当前位置:文档之家› ARM中断处理及状态机嵌套实现

ARM中断处理及状态机嵌套实现

ARM中断处理及状态机嵌套实现

ARM中断处理及状态机嵌套实现

1.ARM7 提供两种级别的中断, FIQ(Fast Interrupt Request 快中断) 一般中断低速反应中断IRQ。所有的中断请求一旦产生则中断反应会经过三个步骤 a. 输入阶段这个逻辑可以根据中断源被实现,需要0-2 个时钟周期 b.EIC 自身处理

2 个时钟周期 c.ARM7 的逻辑处理2.EIC Enhanced Interrupt Controller 增强型中断控制器EIC 硬件处理多路中断,中断优先运算和矢能。 a.32 路可屏蔽的中断, 映射到ARM 的CPU 中断请求总线 b.每路16 级可编程优先级映射IRQ c.硬件支持最大16 个中断嵌套 d.2 路可屏蔽的中断通过FIQ 中断请求总线 e.在0x18 处的寄存器装载的是最高优先及中断用户自定义的中断处理地址 f.16 个XTI

块外部中断3.中断处理过程 1.检查相关中断的请求屏蔽位 2.比较所有中断请

求的优先级,IRQ 当前中断是否优先级高于当前存储的中断。 3.自动装载EIC_SIRn[31:16]位用户自定义地址进入EIC_IVR[15:0]中 4.手动装载用户中断处理高16 位地址进入EIC_IVR[31:16] 5.当新产生一个中断则保存先前的中断优先级进入优先栈中。 6.当新的中断被接受则用新的优先级更新当前中断优先

级寄存器EIC_ICR 中断控制寄存器31-2 保留1. FIQ_EN:RW 是FIQ 允许的标志位置1 开启置0 关闭0.IRQ_EN:RW 是IRQ 允许的标志位置1 开启置0 关闭EIC_CICR 中断频道控制寄存器31-5 保留4-0.CIC[4:0]:R 是当前中断的序号, 是第几号中断由中断请求发生时硬件写入

EIC_CIPR 当前中断优先级寄存器31-4 保留3-0 CIP[3:0]:rw 是当前中断的优先级,在IRQ 总线上会自动探测进入的中断请求优先级和当前的优先级的高低。EIC_IVR 中断矢量寄存器IVR[31-16]:IRQ 用户写入的在程序初始化时,是中断

服务的高16 位地址IVR[15-0]:I 在中断请求接受后,从EIC_SIRn[31-16]的自定

义服务程序地址拷贝过来

ARM体系结构详解之ARM异常处理

ARM处理器异常处理 所谓异常就是正常的用户程序被暂时中止,处理器就进入异常模式,例如响应一个来自外设的中断,或者当前程序非法访问内存地址都会进入相应异常模式。 1.1异常分类 (1)复位异常 当CPU刚上电时或按下reset重启键之后进入该异常,该异常在管理模式下处理。 (2)一般/快速中断请求 CPU和外部设备是分别独立的硬件执行单元,CPU对全部设备进行管理和资源调度处理,CPU要想知道外部设备的运行状态,要么CPU定时的去查看外部设备特定寄存器,要么让外部设备在出现需要CPU干涉处理时“打断”CPU,让它来处理外部设备的请求,毫无疑问第二种方式更合理,可以让CPU“专心”去工作,这里的“打断”操作就叫做中断请求,根据请求的紧急情况,中断请求分一般中断和快速中断,快速中断具有最高中断优先级和最小的中断延迟,通常用于处理高速数据传输及通道的中数据恢复处理,如DMA等,绝大部分外设使用一般中断请求。 (3)预取指令中止异常 该异常发生在CPU流水线取指阶段,如果目标指令地址是非法地址进入该异常,该异常在中止异常模式下处理。 (4)未定义指令异常 该异常发生在流水线技术里的译码阶段,如果当前指令不能被识别为有效指令,产生未定义指令异常,该异常在未定义异常模式下处理。 (5)软件中断指令(swi)异常 该异常是应用程序自己调用时产生的,用于用户程序申请访问硬件资源时,例如:printf()打印函数,要将用户数据打印到显示器上,用户程序要想实现打印必须申请使用显示器,而用户程序又没有外设硬件的使用权,只能通过使用软件中断指令切换到内核态,通过操作系统内核代码来访问外设硬件,内核态是工作在特权模式下,操作系统在特权模式下完成将用户数据打印到显示器上。这样做的目的无非是为了保护操作系统的安全和硬件资源的合理使用,该异常在管理模式下处理。 (6)数据中止访问异常 该异常发生在要访问数据地址不存在或者为非法地址时,该异常在中止异常模式下处理。 1.1.22异常发生的硬件操作 在异常发生后,ARM内核会自动做以下工作: l保存执行状态:将CPSR复制到发生的异常模式下SPSR中; l模式切换:将CPSR模式位强制设置为与异常类型相对应的值,同时处理器进入到

微机接口实验

北京科技大学计算机与通信工程学院 实验报告 实验名称:实验一8259 中断控制器应用实验 实验二8254 定时/计数器应用实验 实验三8255 并口控制器应用实验学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩: 实验地点:机电楼320 实验时间:2015 年12 月 4 日

一、实验目的与实验要求 1、实验目的 实验一 1.掌握PC 机中断处理系统的基本原理。 2.掌握可编程中断控制器8259 的应用编程方法。 实验二 1.掌握8254 的工作方式及应用编程。 2.掌握8254 典型应用电路的接法。 实验三 1.掌握8255 的工作方式及应用编程。 2.掌握8255 典型应用电路的接法。 2、实验要求 实验一 (1)实验1-1:PC 机内中断应用实验 ①按接线图连好接线,调用程序源代码8259-1.asm,观察实验现象,将屏幕显示结果以截图方式写在实验报告中。 ②自设计实验。改变接线方式,将单次脉冲连到USB 核心板上的IRQ10 插孔上,参考本实验代码,编程实现IRQ10 中断。(注意:考虑PC 机内中断级联的方式,参看前面的原理说明),将代码写在报告中。 (2)实验1-2:PC 机内中断嵌套实验 ①按接线图连好接线,调用程序源代码8259-2.asm,做如下操作,并将屏幕显示结果以截图的方式写在实验报告中,并分析产生该现象的原因: A.按下连接IRQ 的单次脉冲按键,屏幕上会显示10个3,在屏幕上10 次显示未结束之前,按下连接IRQ10 的单次脉冲按键,观察现象; B.按下连接IRQ10 的单次脉冲按键,屏幕上会显示10个10,在屏幕上10次显示未结束之前,按下连接IRQ3 的单次脉冲按键,观察现象。 ②程序中所有代码均没有注释,请在报告中补全注释,尽量详细。

ARM中的中断要点

一、S5PV210中中断的特点 1、特点 ? Supports 93 vectored IRQ interrupts ? Fixed hardware interrupts priority levels ? Programmable interrupt priority levels ? Supports Hardware interrupt priority level masking ? Programmable interrupt priority level masking ? Generates IRQ and FIQ ? Generates Software interrupt 2、FIQ与IRQ的区别 1)FIQ和IRQ并不是中断源,而是中断的类型,我们可以将一个中断源设置成FIQ也可以设置成IRQ。2)FIQ是快速中断,IRQ是一般中断,FIQ的响应时间比IRQ短。 3)FIQ的优先级高于IRQ。 4)FIQ的分组寄存器(R8~R14)比IRQ(R13~R14)多。当在FIQ产生的时候,R8~R14不需要保存,响应的速度会快。 3、S5PV210的中断源

二、原理图分析

三、如何以中断的方式来检测按键:GPH2_2(EINT18) 、GPH2_3(EINT19) 按键的检测:轮询:将GPIO配置成输入……. 中断:将GPIO配置成外部中断……. 1、GPIO的配置,将一个GPIO配置成外部中断 2、外部中断的触发方式 (高电平、低电平、上升沿、下降沿)

3、外部中断的开关寄存器 0 = Enables Interrupt 打开中断 1 = Masked 关闭中断 4、外部中断判断寄存器 0 = Not occur 外部中断没有发生 1 = Occur interrupt 触发了中断

中断

填空题 (1)51系列单片机5个中断源的中断入口地址分别是INT0:;INTl:;T0:;T1:;串行口:; (2)在CPU未执行同级或更高优先级中断服务程序的情况下,中断响应等待时间最少需要个机器周期,最长需要个机器周期。 (3)中断嵌套与子程序嵌套的区别在于:一是子程序嵌套是在程序中事先安排好的;而中断嵌套是:二是子程序嵌套无次序限制,而中断嵌套只允许。 (4)CPU未执行中断程序,中断响应时间最短需个机器周期,最长需个机器周期. 选择(1)CPU响应中断后,必须用软件清除中断请求标志的有( )。 A. INT0/INT1采用电平触发方式B.INT0/INT1采用边沿触发方式 C.定时/计数器T0/T1中断D.串行口中断TI/RI (2)下列中断优先顺序排列,不可能实现的有( )。 A.T1、T0、。INT0、INT1、串行口B.INT0、T1、T0、INT1、串行口C.INT0、INT1、串行口、T0、T1 D.INT1、串行口、INT0、T0、T1 提示:将中断请求排序分成两部分,如果每部分都满足同级优先次序,则设置能实现,否则设置不能实现。 判断对错 (1)不同中断源之间可以互相中断。( ) (2)不同优先级的中断源之间可以互相中断。( ) (3)INT0、INT1、T0、串行口、T1中断优先排列顺序不能实现。( ) (4)T0、Tl、INT0、INT1、串行口中断优先排列顺序能实现。( ) (5)串行口、TO、INT0、INT1、T1中断优先排列顺序不能实现。( ) (6)串行口、INT0、T0、INTl、T1中断优先排列顺序能实现。( ) (7)INT0、INT1、串行口、T0、T1中断优先排列顺序不能实现。( ) (8)INT0、T1、INT1、T0、串行口中断优先排列顺序能实现。( ) 简答 (1)编写中断程序时,通常需要在中断入口地址区间设置一条跳转指令,跳转到中断服务程序的实际入口处。为什么要这样做? (2)什么叫中断嵌套?中断嵌套有什么限制?中断嵌套与子程序嵌套有什么区别? (3)在51系列单片机5个中断源中,中断请求标志是如何清除的? (4)在5l系列单片机中,哪几个特殊功能寄存器与中断控制有关? (5)中断源中断优先级别设置能否实现,取决于什么因素?并说明理由。 (6)51系列单片机中断优先级和中断优先权有什么区别?如何设置中断优先级? (7)在5l系列单片机中,中断是如何嵌套的? (8)在5l系列单片机中,如果CU正在执行RETI或访问IE、IP指令,则中断不能立即响应,为什么? (9)在51系列单片机中,外中断的触发方式有哪几种?如果采用电平触发方式,需要注意什么?

单片机实验报告

PIC单片机原理与应用实验报告 学校: 学院: 班级: 姓名: 学号: 指导教师:

实验一I/O端口实验 一、实验目的 (1)掌握MPLAP IDE集成开发环境的基本操作。 (2)掌握单片机的I/O端口的设计方法。 (3)掌握在线调试器的使用方法。 (4)学会查阅相关数据手册。 二、实验仪器设备 (1)PC机一台; (2)MPLAP IDE开发软件一套; (3)PICkit3在线调试器一套; (4)APP009实验板一块; 三、实验要求 (1)设计发光LED灯闪烁程序,下载调试,验证功能。 (2)设计流水灯程序,或其他花样彩灯程序,下载调试,验证功能。 (3)设计按按键加1计数程序,下载调试,验证功能。 四、实验步骤 (1)连接在线调试器PICkit3、APP009实验板和计算机; (2)打开MPLAP IDE集成开发环境软件,点击Debugger>Select Tools>PICkit 3 选择调试工具; (3)点击Debugger>Settings,在Settings窗口中点击Power栏,选择由PICkit3向实验板供电; (4)完成实现发光LED灯闪烁实验; 程序代码: #include void delay(void); int main() { while(1) { TRISEbits.TRISE0 = 0; //RE0设置为输出(1输入,0输出); https://www.doczj.com/doc/943923354.html,TE0 =1; //RE0=1输出高电平+5V,亮灯 delay(); //延时 https://www.doczj.com/doc/943923354.html,TE0 =0; //RE0=0输出低电平0V,灭灯 delay(); //延时 } } void delay(void) { long int i; for (i=0;i<65000;i++); } 实验现象:将程序下载到实验板上,运行程序,LED闪烁,通过改变延时函数改变延时时间,进而可以改变LED闪烁的频率。

单片机实验

石家庄铁道大学单片机实验题目实验一数据区赋值 (用指针、at、宏分别设计程序) 实现给片内RAM 30H和片外RAM 3000H开始的16字节区域分别赋值为0x01、0x02......0x0f。 At #include //at data unsigned char buffer1[16] _at_ 0x30; xdata unsigned char buffer2[16] _at_ 0x0030; void main() { unsigned int i,j; for(i=0;i<16;i++) { buffer1[i]=i; } for(j=0;j<16;j++) { buffer2[j]=j; } while(1); } 宏 #include//宏 void main() { unsigned int i,a,b; a=0x30; b=0x0030; for(i=0;i<16;i++) { DBYTE[a++]=i; XBYTE[b++]=i; } while(1); }

指针 #include //指针 void main(void) { unsigned char data*p1; unsigned char xdata*p2; unsigned int i; p1=0x30; p2=0x3000; for(i=0;i<16;i++) { *p1=i; p1++; *p2=i; p2++; } } 实验二数据区数据处理 对30H开始的内存区数据0x01~0x0f进行处理: 将30H开始的内容变成0x01、0x23、0x45......0xef存到40H开始的单元 将40H开始的内容变成0xef、0xcd.....0x23、0x01存到50H开始的单元 将50H开始的内容变成0x0f、0x0e、0x0d......0x01、0x00存到60H开始的单元#include #include #include data unsigned char buffer1[16] _at_ 0x30; data unsigned char buffer2[8] _at_ 0x40; data unsigned char buffer3[8] _at_ 0x50; data unsigned char buffer4[16] _at_ 0x60; void main() { unsigned int i,j,k,r; for(i=0;i<16;i++) {buffer1[i]=i;}//30H赋值 for(j=0;j<8;j++) {buffer2[j]=buffer1[2*j]<<4|buffer1[2*j+1];}//40H

TIM2定时中断嵌套sytick定时器中断异常

现象: TIM2设置10Ms定时中断,运行delay(2),程序就停滞了 分析: Sytick滴答定时器中断优先级是占线式的(实践的出来的血的经验),因为中断优先级组配置为0时,虽然TIM2的响应式优先级为2,应该说sycik的优先级已经是0了,可以走delay中断的,但是还是不行。 把中断优先级类型配置为4,即全部是抢占式优先级式,TIM2也开始走了,delay也开始走了。 这个折腾很久的,systick在R008文档中说的太少,网友的博客说了很多,只是提到systick 的中断优先级可以改,但是么有说他是抢占式的。 static __INLINE uint32_t SysTick_Config(uint32_t ticks) { if (ticks > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */ SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* set reload register */ // NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Cortex-M0 System Interrupts */ NVIC_SetPriority (SysTick_IRQn, 0); SysTick->VAL = 0; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0); /* Function successful */ } NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1 ; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_Init( &NVIC_InitStructure);

实验5 ARM中断编程

实验五 ARM中断编程 一、实验目的 1.学习键盘驱动原理。 2.掌握中断的使用方法。 二、实验内容 通过ARM的外部中断进行键盘的扫描,利用中断服务程序编写键盘的驱动,在超级终端上显示相应的键值。UART接收中断,以中断方式(而不是查询方式)实现串口数据的接收 三、预备知识 1.掌握在ADS1.2集成开发环境中编写和调试程序的基本过程。 2.会使用UltraEdit编辑C语言源程序。 3.了解ARM中断服务程序的框架结构。 4.了解编译后的映象文件的下载方法。 四、键盘驱动程序的原理 1.简单键盘扫描 通常在一个键盘中使用了一个瞬时接触开关,并且用如图1所示的简单电路,微处理器可以容易地检测到闭合。当开关打开时,通过处理器的I/O口的一个上拉电阻提供逻辑1;当开关闭合时,处理器的I/O口的输入将被拉低得到逻辑0。可遗憾的是,开关并不完善,因为当它们被按下或者被释放时,并不能够产生一个明确的1或者0。尽管触点可能看起来稳定而且很快地闭合,但与微处理器快速的运行速度相比,这种动作是比较慢的。当触点闭合时,其弹起就像一个球。弹起效果将产生如图2所示的好几个脉冲。弹起的持续时间通常将维持在5ms~30ms之间。如果需要多个键,则可以将每个开关连接到微处理器上它自己的输入端口。然而,当开关的数目增加时,这种方法将很快使用完所有的输入端口。为此我将用到矩阵键盘。 图1 简单键盘电路

图2 键盘抖动 2. 复杂矩阵键盘扫描 键盘上陈列这些开关最有效的方法(当需要5个以上的键时)就形成了一个如图3所示的二维矩阵。当行和列的数目一样多时,也就是方型的矩阵,将产生一个最优化的布列方式(I/O 端被连接的时候)。一个瞬时接触开关(按钮)放置在每一行与线一列的交叉点。矩阵所需的键的数目显然根据应用程序而不同。每一行由一个输出端口的一位驱动,而每一列由一个电阻器上拉且供给输入端口一位。 图3 矩阵键盘 键盘扫描过程就是让微处理器按有规律的时间间隔查看键盘矩阵,以确定是否有键被按下。一旦处理器判定有一个键按下,键盘扫描软件将过滤掉抖动并且判定哪个键被按下。每个键被分配一个称为扫描码的唯一标识符。应用程序利用该扫描码,根据按下的键来判定应该采取什么行动。换句话说,扫描码将告诉应用程序按下哪个键。

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关系

STM32中EXTI(外部中断)和NVIC(嵌套向量中断)的关 系 NVIC 是Cortex-M3 核心的一部分,关于它的资料不在《STM32 的技术参 考手册》中,应查阅ARM 公司的《Cortex-M3 技术参考手册》Cortex-M3 的向 量中断统一由NVIC 管理EXTI 是ST 公司在其STM32 产品上扩展的外中断控 制。它负责管理映射到GPIO 引脚上的外中断和片内几个集成外设的中断 (PVD,RTC alarm,USB wakeup,ethernet wakeup),以及软件中断。其输出最终被映射到NVIC 的相应通道。因此,配置EXTI 中断的过程必然包含对 NVIC 的配置,例如下面配置EXTI0 的过程,就要首先配置EXTI 控制器(使 能相应的中断线,选择中断/事件模式,触发边沿极性),然后再配置NVIC 控 制器(EXTI0 映射在NVIC 上的通道号,中断优先级,中断屏蔽状态): GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0); EXTI_InitStructure.EXTI_Line = EXTI_Line0;EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; // or RisingEXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&EXTI_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;// EXTI0_IRQn is defined in stm32f10x.hNVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure); EXTI0_IRQn 的值,其实就是EXTI0 中断向量在中断向量表中的位置 (STM32 技术参考手册中断向量表Position 栏中的数值)

嵌入式实验3按键实验(中断方式)

河南机电高等专科学校《嵌入式系统开发》课程实验报告 系部:电子通信工程系 班级:电信1## 姓名: ###### 学号: 120######

实验三按键实验(中断方式) 一.实验简介 在实验一的基础上,使用按键控制流水灯。 二.实验目的 熟练使用库函数操作GPIO,掌握中断配置和中断服务程序编写方法,掌握通过全局变量在中断服务程序和主程序间通信的方法。 三.实验内容 实现初始化GPIO,并配置中断,在中断服务程序中通过修改全局变量,达到控制流水灯速度及方向。 下载代码到目标板,查看运行结果。 四.实验设备 硬件部分:PC计算机(宿主机)、STM32实验板。 软件部分:PC机WINDOWS系统、MDK KEIL软件、ISP软件。 五.实验步骤 1在实验一代码的基础上,编写中断初始化代码 2在主程序中声明全局变量,用于和中断服务程序通信,编写完成主程序 3编写中断服务程序 4编译代码,下载到实验板 5.单步调试 6记录实验过程,撰写实验报告 六.实验结果及测试 中断方式的按键式实验,是通过配置外部中断寄存器和中断嵌套(NVIC)控制器来实现按键按下控制LED灯亮灭。通过按键中断打断主函数,执行LED1取反一次。 主函数初始化中断配置和LED配置,点亮LED1后一直等待中断,每中断一次,LED1取反一次。

int main(void) { LED_GPIO_Config(); LED1_ON; CLI(); SEI(); EXTI_PA0_Config(); while(1) { } } 中断嵌套控制寄存器的配置为中断嵌套分组1;抢占优先级0;响应优先级0 代码如下: void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } 外部中断按键的配置源码如下:配置PA0位中断线,并使能AFIO时钟void EXTI_PA0_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE); NVIC_Configuration(); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_EXTILineConfig(GPIO_PortSourceGPIOA, GPIO_PinSource0); EXTI_InitStructure.EXTI_Line = EXTI_Line0; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); }

ARM异常中断机制.

ARM9(以S3C2410为例)中断机制 一、ARM异常机制介绍 ARM9处理器有7种工作模式。分别是(除了用户模式其他都是异常模式 用户模式(usr:ARM处理器正常的程序执行状态。 快速中断模式(fiq:用于高速数据传输或通道处理。 外部中断模式(irq:用于通用的中断处理。 管理模式(svc:操作系统使用的保护模式。 数据访问终止模式(abt:当数据或指令预取终止时进入该模式。 系统模式(sys:运行具有特权的操作系统任务。 未定义指令中止模式(und:当未定义的指令执行时进入该模式。 每种模式通过5位二进制编码进行标示: 用户模式10000 快速中断模式10001 外部中断模式10010 管理模式10011 数据访问终止模式10111 未定义指令中止模式11011 系统模式11111 模式编码存放在CPSR(程序当前状态寄存器,记录当前工作模式的编码的值)中的[4:0]。

快速中断模式、外部中断模式、数据访问终止模式、未定义指令中止模式、管理模式称为异常模式。 异常类型具体含义 复位当处理器的复位电平有效时,产生复位异常,程序跳转到复位异常处理程序处执行。 未定义指令遇到不能处理的指令时,产生未定义指令异常。 软件中断该异常由执行SWI指令产生,可用于用户模式下的程序调用特权操作指令。可使用该异常机制实现系统功能调用。 指令预取中止若处理器预取指令的地址不存在,或该地址不允许当前指令访问,存储器会向处理器发出中止信号,但当预取的指令被执行时,才会产生指令预取中止异常。 数据中止若处理器数据访问指令的地址不存在,或该地址不允许当前指令访问时,产生数据中止异常。 IRQ(外部中断请求)当处理器的外部中断请求引脚有效,且CPSR中的I 位为0时,产生IRQ异常。系统的外设可通过该异常请求中断服务。 FIQ(快速中断请求)当处理器的快速中断请求引脚有效,且CPSR中的F 位为0时,产生FIQ异常。 当多个异常发生时,处理器根据优先级进行处理。优先级

中断嵌套

中断嵌套 是指中断系统正在执行一个中断服务时,有另一个优先级更高的中断提出中断请求,这时会暂时终止当前正在执行的级别较低的中断源的服务程序,去处理级别更高的中断源,待处理完毕,再返回到被中断了的中断服务程序继续执行,这个过程就是中断嵌套。其实就是更高一级的中断的“加塞儿”,处理器正在执行着中断,又接受了更急的另一件“急件”,转而处理更高一级的中断的行为! 中断优先级?? ?在说到中断之前,我先来定义一下优先级,明白了什么是优先级,后面的阐述就容易明白了。实际上很多人都是混淆了优先级的含义,所以才觉得糊里糊涂。优先级高的中断源可以中断优先级低的中断服务程序,这就形成了中断服务程序中套着中断服务程序的情况,即形成了所谓的中断嵌套。MCU暂停现行程序而转去响应中断请求的过程称为中断响应;为使系统能及时响应并处理发生的所有中断,系统根据引起中断事件的重要性和紧迫程序,硬件将中断源分为若干个级别,称作中断优先级;中断的优先级有两个:查询优先级和执行优先级。什么是查询优级呢?我们从datasheet或书上看到的默认(IP寄存器不做设置,上电复位后为00H)的优先级:外部中断0> 定时/计数器0 > 外部中断1 > 定时/计数器1 > 串行中断或int0,timer0,int1,timer1,serial port 或INT0、T0、INT1、T1、UART 或PX0>PT0>PX1>PT1>PS>...... 其实都是查询优级。首先查询优先级是不可以更改和设置的。这是一个中断优先权排队的问题。是指多个中断源同时产生中断信号时,中断仲裁器选择对哪个中断源优先处理的顺序。而这与是否发生中断服务程序的嵌套毫不相干。当CPU查询各个中断标志位的时候,会依照上述5个查询优先级顺序依次查询,当数个中断同时请求的时候,会优先查询到高优查询先级的中断标志位,但并不代表高查询优先级的中断可以打断已经并且正在执行的低查询优先级的中断服务。例如:当计数器0中断和外部中断1(按查询优先级,计数器0中断>外部中断1)同时到达时,会进入计时器0的中断服务函数;但是在外部中断1的中断服务函数正在服务的情况下,这时候任何中断都是打断不了它的,包括逻辑优先级比它高的外部中断0计数器0中断。而中断的执行优先级就是你对IP寄存器的设置了。在2个优先级的情况下,某位为1,则相应的中断源为高优先级;为0,则为低优先级。关于中断的优先级有三条原则:1、CPU同时接收到几个中断时,首先响应优先级最高的中断请求;2、正在进行的中断过程不能被新的同级或低行优优先级的中断请求所中断;3、正在进行的低行优优先级中断服务,能被高行优优先级中断请求中断;若:同一执行优先级中的中断申请不止一个时,则有一个中断优先权排队问题。同一执行优先级的中断优先权排队,由中断系统硬件确定的自然优先级形成,优先权自高到低的顺序即:外部中断0>定时/计数0>外部中断1>定时/计数1>串行接口例如:设置IP =0x10,即设置串口中断为最高优先级,则串口中

多级嵌套的中断试验

一.实验目的 (1)掌握中断在计算机系统中的作用; (2)了解可以响应中断请求的条件和时刻,响应中断的过程和实现方案;理解使用中断隐指令的必要性; (3)了解中断处理的完整过程,开中断,关中断操作的作用,保存现场信息和恢复现场信息必须确保完整完成的含义和可行措施; (4)掌握确定中断向量,设计中断处理程序的操作步骤和实现方法;二.实验原理 1.1中断电路 TH-union教学机中断电路的总体组成,如下图所示: 图中IRQ0—IRQ2是3个中断请求源信号,分别对应实验箱上的三个中断请求 按钮,实验时,按下某个按钮表示发出相应的中断请求信号。这三级中断的 优先次序从低到高为IRQ0到IRQ2。 1.2中断处理在教学机中的具体实现 教学机的中断线路主要包括2片GAL、3个无锁按键、2片74LS374和若干插针。下面分别对这几部分进行简要介绍。 (1)3个无锁按键,提供中断请求的源信号 教学机支持3级中断发,这3个无锁按键作为3个中断源,从右到左依次为一、二、三级中断,对应的中断优先级编码P1、P0依次为01、10、11,优先级也依次升高。这3个无锁按键的引脚作为INTS GAL 和INTP GAL 的输入。

(2)INTS GAL,接受并记忆通过无锁按键给出的中断请求源信号 该芯片的输入信号除了3个无锁按键的6个引脚外,还有控制信号DC23、/GIR及系统时钟CK1。输出信号只有3个分别表示取指时3个无锁按键是否被按下,如果被按下,则相应的输出信号为高电平,否则为低电平。这3个输出信号被送至INTP GAL 。 该芯片实现的功能是,在每次取指前一拍(用DC2-3=1指示),将3个输出信号全部置零;在每次取指时(/GIR信号指示),都检测是否有中断请求(即是否有无锁按键被下),并用这3个输出引脚表示;在取指后以及整个指令执行过程中,这3个输出信号都将保持不变。 (3)INTP GAL,在条件成立时,向CPU 发出中断请求信号/INT(低电平有效) 该芯片实现的功能是: 1)对INTS GAL 送来的3个信号进行中断优先级编码,得到新请求的中断优先级,并与当前中断优先级P1、P0比较; 2)设置中断允许位INTE,该信号高电平表示允许中断,低电平表示禁止中断。当控制信号DC12~DC10=110时,INTE被置为1;DC12~DC10=111 时,INTE被置为0。 3)产生中断请求信号/INT,该信号低电平表示有(更高优先级)中断请求需要响应。 在中断允许位INTE=1时,如果新的中断优先级比当前中断优先级高,则给出中断请求信号/INT=0,否则/INT=1。 P1、P0也是状态寄存器的2个输入信号,可随同状态标志(C、Z、V、S)压入/弹出栈。 P1、P0也是INTVTL74LS374的2个输入信号,用来形成当前中断优先级在中断向量表中的首地址。 4)通过中断向量寄存器INTVTH 74LS374、INTVTL 74LS374硬性设置的中断向量分别为16进制的2104、2108和210C,对应的中断优先级分别是1、2、3。 三.实验内容及步骤 1.实验内容 (1)读懂教材中有关中断的概念,中断响应和中断处理的内容,了解这些功能在教学计算机中是如何实现的; (2)如果所用的教学计算机的基本指令集合中尚未实现中断隐指令,与处理中断有关的EI,DI和IRET三条指令,则需要首先实现中断隐指令和扩 展这三条指令;如果在基本指令集中已经实现了上述内容,则直接跳过 这一实验步骤。 (3)确定中断向量表地址。这个向量表是以XXX4为首地址的一段内存区(为每一个中断保留4个字的空间),用于存放对应每一个中断源的中 断处理程序的首地址,要在中断隐指令中把这里的选定的一个地址传送 到程序计数器PC中,之后就进入响应中断处理程序的执行过程。常用 的可行方案是在这里保存一条转移指令,实现依据不同的中断源转移到 不同的中断处理程序。教学机设置了3个中断源并为每个中断源分配了 不同的优先级,则3个终端程序入口地址分别为16进制的XXX4,XXX8

ARM的中断原理

ARM的中断原理(转) 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 ARM系统包括两类中断:一类是IRQ中断,另一类是FIQ中断。IRQ是普通中断,FIQ是快速中断,在进行大批量的复制、数据传输等工作时,常使用FIQ中断。FIQ的优先级高于IRQ。 在ARM系统中,支持7类异常,包括:复位、未定义指令、软中断、预取中止、数据中止、IRQ和FIQ,每种异常对应于不同的处理器模式。一旦发生异常,首先要进行模式切换,然后程序将转到该异常对应的固定存储地址执行。这个固定的地址称为异常向量。异常向量中保存的通常为异常处理程序的地址。ARM的异常向量如下: 异常模式正常地址高向量地址 复位管理 0x00000000 0xFFFF0000 未定义指令未定义 0x00000004 0xFFFF 0004 软中断管理 0x00000008 0xFFFF 0008 预取指中止中止0x0000000C 0xFFFF 000C 数据中止中止0x00000010 0xFFFF0010 IRQ IRQ 0x00000018 0xFFFF0018

ARM-Linux下的GPIO中断程序.

ARM-Linux下的GPIO中断程序 [日期:2011-03-22] 来源:Linux社区作者:cskywit 今日为了调试ARM板上的GPIO引脚中断效果,以便在后续项目使用ARM与ZLG7290按键LED中断芯片连接中随意选择空闲的GPIO引脚来作为ZLG7290的中断信号线,特意编写了一个小的Linux GPIO中断驱动程序下载到开发板上做实验。经验证,这种软件中断方式也还差强人意。下面贴出自己编写的不成熟的代码,见笑(<-_->)。 实验的硬件电路为ARM GPIO的PB17连接一个共阴LED,PB18与PB19连接,PB18由中断驱动设置为低电平触发,PB19由GPIO驱动程序控制,上层应用程序通过驱动控制PB19高低电平变化,从而引发PB18发生中断,中断程序中控制PB17的LED亮和灭。 Linux中断驱动部分: /* * PB18_IRQTest.c * This is a test program for sam9260, using PB19(J5_18 pin) input a signal to PB18(J5_16 pin), * PB18 receive this signal as IRQ and make the LED linking on PB17((J5_14 pin)) turn on or turn off * * @Author: Cun Tian Rui * @Date :March.18.2011 */ #include #include #include #include #include #include #include #include #include #include #include #include #include

8259中断实验

XX学院 实验报告 实验名称 姓名 学号 班级 教师 日期

一、实验内容与要求 1.1 实验内容 本次实验分为如下3个子实验: (1)单中断请求实验:利用系统总线上中断请求信号MIR7,设计一个单一中断请求实验; (2)双中断优先级实验:利用系统总线上中断请求信号MIR6和MIR7,设计一个双中断优 先级应用实验,观察8253对中断优先级的控制; (3)级联中断实验:利用系统总线上中断请求信号MIR7和SIR1,设计一个级联中断应用 实验。 1.2 实验要求 本次实验中三个子实验的实验要求如下: (1)单中断请求实验:单脉冲KK1+与主片8259的IR7相连。每按KK1+,进入一次中断, 输出7; (2)双中断优先级实验:单脉冲KK1+连主片8259的IR7,KK2+连其IR6。每当KK1+按 下时显示“7”,每当KK2+按下显示“6”; (3)级联中断实验:单脉冲KK1+连主片8259的IR7,KK2+连从片的IR1。每当KK1+按 下时显示“M7”,每当KK2+按下显示“S1”。 二、实验原理与硬件连线 2.1 实验原理 (1)中断控制器8259简介 在Intel 386EX芯片中集成有中断控制单元(ICU),该单元包含有两个级联中断控制器,一个为主控制器,一个为从控制器。该中断控制单元就功能而言与工业上标准的82C59A是一致的,操作方法也相同。从片的INT连接到主片的IR2信号上构成两片8259的级联。 在TD-PITE实验系统中,将主控制器的IR6、IR7以及从控制器的IR1开放出来供实验使用,主片8259的IR4供系统串口使用。8259的内部连接及外部管脚引出如图1-1:

arm中断返回地址详细分析.

在ARM体系中,通常有以下3种方式控制程序的执行流程: 1、在正常执行过程中,每执行一条ARM指令,程序计数器PC的值加4个字节;每执行一条Thumb 指令,程序计数器PC加2个字节。整个过程是顺序执行的; 2、跳转B指令执行跳转操作;BL指令在执行跳转的同时,保存子程序返回地址;BX指令,执行跳转的同时,根据目标地址的最低位,可以将程序状态切换到Thumb状态;BLX指令执行上述3个操作; 3、当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执行。在进入异常中断处理程序时,要保存被中断的程序的执行现场,在从异常中断处理程序退出时,要恢复被中断的程序的执行现场。当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行。 异常中断种类、异常中断向量地址和异常中断优先级别见下表: ARM运行的几种处理器模式如上表所示。其中,应用程序通常运行在用户模式下! 为了说明异常中断执行过程,先了解各处理器模式下的寄存器组,如下表: 重点:ARM处理器对异常中断的响应过程: ㈠、保存当前程序状态寄存器CPSR到对应异常中断的处理器模式下的SPSR中; ㈡、设置当前程序状态寄存器CPSR的处理器模式位M(4:0)为对应的处理器模式,并禁止IRQ 中断(设置I位=1);当进入的是FIQ模式时,禁止FIQ中断(设置F位=1); ㈢、将对应异常中断的处理器模式下的LR设置成返回地址; ㈣、将程序计数器PC值,设置成该异常中断向量地址,从而跳转到相应的异常中断处理程序处执行。 上述处理器对异常中断的响应过程可以用伪代码描述如下: R14=return Link SPSR=CPSR CPSR[4:0]=exception mde number CPSR[5] = 0 //所有异常均在ARM状态下处理(本句出自《基于ARM的嵌入式系统开发与实例》P32) if(==Reset or FIQ )then CPSR[6]=1 //禁止FIQ中断 CPSR[7] =1 //禁止IRQ中断 PC = exception vetor address 程序将自动跳转到对应异常中断的处理程序中。 上述过程,完全由处理器自动完成,所以,当发生一种异常中断时,寄存器R14 、CPSR、SPSR 和PC的值将是上述的结果!结果如下图所示: 下面是引用别人的文章: ARM处理器中主要有7个异常(2个中断异常): 1、复位异常;在以ARM为核的单片机中,常把下列事件作为引起复位的原因。 ? 上电复位:在上电后,复位使内部达到预定的状态,特别是程序跳到初始入口; ? 复位引脚上的复位脉冲:这是由外部其他控制信号引起的; ? 对系统电源检测发现过压或欠压; ? 时钟异常复位。 ARM处理器复位后,处理器硬件将进行以下操作: ? 强制进入管理模式;0b10011 ? 强制进入ARM状态;T=0 ? 跳转到绝对地址PC=0x00000000处执行;

相关主题
文本预览
相关文档 最新文档