国铝合金轮毂约占美国市场的40%,“十一五”末汽车铝合金轮毂出口量将达到2000万只以上。铝合金轮毂生产和出口均处于加速增长之势。 3.汽车零部件市场巨大

铝合金压铸件的标准

铝合金压铸件的标准公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

铝合金压铸件 1 范围 本标准规定了铝合金压铸件(以下简称压铸件)的材质、尺寸公差、角度公差、形位公差、工艺性要求和表面质量。 本标准适用于照相机、光学仪器等产品的铝合金压铸件。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 6414—1999 铸件尺寸公差与机械加工余量 GB/T 11334—1989 圆锥公差 JIS H 5302—1990 压铸铝合金 3 压铸铝合金 压铸铝合金选用JIS H 5302—1990中的ADC10。 ADC10的化学成分表1给出。其中铜的含量控制在不大于 %。 :245 MPa; a ) 抗拉强度σ b b ) 伸长率δ5 :2 %; c ) 布氏硬度HBS(5/250/30):80。 4 铸件尺寸公差 压铸件尺寸公差的代号、等级及数值 压铸件尺寸公差的代号为CT。尺寸公差等级选用GB/T 6414—1999中的CT3 ~ CT8。一般(未注)公差尺寸的公差等级基本规定为:照相机零件按CT6,其他产品零件按CT7。尺寸公差数值表2给出。 壁厚尺寸公差 壁厚尺寸公差一般比该压铸件的一般公差粗一级。例如:一般公差规定为CT7,壁厚公差则为CT8。当平均壁厚不大于 mm时,壁厚尺寸公差则与一般公差同级,必要时,壁厚尺寸公差比一般公差精一级。 公差带的位置 尺寸公差带应相对于基本尺寸对称分布,即尺寸公差的一半为正值,另一半取负值。当有特殊要求时,也可采用非对称设置,此时应在图样上注明或在技术文件中规定。 对于有斜度要求的部位,其尺寸公差应沿斜面对称分布。

铝合金压铸件资料

铝合金压铸件资料 ADC-12(相当国内的ZL104)是压铸铝合金牌号,为脆性材料,易崩裂。性质类似铸铁,但有质轻和导热性好的优点。主要用于做高档望远镜外壳,相机三脚架云台,发动机外壳等。具体性能指标,可由铝合金压铸厂提供,或等我查资料后再告知。在广东省南海市有大量生产厂家。 数码相机的铝合金外壳的壁厚多少合理?表面是如何处理的?有没有加工此类产品的厂家?壁厚:1.2~1.5mm,表面:铬酸皮膜后喷涂; 铝合金压铸件的内部裂痕怎样检测? 通过无损探伤来检测产品 1.超声波探伤 各类金属管材、板材、铸件、锻件和焊缝的超声波检测和超声波测厚. 当超声波在传播中遇到裂缝、空洞、离析等缺陷时,超声波的声速、振幅、频率等声学参数会因此改变。根据仪器测量这些改变,可以判断缺陷的存在,并能确定其具体位置. 超声波脉冲(通常为1.5MHz)从探头射人被检测物体,如果其内部有缺陷,缺陷与材料之间便存在界面,则一部分人射的超声波在缺陷处被反射或折射,则原来单方向传播的超声能量有一部分被反射,通过此界面的能量就相应减少。这时,在反射方向可以接到此缺陷处的反射波;在传播方向接收到的超声能量会小于正常值,这两种情况的出现都能证明缺陷的存在。在探伤中,利用探头接收脉冲信号的性能也可检查出缺陷的位置及大小。前者称为反射法,后者称为穿透法。 2.磁粉探伤 适宜于铁磁性材料如铸造、锻造和其它机加工部件的无损检测。 3.紫外线灯 价格低廉、可靠高和操作简单,各种管道的泄漏探查、涂镀层是否均匀的检验、杂质或污点的检测、半导体和生物领域、医疗、舞台特除艺术效果 4.射线探伤 射线探伤可以分为X射线、γ射线和高能射线探伤三种 X射线照相法探伤是利用射线在物质中的衰减规律和对某些物质产生的光化及荧光作用为基础进行探伤的。从射线强度的角度看,当照射在工件上射线强度为J0,由于工件材料对射线的衰减,穿过工件的射线被减弱至Jc。若工件存在缺陷时,因该点的射线透过的工件实际厚度减少,则穿过的射线强度Ja、Jb比没有缺陷的点的射线强度大一些。从射线对底片的光化作用角度看,射线强的部分对底片的光化作用强烈,即感光量大。感光量较大的底片经暗室处理后变得较黑。因此,工件中的缺陷通过射线在底片上产生黑色的影迹,这就是射线探伤照相法的探伤原理。 铝合金压铸件的结构设计经验 1。考虑壁厚的问题,厚度的差距过大会对填充带来影响 2。考虑脱模问题,这点在压铸实际中非常重要,现实中往往回出现这样的问题,这比注塑脱模讨厌多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1到3度,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模也就1度,而内拔模要2~3度左右 3。设计时考虑到模具设计的问题,如果有多个位置的抽心位,尽量的放两边,最好不要放在下位抽心,这样时间长了下抽心会容易出问题 4。有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要时结构避开重要外观位置便于设置浇口溢流槽5。在结构上尽量的避免出现导致模具结构复杂的结构出现,如,不得不使用多个抽心或螺旋抽心等 6。对于需进行表面加工的零件,注意,需要在零件设计时给适合的加工留量,不能太多,否则加工人员会骂你的,而且会把里面的气孔都暴露出来的,不能太少,否则粗精定位一加工,得,黑皮还没干掉,你就等再在模具上打火花了,那给多少呢,留量最好不要大于0。8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 7。再有就是注意选料了,是用ADC12还是A380等,要看具体的要求了 8。铝合金没有弹性,要做扣位只有和塑料配合。 9。一般不能做深孔!在开模具时只做点孔,然后在后加工! 10。如果是薄壁零件与不能太薄,而且一定要用加强肋,增加抗弯能力!由于铝铸件的温度要在800摄氏度左右!模具寿命一般比较短一般做如电机外壳的话只有80K左右就再见了!

铝合金压铸件检验标准(20210119164422)

铝合金压铸件检验标准 -CAL-FENGHAL-(YICAI)-Company One 1 铝合金压铸件检验标准 1.范国

本标准规左了铝合金压铸件的技术要求、试验方法及检验规则等,主机厂和供应商双方确认的其他发动机及其附件支架可以参照执行此标准。 本标准仅适用于铝合金压铸件以及主机厂和供应商双方确认的英他发动机及其附件支架。 2.引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准岀版时, 所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 1182形状和位置公差.通则.定义.符号.和图样表示法 GB 2828逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB 2829周期检査计数抽样程序及抽样表(适用于生产过程稳泄性的检查) GB/T 表而粗糙度比较样块铸造表面 GB/T 表而粗糙度比较样块抛光加工表而 GB/T 表而粗糙度比较样块抛(喷)丸,喷沙加工表面 GB 6414铸件尺寸公差 GB/T 11350铸件机械加工余量 GB/T 15114铝合金压铸件 GB/T 15115压铸铝合金 3.技术要求 化学成分 铝合金的化学成分应符GB/T15115的规定。 力学性能 3.2.1当采用压铸试样检验时,其力学性能应符合GB/T15115的规定。 3.2.2当采用圧铸件本体检验时,其指定部位切取试样的力学性能不得低于单铸试样的75%。 3. 3压铸件尺寸 3.3.1压铸件的几何形状和尺寸应符合零件图样的规左。 3.3.2压铸件的尺寸公差应按GB6414的规左执行。 3.3.3压铸件有形位公差要求时,可参照GB/T15114:英标注方法按GB/TH82的规泄。 3.3.4压铸件的尺寸公差不包括铸造斜度,英不加工表面:包容而以小端为基准,被包容而以大端为基准:待加工表而:包容而以大端为基准,被包容面以小端为基准。 3.3.5压铸件需要机械加工时,其加工余量按GB/T11350的规左执行。 压铸件质量要求 3.4.1压铸件应符合零件图样的规左。 3.4.2表而质量 3.4.2.1压铸件表而粗糙度应符合GB/的规能。 3.4.2.2压铸件表而不允许有裂纹、欠铸、疏松、气泡和任何穿透性缺陷。 3.4.23压铸件表而允许有擦伤、凹陷、缺肉和网状毛刺等缺陷。但缺陷必须符合表1规泄。

低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点 铝合金车轮具有质量轻、能耗低、散热快、减震性好、安全可靠、外观漂亮、图案丰富以及平衡性好等优点,被整车制造企业和广大车主所青睐。 我国铝合金轮毂的生产大多采用低压铸造工艺。该工艺是在20世纪80年代后期由中信戴卡公司引进,经过20多年的发展,已经比较成熟。但真正意义上的开发设计工作是在最近几年,随着我国整车制造水平的提升,才开始与整车开发同步进行设计。 车轮设计要点 铝合金车轮的设计包括外观设计和工程设计。车轮外观要与整车外观相匹配,车轮不仅是外观件,还是重要的安全部件,因此外观设计时就必须考虑工程要求。一般情况下,在车轮进行外观设计时,工程人员也要参与,与造型设计师共同完成外观设计工作,以缩短车轮的开发周期。 现以大众车轮设计为例,具体分析低压铸造铝合金车轮设计中关注的要点。大众车轮执行德国大众标准和欧盟的设计规范,主要考虑的方面有整车造型、车轮装配、车轮生产工艺和车轮试验。 1.整车造型 车轮是整车的时尚装饰,是对整车外形设计的一种延伸,因此车轮造型作为整车造型的一部分,必须与整车的造型风格协调一致,给人以美感。 2.车轮装配 车轮最终要装配到整车上,装配时与之相配合的零部件有轮胎、平衡块、刹车鼓、安装盘、安装螺栓和气门嘴。 铝合金车轮设计时注意的装配要点如下: (1)轮胎与铝合金车轮装配的轮胎一般情况下是无内胎的子午线轮胎,在轮胎与车轮轮辋之间形成一个封闭的空间。大众车轮的轮辋结构执行欧洲轮辋标准——ETRTO标准,该标准对轮辋各部位的结构、尺寸做出了明确规定,在车轮设计时必须严格遵守。同时,为防止车辆行驶过程中路肩石划伤车轮表面(路肩石的高度标准为150mm),要求车轮正面不能超出轮胎外侧面,一般要缩进2.5mm以上。 (2)平衡块平衡块的作用是使车轮在高速旋转下保持平衡,避免车辆在行驶过程中抖动和方向盘振动,提高车辆的舒适性。车轮设计时,要求平衡块与刹车鼓之间的间隙不小于3mm。 (3)刹车鼓在车辆行驶过程中,车轮是旋转的,刹车鼓是静止的,因此在车轮设计时要保证车轮内表面与刹车鼓之间有一定的间隙,一般控制在3mm以上。 (4)安装盘、安装螺栓安装螺栓是将车轮定位、紧固到安装盘上的零件。在车轮设计时,要考虑安装盘的尺寸,车轮与安装盘的接触面积,安装螺栓的尺寸、结构和数量,螺栓

铝合金压铸技术要求

1、围 本标准规定了铝合金压铸件的技术要求、试验方法、检验规则、交货条件等。 本标准适用于汽车发电机铝合金端盖压铸件。 2、引用标准 GB6414铸件尺寸公差 GB6987.1-GB6987.16铝及铝合金化学分析方法 GB288-87金属拉力试验法 GB/T13822-92 压铸有色合金试样 GB6060.5 表面粗造度比较样块抛(喷)丸、喷吵加工表面 3、技术要求 3.1 压铸铝合金的牌号 压铸铝合金采用UNS-A03800(美国A380.0,日本ADC10) 可选用材料UNS-A03830 (美国383.0,日本ADC12) 化学成份见表1 表1

供应商可选择上述四种牌号的任何一种,如在生产过程中更换其它牌号, 文档Word 需重新进行样件鉴定。回炉料使用规定 3.1.1回炉料分类 3.1.1.1 一级回炉料:浇道、化学成份合格的废铸件,后加工次品等不含水分和 油污。10二级回炉料:集渣包、坩埚底部剩料、退货废品、存放时间长(超过 天)的一级回炉料。三级回炉料:飞边、溅屑、细小的碎料、带有油污的渣料、因化学成份 报废的铸件、从铝渣中捡出的铝粒。 3.1.1.2回炉料使用比例 使用单一某级回炉料:,二级回炉料最大使用量40%。一级回炉料最大使用量50% 一级、二级回炉料混合使用:20%。,其中二级回炉料最

大使用量回炉料总量不超过40% 三级回炉料:必须经过重熔、精炼且化学成份分析合格后才能使用,其最不能直接使用,10%,仅与铝锭混合使用。大使用量 3.1.1.3加料循序 大块回炉料铝锭,如此循环。小颗粒回炉料 3.2 力学性能 采用单铸拉力试样检验,其力学性能应满足抗拉强度≥240Mpa,伸长率≥ 1%,HB85(5/250/30)。 试样尺寸及形状应符合GB/T 13822-92《压铸有色合金试样》的规定。 3.3 压铸件尺寸 压铸件的几何形状和尺寸应符合铸件图的规定。 3.4 待加工表面用符号“”标明,尖头指向被加工面。 例:0.5 表示该表面留有加工余量0.5mm 3.5 表面质量 3.5.1 铸件清理后的表面质量 铸件的浇口、飞边、溢流口、隔皮等应清理干净,但允许留有清理痕迹。在不影响使用的情况下,因去除浇口、溢流口时所形成的缺肉或高出均不得超过壁厚的四分之一,并且不得超过1.5 mm。 文档Word 3.5.2 铸件不加工表面的质量 3.5.2.1 不允许有裂纹,欠铸和任何穿透性缺陷。 3.5.2.2 由于模具组合镶拼或受分型面影响而形成铸件表面高低不平的

年产10万件新能源汽车电池箱体用铝合金低压铸件项目建议书

年产10万件新能源汽车电池箱体用铝 合金低压铸件项目建设 建议书 总论 第一章项目背景及建设的必要性 一、建设背景 设备/装备轻量化是21世纪最重要的发展趋势之一,不仅仅在新能源汽车领域,载重汽车、客车、轨道交通、电子电器、航空航天、建筑、装备制造等领域均在加快轻量化进程,综合考虑成本、工艺、实现难易度、市场接受度等因素,铝及铝合金仍然是轻量化过程中的首选材料,以铝代钢,以铝代木以成为行业共识和必然趋势,因此,铝及铝合金产品具有巨大的市场和发展潜力,铝及铝合金材料也必然会出现一些高技术、高附加值、高利润的新产品。 随着汽车轻量化的发展,铝合金在汽车行业的应用越来越广。国外汽车在铝合金使用量上远比中国铝合金要多,而受铝合金加工工艺和产品特性的影响,目前铝合金采用低压铸造能够较好满足产品需要。 二、建设的必要性 目前汽车电池箱体为满足安装需要,一般采用上盖用复合材料,下底用铝合金铸件。目前我公司与大量汽车厂家或汽车电池生产厂家合作,生产大量复合材料上盖,通过该项目的建设能够更好的发挥技

术优势和汽车行业的市场优势,延伸产品产业链,提高市场竞争优势,提高企业抗风险能力。 同时目前我公司规模较小,地理位置距离大城市较远,不利于引进高学历人才,通过进行该产品的生产,能够扩大企业规模,有利于吸引高端技术人才,为公司的进一步发展提供良好的基础。 综上所述,加快年产10万件新能源汽车电池箱体用铝合金低压铸件项目建设,扩大增加公司产值,大力提高盈利能力,对完善产业链、调整产品结构、吸引优秀人才至关重要。 第二章产品市场分析及产品方案 一、产品市场分析 受国家对新能源汽车的鼓励,我国新能源汽车的销量有望大幅度提高。国务院办公厅印发《关于加快电动汽车充电基础设施建设的指导意见》,明确指出到2020年力争建成充电基础设施满足超过500万量电动汽车的充电需求。今年是国家新能源汽车产销量累计50万量的考核年。受此一系列政策的影响,2015年,国家新能源汽车年产销量有望超过20万量,距离2020年累计产销量500万量的目标还较远,因此新能源汽车的发展将会进一步加快,我公司新上该项目适逢机遇,产品市场前景良好。 二、建设规模及产品方案 工程拟建年产10万件新能源汽车电池箱体用铝合金低压铸件,主要生产市场适销对路的产品。 主要产品为新能源汽车电池箱体用铝合金低压铸件,以及相近的汽车用铝合金低压铸造,电机外壳等铸件。

铝合金压铸件的标准

铝合金压铸件 1 范围 本标准规定了铝合金压铸件(以下简称压铸件)的材质、尺寸公差、角度公差、形位公差、工艺性要求和表面质量。 本标准适用于照相机、光学仪器等产品的铝合金压铸件。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 6414—1999 铸件尺寸公差与机械加工余量 GB/T 11334—1989 圆锥公差 JIS H 5302—1990 压铸铝合金 3 压铸铝合金 3.1 压铸铝合金选用JIS H 5302—1990中的ADC10。 3.2 ADC10的化学成分表1给出。其中铜的含量控制在不大于2.8 %。 a ) 抗拉强度σ b :245 MPa; b ) 伸长率δ5 :2 %; c ) 布氏硬度HBS(5/250/30):80。 4 铸件尺寸公差 4.1 压铸件尺寸公差的代号、等级及数值 压铸件尺寸公差的代号为CT。尺寸公差等级选用GB/T 6414—1999中的CT3 ~CT8。一般(未注)公差尺寸的公差等级基本规定为:照相机零件按CT6,其他产品零件按CT7。尺寸公差数值表2给出。 4.2 壁厚尺寸公差 壁厚尺寸公差一般比该压铸件的一般公差粗一级。例如:一般公差规定为CT7,壁厚公差则为CT8。

当平均壁厚不大于1.2 mm时,壁厚尺寸公差则与一般公差同级,必要时,壁厚尺寸公差比一般公差精一级。 4.3 公差带的位置 尺寸公差带应相对于基本尺寸对称分布,即尺寸公差的一半为正值,另一半取负值。当有特殊要求时,也可采用非对称设置,此时应在图样上注明或在技术文件中规定。 对于有斜度要求的部位,其尺寸公差应沿斜面对称分布。 单位为毫米 4.4 公差增量和错型值 受分型面及型芯的影响而引起的固定增量和错型值,已包含在尺寸公差数值之内。当需进一步限制错型值时,则应在图样上注明其允许的最大错型值。 4.5 尺寸公差标注 4.5.1 标注公差尺寸采用极限偏差标注尺寸公差(见示例1)。 10+。 示例1: 10±0.18 ,26.010.0 10+-, 36.00 4.5.2 未注公差尺寸采用公差代号标注尺寸公差(见示例2)。当按未注公差基本规定的等级时,允许不作说明。 示例2: 一般公差按GB/T 6414 – CT7 。 4.5.3 当需进一步限制错型值时,应注明其允许的最大错型值(见示例3)。

铝合金铸造工艺简析

铝合金铸造工艺简析 一、铸造的分类 重力铸造、低压铸造、压力铸造,我厂主要为重力铸造,利用重力自行流入模具,通过结晶器进行梯度降温,让铝合金按顺序凝固的铸造方式铸造铸棒。 二、铝液的熔炼 铝合金熔炼简单知识 影响铝液质量的主要因素:铝液中的含气量和氧化夹杂物。在铝合金熔体(铝液)中溶解的气体有:、、CO、、(碳氢化合物)等气体;其中以为主。分析铝合金中的气体成分,证明占85﹪以上,因而铝合金的“含气量”可以近似地视为“含氢量”。铝液中的氢主要来自高温铝液和溶解在其中的水发生化学反应生成氢。 铝液中气体的主要来源: 1.燃料:火焰反射炉熔炼铝合金时,煤气中的水分以及燃烧时产生的水分易进入熔体(铝液); 2.大气:熔炼过程中,大气中的水蒸气被熔体(铝液)吸收; 3.炉衬:烘炉不彻底时,炉衬表面吸附的水分以及砌制时泥浆中的水分在熔炼头几个班次时对熔体(铝液)中的气体含量将有明显的影响; 4.炉料:吸附在炉料(包括铝锭和辅料)表面上的湿气,在熔

化过程中起化学作用而产生的氢将被溶解,如果炉料放置过久,且表面有油污,对熔体(铝液)的吸气量尤有影响; 5.熔炼工具:如果熔炼工具干燥不好,易使熔体(铝液)的吸气量增加; 6.倒料过程中:如果熔体(铝液)落差大或液流翻滚过急时也会使气体及氧化夹杂卷入熔体(铝液); 高温时铝和水汽的反应: 2Al+3O +3(溶入铝液中) 当在水汽比较多的环境下,剧烈反应,引起爆炸,造成事故。 当在干空气条件下(水分较少),水汽也能和铝液起反应,因此在铝液中总是含有一定数量的氢。 铝液中的氧化夹杂: 铝液与空气中的氧气O2、氮气N2、在高温下发生化学反应生成氧化夹杂物,其中以生成的氧化膜(Al2O3)对铝液的污染最大。这些氧化夹杂的熔点都较高,如氧化铝的熔点约为2050℃,所以铝液中的氧化夹杂主要以固态形式存在,严重影响我们熔炼的铝液质量。氧化夹杂表面疏松,能吸附空气中的水汽和氢,增加了铝液中的气体含量。 熔炼过程中,熔体(铝液)由于氧化而变成某些不能回收的金属氧化物时,这种损失统称为烧损。烧损大小与炉型、铝料状态和生产工艺有关。如:铝料表面积越大(即铝料越细碎)其烧损也越大,而且由于镁为易燃金属,烧损极大。为了避免和减少烧损,我公司主要

铝合金压铸件设计开发控制程序

设计和开发控制程序 1 目的 有效地为新产品或更改产品实现过程的设计和开发进行控制和规范化管理,充分发挥各质量职能的协调性,确保产品质量和服务满足顾客要求。 2 适用范围 适用于顾客提供图纸的产品实现过程的设计和开发以及控制计划制定的控制。 3 职责 3.1 总工程师负责产品实现过程设计和开发的各阶段工作结果的确认;组织成立多方论证小组,协调解决产品过程设计和开发各阶段工作中存在的问题。 3.2 技术中心是产品过程设计和开发的归口管理部门,负责监视产品实现过程设计和开发各阶段的工作进度和质量。 3.3 多方论证小组负责按产品过程设计和开发控制程序规定的内容实施各阶段的工作。 4 工作流程 4.1 组织准备 成立多方论证小组,由总经办、技术中心、质量部、供销部、生产部、财务部等部门指定人员参加,必要时可邀请顾客及部分供方代表参加,或指定企业有关人员代表顾客或供方。填写“多方论证小组成员名单”。 多方论证小组由总经理批准成立,总经理指定小组组长。小组组长负责小组内成员的职责及工作安排,并与相关部门进行沟通。 4.2 “APQP工作计划书”的编制 多方论证小组组长负责编制“APQP工作计划书”,内容包括产品过程设计和开发实施的若干阶段、各阶段的工作内容、计划完成的工作日及起、止时间、责任单位和责任人。“APQP 工作计划书”经多方论证小组成员讨论,报总经理批准后实施。“APQP工作计划书”应随着产品过程设计和开发工作的进展适时进行修订。必要时,采用甘特图对工作计划进行描述。 4.3 项目的确定 4.3.1 根据公司下达的“工作任务书”,多方论证小组收集以下信息资料: a)顾客以往的要求、投诉、建议等方面的信息资料; b)公司业务计划及顾客的业务发展规划,识别顾客现在和未来关注的事项; c)顾客新产品及更改产品的信息资料; d)本公司的产品及过程能力指标(包括可靠性目标)

我国汽车铝合金压铸件制造业发展概况

我国汽车铝合金压铸件制造业发展概况 (一)行业监管及政策 1、行业主管部门 行业主管机构为国家发展和改革委员会、工业和信息化部、中国汽车工 业协会、中国铸造协会,由上述国家机关和社会团体行使行业管理职能。 国家发展和改革委员会:负责行业产业政策的研究制定,拟订行业的中长期发展规划。 工业和信息化部:拟订并组织实施行业中长期发展规划,制定铸造行业的行业标准以及准入条件,推进工业体制改革和管理创新,提高行业综合素质和核心竞争力,指导行业加强安全生产管理;拟订并组织实施工业的能源节约和资源综合利用、清洁生产促进政策。 中国汽车工业协会:中国汽车工业协会为汽车零部件制造业的行业自律组织,是在中国境内从事汽车(摩托车)整车、零部件及汽车相关行业生产经营活动的企事业单位和团体在平等自愿基础上依法组成的自律性、非营利性的社会团体。该协会是经我国民政部批准的社团组织,主要负责产业调查研究、技术标准制订、行业技术与信息的搜集分析、提供信息咨询服务、行业自律、国际交流等。 中国铸造协会:协助政府完善行业规范;加强行业自律;制定并监督执行行

业规范,规范行业行为;促进铸造技术进步和产业升级,推动现代铸造产业集群建设;推动铸造行业按照经济合理和专业化协作的原则进行改组、改造;提出行业内部技术和业务管理的指导性文件;协调和促进企业间的经济合作和技术合作。 2、行业政策 公司为专业生产汽车零部件的压铸企业,受汽车制造业及压铸行业的法律法规及政策的影响较大。汽车工业提升了我国经济的整体实力,起着重要的支柱作用,是保持国民经济持续、快速、健康发展的先导型产业,是我国产业结构转型升级的关键因素,我国中央及地方相继出台了一系列对汽车行业以及汽车轻量化、节能环保材料相关行业的扶持及鼓励政策.

铝合金轮毂压铸模具设计

X X X X 大学 本科生毕业论文 姓名: XX 学号: XX 学院: 专业: 设计题目:铝合金轮毂压铸模具设计 专题: 指导教师: XXX 职称: XXX 2012 年 6 月XX

XXXX大学毕业设计任务书 学院专业年级 学生姓名 任务下达日期: 毕业设计日期: 毕业设计题目: 毕业设计专题题目: 毕业设计主要内容和要求: 院长签字:指导教师签字:

指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:指导教师签字:

评阅教师评语(①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字:

XXXX大学毕业设计答辩及综合成绩答辩情况 提出问题 回答问题 正 确 基本 正确 有一 般性 错误 有原 则性 错误 没有 回答 答辩委员会评语及建议成绩: 答辩委员会主任签字: 年月日学院领导小组综合评定成绩: 学院领导小组负责人: 年月日

摘要 轮毂是电动自行车上极为重要的行驶部件和安全部件,应具有良好的综合力学性能,在正常行驶过程中不应发生变形和疲劳失效。 近几年来半固态加工技术因其节能、高效、环保式生产以及成型件的高性能等诸多优点,得到了世界各国的广泛关注。半固态铸造成形技术不但综合了铸造成形和锻压成形的优点。而且部分产品的性能会接近甚至于达到锻压产品的性能。因此,采用半固态挤压成形工艺来加工电动自行车轮毂将会是一个新的发展方向。 模具在半固态挤压成型方法中是至关重要的一部分,因此,它的设计和制造成了成品件质量的关键所在。 本文对电瓶车轮毂进行二维造型比较形象的展示轮毂的外形。并主要从电动自行车轮毂的发展状况、铝合金的成型与铸造方法、半固态挤压成型工艺及特点,模具总体方案的选择以及模具结构的设计等方面介绍了轮毂半固态挤压模具的设计。该款轮毂的材料采用了铝合金材料(ZL101A),分析了轮毂零件的特点。另外,主要从铸件收缩率、铸型分型面、冒口的设置以及推出机构等几个方面介绍了模具设计的要点。 关键词:轮毂 ;半固态挤压 ;模具设计

压铸件加工要点事项

压铸件缺陷:一、流痕 其他名称:条纹。 特征:铸件表面上呈现与金属液流动方向相一致的,用手感觉得出的局部下陷光滑纹路。此缺陷无发展方向,用抛光法能去处。 产生原因排除措施 1、两股金属流不同步充满型腔而留下的痕迹。 2、模具温度低,如锌合金模温低于150℃,铝合金模温低于180℃,都易产生这类缺陷。 3、填充速度太高。 4、涂料用量过多。1、调整内浇口截面积或位置。2、调整模具温度,增大溢流槽。3、适当调整填充速度以改变金属液填充型腔的流态。4、涂料使用薄而均匀。 二、冷隔 其他名称:冷接(对接)。 特征:温度较低的金属流互相对接但未熔合而出现的缝隙,呈不规则的线形,有穿透的和不穿透的两种,在外力的作用下有发展的趋势。 产生原因排除措施 1、金属液浇注温度低或模具温度低。 2、合金成分不符合标准,流动性差。 3、金属液分股填充,熔合不良。 4、浇口不合理,流程太长。 5、填充速度低或排气不良。 6、比压偏低。1、适当提高浇注温度和模具温度。2、改变合金成分,提高流动性。3、改进浇注系统,改善填充条件。4、改善排溢条件,增大溢流量。5、提高压射速度,改善排气条件。6、提高比压 三、擦伤 其他名称:拉力、拉痕、粘模伤痕。

特征:顺着脱模方向,由于金属粘附,模具制造斜度太小而造成铸件表面的拉伤痕迹,严重时成为拉伤面。 产生原因排除措施 1、型芯、型壁的铸造斜度太小或出现倒斜度。 2、型芯、型壁有压伤痕。 3、合金粘附模具。 4、铸件顶出偏斜,或型芯轴线偏斜。 5、型壁表面粗糙。 6、涂料常喷涂不到。 7、铝合金中含铁量低于0.6%。1、修正模具,保证制造斜度。2、打光压痕。3、合理设计浇注系统,避免金属流对冲型芯、型壁,适当降低填充速度。4、修正模具结构。5、打光表面。6、涂料用量薄而均匀,不能漏喷涂料。7、适当增加含铁量至0.6~0.8%。 四、凹陷 其他名称:缩凹、缩陷、憋气、塌边。 特征:铸件平滑表面上出现的凹瘪的部分,其表面呈自然冷却状态。 产生原因排除措施 1、铸件结构设计不合理,有局部厚实部位,产生热节。 2、合金收缩率大。 3、内浇口截面积太小。 4、比压低。 5、模具温度太高。1、改善铸件结构,使壁厚稍为均匀,厚薄相差较大的连接处应逐步缓和过渡,消除热节。2、选择收缩率小的合金。3、正确设置浇注系统,适当加大内浇口的截面积。4、增大压射力。5、适当调整模具热平衡条件,采用温控装置以及冷却等。 五、气泡 其他名称:鼓泡。 特征:铸件表皮下,聚集气体鼓胀所形成的泡。 产生原因排除措施

铝合金压铸技术要求.

1、范围 本标准规定了铝合金压铸件的技术要求、试验方法、检验规则、交货条件等。 本标准适用于汽车发电机铝合金端盖压铸件。 2、引用标准 GB6414铸件尺寸公差 GB6987.1-GB6987.16铝及铝合金化学分析方法 GB288-87金属拉力试验法 GB/T13822-92 压铸有色合金试样 GB6060.5 表面粗造度比较样块抛(喷)丸、喷吵加工表面 3、技术要求 3.1 压铸铝合金的牌号 压铸铝合金采用UNS-A03800(美国A380.0,日本ADC10) 可选用材料 UNS-A03830 (美国383.0,日本ADC12) 化学成份见表1 表1 供应商可选择上述四种牌号的任何一种,如在生产过程中更换其它牌号,需重新进行样件鉴定。

3.1.1回炉料使用规定 3.1.1.1回炉料分类 一级回炉料:浇道、化学成份合格的废铸件,后加工次品等不含水分和 油污。 二级回炉料:集渣包、坩埚底部剩料、退货废品、存放时间长(超过10天)的一级回炉料。 三级回炉料:飞边、溅屑、细小的碎料、带有油污的渣料、因化学成份 报废的铸件、从铝渣中捡出的铝粒。 3.1.1.2回炉料使用比例 使用单一某级回炉料: 一级回炉料最大使用量50%,二级回炉料最大使用量40%。 一级、二级回炉料混合使用: 回炉料总量不超过40%,其中二级回炉料最大使用量20%。 三级回炉料: 不能直接使用,必须经过重熔、精炼且化学成份分析合格后才能使用,其最大使用量10%,仅与铝锭混合使用。 3.1.1.3加料循序 3.2 力学性能 采用单铸拉力试样检验,其力学性能应满足抗拉强度≥240Mpa,伸长率≥1%,HB85(5/250/30)。 试样尺寸及形状应符合GB/T 13822-92《压铸有色合金试样》的规定。 3.3 压铸件尺寸 压铸件的几何形状和尺寸应符合铸件图的规定。 3.4 待加工表面用符号“”标明,尖头指向被加工面。 例: 0.5 表示该表面留有加工余量0.5mm 3.5 表面质量 3.5.1 铸件清理后的表面质量 铸件的浇口、飞边、溢流口、隔皮等应清理干净,但允许留有清理痕迹。在不影响使用的情况下,因去除浇口、溢流口时所形成的缺肉或高出均不得超过壁厚的四分之一,并且不得超过1.5 mm。 3.5.2 铸件不加工表面的质量

铝合金压铸工艺

压铸产品基本工艺流程 压铸工艺是将压铸机、压铸模和合金三大要素有机地组合而加以综合运用 的过程。而压铸时金属按填充型腔的过程,是将压力、速度、温度以及时间等工艺因素得到统一的过程。模具结构设计、热处理工艺、模具制造及模具装配对铝合金压铸模寿命的影响。 压铸工艺流程图示

1.11压铸工艺原理 压铸工艺原理是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。冷、热室压铸是压铸工艺的两种基本方式,其原理如图1-1所示。冷室压铸中金属液由手工或自动浇注装置浇入压室内,然后压射冲头前进,将金属液压入型腔。在热室压铸工艺中,压室垂直于坩埚内,金属液通过压室上的进料口自动流入压室。压射冲头向下运动,推动金属液通过鹅颈管进入型腔。金属液凝固后,压铸模具打开,取出铸件,完成一个压铸循环。 1.12压铸工艺的特点 优点 (1)可以制造形状复杂、轮廓清晰、薄壁深腔的金属零件。。压铸件的尺寸精度较高,表面粗糙度达Ra0.8—3.2um,互换性好。 (2)材料利用率高。由于压铸件的精度较高,只需经过少量机械加工即可装配使用,有的压铸件可直接装配使用。生产效率高。由于高速充型,充型时间短,金属业凝固迅速,压铸作业循环速度快。方便使用镶嵌件。 (3)缺点 (1)由于高速填充,快速冷却,型腔中气体来不及排出,致使压铸件常有气孔及氧化夹杂物存在,从而降低了压铸件质量。不能进行热处理。 (2)压铸机和压铸模费用昂贵,不适合小批量生产。 (3)压铸件尺寸受到限制。压铸合金种类受到限制。主要用来压铸锌合金、铝合金、镁合金及铜合金。 1.13压铸工艺的应用范围 压铸生产效率高,能压铸形状复杂、尺寸精确、轮廓清晰、表面质量及强度、硬度都较高的压铸件,故应用较广,发展较快。目前,铝合金压铸件产量较多,其次为锌合金压铸件。 第二章压铸合金

铝合金压铸件的标准

铝合金压铸件的标准 2010-01-25 10:08 铝合金压铸件 GB/T 15114-94 1.主题内容与适用范围 本标准规定了铝合金压铸件的技术要求,质量保证,试验方法及检验规则和交货条件等. 本标准适用于铝合金压铸件. 2.引用标准 GB1182 形状和位置公差代号及其标准 GB2828 逐批检查计数抽样程序及抽样表(适用于连续的检查) GB2829 周期检查计数抽样程序及抽样表(适用于生产过程稳定性的检查) GB6060.1 表面粗糙度比较样块铸造表面 GB6060.4 表面粗糙度比较样块抛光加工表面 GB6060.5 表面粗糙度比较样块抛(喷)丸,喷砂加工表面 GB6414 铸件尺寸公差 GB/T11350 铸件机械加工余量 GB/T15115 压铸铝合金 3.技术要求 3.1化学成分 合金的化学成分应符合GB/T15115的规定. 3.2力学性能 3.2.1当采用压铸试样检验时,其力学性能应符合GB/T15115的规定 3.2.2当采用压铸件本体试验时,其指定部位切取度样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定. 3.3压铸件尺寸

3.3.1压铸件的几何形状和尺寸应符合铸件图样的规定 3.3.2压铸件尺寸公差应按GB6414的规定执行,有特殊规定和要求时,须在图样上注明. 3.3.3压铸件有形位公差要求时,其标注方法按GB1182的规定. 3.3.4压铸件的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,有特殊规定和要求时,须在图样上注明. 3.4压铸件需要机械加工时,其加工余量按GB/T11350的规定执行.若有特殊规定和要求时,其加工作量须在图样上注明. 3.5表面质量 3.5.1铸件表面粗糙度应符合GB6060.1的规定 3.5.2铸件不允许有裂纹,欠铸,疏松,气泡和任何穿透性缺陷. 3.5.3铸件不允许有擦伤,凹陷,缺肉和网状毛刺等腰三角形缺陷,但其缺陷的程度和数量应该与供需双方同意的标准相一致. 3.5.4铸件的浇口,飞边,溢流口,隔皮,顶杆痕迹等腰三角形应清理干净,但允许留有痕迹. 3.5.5若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置,分型线的位置,浇口和溢流口的位置等由生产厂自行规定;否则图样上应注明或由供需双方商定. 3.5.6压铸件需要特殊加工的表面,如抛光,喷丸,镀铬,涂覆,阳极氧化,化学氧化等须在图样上注明或由供需双方商定. 3.6内部质量 3.6.1压铸件若能满足其使用要求,则压铸件本质缺陷不作为报废的依据. 3.6.2对压铸件的气压密封性,液压密封性,热处理,高温涂覆,内部缺陷(气孔,疏孔,冷隔,夹杂)及本标准未列项目有要求时,可由供需双方商定. 3.6.3在不影响压铸件使用的条件下,当征得需方同意,供方可以对压铸件进行浸渗和修补(如焊补,变形校整等)处理. 4质量保证 4.1当供需双方合同或协议中有规定时,供方对合同中规定的所有试验或检验负责.合同或协议中无规定时,经需方同意,供方可以用自已适宜的手段执

铝合金压铸工艺

压铸产品基本工艺流程 压铸工艺是将压铸机、压铸模和合金三大要素有机地组合而加以综合运用的过程。而压铸时金属按填充型腔的过程,是将压力、速度、温度以及时间等工艺因素得到统一的过程。模具结构设计、热处理工艺、模具制造及模具装配对铝合金压铸模寿命的影响。 压铸工艺流程图示 压铸工艺原理是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。 冷、热室压铸是压铸工艺的两种基本方式,其原理如图1-1所示。冷室压铸中金属液由手工或自动浇注装置浇入压室内,然后压射冲头前进,将金属液压入型腔。在热室压铸工艺中,压室垂直于坩埚内,金属液通过压室上的进料口自动流入压室。压射冲头向下运动,推动金属液通过鹅颈管进入型腔。金属液凝固后,压铸模具打开,取出铸件,完成一个压铸循环。 压铸工艺的特点 优点 (1) 可以制造形状复杂、轮廓清晰、薄壁深腔的金属零件。。压铸件的尺寸精度较 高,表面粗糙度达—,互换性好。

(2)材料利用率高。由于压铸件的精度较高,只需经过少量机械加工即可装配使用,有的压铸件可直接装配使用。生产效率高。由于高速充型,充型时间短,金属 业凝固迅速,压铸作业循环速度快。方便使用镶嵌件。 (3)缺点 (1)由于高速填充,快速冷却,型腔中气体来不及排出,致使压铸件常有气孔及氧化夹杂物存在,从而降低了压铸件质量。不能进行热处理。 (2)压铸机和压铸模费用昂贵,不适合小批量生产。 (3)压铸件尺寸受到限制。压铸合金种类受到限制。主要用来压铸锌合金、铝合金、镁合金及铜合金。 1.13压铸工艺的应用范围 压铸生产效率高,能压铸形状复杂、尺寸精确、轮廓清晰、表面质量及强度、硬度都较高的压铸件,故应用较广,发展较快。目前,铝合金压铸件产量较多,其次为锌合金压铸件。 第二章压铸合金 压铸合金 压铸合金是压铸生产的要素之一,要生产优良的压铸件,除了要有合理的零件构造、设计完善的压铸模和工艺性能优越的压铸机外,还需要有性能良好的合金。压铸件的断面厚度取决于它承受的应力和合金材料本身的强度,具有较高强度是压铸合金的优点之一。选用压铸合金时,应充分考虑其使用性能、工艺性能、使用场合、生产条件和经济性等多种因素。 各类压铸铝合金 Al-Si 合金 由于Al-Si合金具有结晶温度间隔小、合金中硅相有很大的凝固潜热和较大的比热容、线收缩系数也比较小等特点,因此其铸造性能一般要比其他铝合金为好,其充型能力也较好,热裂、缩松倾向也都比较小。Al-Si合金是目前应用最为广泛的压铸铝合金。 Al-Mg 合金

相关主题
文本预览
相关文档 最新文档