当前位置:文档之家› 离散论文

离散论文

离散论文
离散论文

离散数学论文

学习离散一学期了,下面谈谈对离散的感受。《离散数学》的特点是:1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法,同时要善于总结。

下面对离散数学欧拉图与哈密顿图做一些总结:

基本内容:

1.1 欧拉图

1.2 哈密顿图

1.3 带权图与货郎担问题

1.1欧拉图

历史背景--哥尼斯堡七桥问题

欧拉图是一笔画出的边不重复的回路。

定义1.1 通过图(无向图或有向图)中所有边一次且仅一次行遍图中所有顶点的通路称为欧拉通路,通过图中所有边一次并且仅一次行遍所有顶点的回路称为欧拉回路。具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图。

说明欧拉通路是图中经过所有边的简单的生成通路(经过所有顶点的通路称为生成通路)。

欧拉回路是经过所有边的简单的生成回路。

举例:

(1)欧拉图(2)半欧拉图(3)无欧拉通路(4)欧拉图(5)无欧拉通路(6)无欧拉通路

无向欧拉图的判定定理

定理1.1无向图G是欧拉图当且仅当G是连通图,且G中没有奇度顶点。

证明:若G是平凡图,结论显然成立。

下面设G为非平凡图,设G是m条边的n阶无向图,

并设G的顶点集V={v1,v2,…,v n}。

必要性:因为G为欧拉图,所以G中存在欧拉回路,

设C为G中任意一条欧拉回路,?v i,v j∈V,v i,v j都在C上,

因而v i,v j连通,所以G为连通图。

又?v i∈V,v i在C上每出现一次获得2度,

若出现k次就获得2k度,即d(v i)=2k,

所以G中无奇度顶点。

充分性:由于G为非平凡的连通图可知,G中边数m≥1。

对m作归纳法。

(1)m=1时,由G的连通性及无奇度顶点可知,

G只能是一个环,因而G为欧拉图。

(2)设m≤k(k≥1)时结论成立,要证明m=k+1时,结论也成立。

由G的连通性及无奇度顶点可知,δ(G)≥2。

无论G是否为简单图,都可以用扩大路径法证明G中必含圈。

设C为G中一个圈,删除C上的全部边,得G的生成子图G ',

设G '有s个连通分支G '1,G '2,…,G 's,

每个连通分支至多有k条边,且无奇度顶点,

并且设G 'i与C的公共顶点为v*ji,i=1,2,…,s,

由归纳假设可知,G '1,G '2,…,G 's都是欧拉图,

因而都存在欧拉回路C 'i,i=1,2,…,s。

最后将C还原(即将删除的边重新加上),

并从C上的某顶点v r开始行遍,每遇到v*ji,就行遍G 'i中的欧拉回路C 'i,i =1,2,…,s,最后回到v r,

得回路v r…v*j1…v*j1…v*j2…v*j2…v*js…v*js…v r,

此回路经过G中每条边一次且仅一次并行遍G中所有顶点,

因而它是G中的欧拉回路(演示这条欧拉回路),

故G为欧拉图。

定理1.2无向图G是半欧拉图当且仅当G是连通的,且G中恰有两个奇度顶点。

证明:必要性:设G是m条边的n阶无向图,因为G为半欧拉图,

因而G中存在欧拉通路(但不存在欧拉回路),

设Г=v i0e j1v i1…v im-1e jm v im为G中一条欧拉通路,v i0≠v im。

?v∈V(G),若v不在Г的端点出现,显然d(v)为偶数,

若v在端点出现过,则d(v)为奇数,

因为Г只有两个端点且不同,因而G中只有两个奇数顶点。

另外,G的连通性是显然的。

充分性:设G的两个奇度顶点分别为u0和v0,

对G加新边(u0,v0),得G '=G∪(u0,v0),

则G '是连通且无奇度顶点的图,

由定理1.1可知,G '为欧拉图,

因而存在欧拉回路C ',而C=C '-(u0,v0)为G中一条欧拉通路,

所以G为半欧拉图。

定理1.3 有向图D是欧拉图当且仅当D是强连通的且每个顶点的入度都等于出度。

定理1.4 有向图D是半欧拉图当且仅当D是单向连通的,且D中恰有两个奇度顶点,其中一个的入度比出度大1,另一个的出度比入度大1,而其余顶点的入度都等于出度。

定理1.5G是非平凡的欧拉图当且仅当G是连通的且为若干个边不重的圈的并。

例1.1 设G是非平凡的且非环的欧拉图,证明:

(1)λ(G)≥2。

(2)对于G中任意两个不同顶点u,v,都存在简单回路C含u和v。

证明 (1)由定理1.5可知,?e∈E(G),存在圈C,e在C中,

因而p(G-e)=p(G),故e不是桥。

由e的任意性λ(G)≥2,即G是2边-连通图。

(2)?u,v∈V(G),u≠v,由G的连通性可知,u,v之间必存在路径Г1,设G '=G-E(Г

),则在G '中u与v还必连通,

1

否则,u与v必处于G '的不同的连通分支中,

上存在G中的桥,这与(1)矛盾。

这说明在Г

1

于是在G '中存在u到v的路径Г2,显然Г1与Г2边不重,

这说明u,v处于Г1∪Г2形成的简单回路上。

Fleury算法,能不走桥就不走桥

(1) 任取v0∈V(G),令P0=v0。

(2) 设Pi=v0e1v1e2…e i v i已经行遍,按下面方法来从

E(G)-{e

,e2,…,e i}中选取e i+1: (a) e i+1与v i相关联;

1

(b) 除非无别的边可供行遍,否则e i+1不应该为G i=G-{e1,e2,…,e i}中的桥。

(3)当(2)不能再进行时,算法停止。说明可以证明,当算法停止时所得简单回路P m=v0e1v1e2…e m v m(v m=v0)为G中一条欧拉回路。

1.2哈密顿图

历史背景:哈密顿周游世界问题与哈密顿图

定义15.2 经过图(有向图或无向图)中所有顶点一次且仅一次的通路称为哈密顿通路。经过图中所有顶点一次且仅一次的回路称为哈密顿回路。具有哈密顿回路的图称为哈密顿图,具有哈密顿通路但不具有哈密顿回路的图称为半哈密顿图。平凡图是哈密顿图。

说明哈密顿通路是图中生成的初级通路,

哈密顿回路是生成的初级回路。

判断一个图是否为哈密顿图,就是判断能否将图中所有顶点都放置在一个初级回路(圈)上,但这不是一件易事。

与判断一个图是否为欧拉图不一样,到目前为止,人们还没有找到哈密顿图简单的充分必要条件。

定理1.6 设无向图G=是哈密顿图,对于任意V1?V,且V1≠?,均有

p(G-V

)≤|V1| 其中,p(G-V1)为G-V1的连通分支数。

1

证明 :设C为G中任意一条哈密顿回路,

易知,当V1中顶点在C上均不相邻时,

p(C-V

)达到最大值|V1|,

1

而当V1中顶点在C上有彼此相邻的情况时,

均有p(C-V1)<|V1|,所以有p(C-V1)≤|V1|。

而C是G的生成子图,所以,有p(G-V1)≤p(C-V1)≤|V1|。

说明本定理的条件是哈密顿图的必要条件,但不是充分条件。可以验证彼得松图满足定理中的条件,但不是哈密顿图。若一个图不满足定理中的条件,它一定不是哈密顿图。

推论: 设无向图G=是半哈密顿图,对于任意的V1?V且V1≠?,均有

p(G-V1)≤|V1|+1

证明 :设P是G中起于u终于v的哈密顿通路,

令G '=G∪(u,v)(在G的顶点u,v之间加新边),

易知G '为哈密顿图,

由定理1.6可知,p(G '-V1)≤|V1|。

因此,p(G-V1) =p(G '-V1-(u,v)) ≤p(G '-V1)+1 ≤ |V1|+1

总结:

哈密顿通路是经过图中所有顶点的一条初级通路。

哈密顿回路是经过图中所有顶点的初级回路。

对于二部图还能得出下面结论:

一般情况下,设二部图G=,|V1|≤|V2|,且|V1|≥2,|V2|≥2,由定理1.6及其推论可以得出下面结论:

(1) 若G是哈密顿图,则|V1|=|V2|。

(2) 若G是半哈密顿图,则|V2|=|V1|+1。

(3) 若|V2|≥|V1|+2,则G不是哈密顿图,也不是半哈密顿图。

定理1.7设G是n阶无向简单图,若对于G中任意不相邻的顶点v i,v j,均有d(v

)+d(v j)≥n-1 (1.1)

i

则G中存在哈密顿通路。

证明 :首先证明G是连通图。否则G至少有两个连通分支,

设G1,G2是阶数为n1,n2的两个连通分支,设v1∈V(G1),v2∈V(G2),因为G是简单图,所以d G(v1)+d G(v2)=d G1(v1)+d G2(v2)≤n1-1+n2-1≤n-2

这与(1.1)矛盾,所以G必为连通图。

下面证G中存在哈密顿通路。

设Г=v1v2…v l为G中用“扩大路径法”得到的“极大路径”,

即Г的始点v1与终点v l不与Г外的顶点相邻。显然有l≤n。

(1)若l=n,则Г为G中哈密顿通路。

(2)若l<n,这说明Г不是哈密顿通路,即G中还存在着Г外的顶点。但可以证明G中存在经过Г上所有顶点的圈。

(a) 若v1与v l相邻,即(v1,v l)∈E(G),则Г∪(v1,v l)为满足要求的圈。

(b)若v1与v l不相邻,设v1与Г上的v i1=v2,v i2,…,v ik相邻(k≥2)

(否则d(v1)+d(v l)≤1+l-2=l-1

此时,v l至少与v i2,…,v ik相邻的顶点v i2-1,…,v ik-1之一相邻

(否则d(v1)+d(v l)≤k+l-2-(k-1)=l-1

设v l与v ir -1相邻(2≤r≤k)于是,回路

C=v

1v

2

…v ir -1v l v lr -1…v i…v ir v1过Г上的所有顶点。

(c)下面证明存在比Г更长的路径。

因为l

存在v l+1∈V(G)-V(C)与C上某顶点v t相邻

删除边(v t-1,v t)得路径Г'=v t-1…v1v ir…v l v ir-1…v t v l+1比Г长度大1,

对Г'上的顶点重新排序,使其成为Г'=v1v2…v l v l+1,

对Г'重复(a)~(c),在有限步内一定得到G的哈密顿通路。

推论:设G为n(n≥3)阶无向简单图,若对于G中任意两个不相邻的顶点

v

i

,v j,均有d(v i)+d(v j)≥n (1.2)则G中存在哈密顿回路,从而G为哈密顿图。

证明:由定理1.7可知,G中存在哈密顿通路,

设Г=v1v2…v n为G中一条哈密顿通路,

若v1与v n相邻,设边e=(v1,v n),则Г∪{e}为G中哈密顿回路。

若v1与v n不相邻,应用(1.2),同定理1.7证明中的(2)类似,可证明存在过Г上各顶点的圈,此圈即为G中的哈密顿回路。

定理1.8设u,v为n阶无向图G中两个不相邻的顶点,且d(u)+d(v)≥n,则G 为哈密顿图当且仅当G∪(u,v)为哈密顿图((u,v)是加的新边)。

例1.5 在某次国际会议的预备会议中,共有8人参加,他们来自不同的国家。已知他们中任何两个无共同语言的人中的每一个,与其余有共同语言的人数之

和大于或等于8,问能否将这8个人排在圆桌旁,使其任何人都能与两边的人交谈。

解答设8个人分别为v1,v2,…,v8,作无向简单图G=,其中V=

{v1,v2,…,v8},?v i,v j∈V,且i≠j,

若v i与v j有共同语言,就在v i,v j之间连无向边(v i,v j),

由此组成边集合E,则G为8阶无向简单图,

?v i∈V,d(v i)为与v i有共同语言的人数。

由已知条件可知,?v i,v j∈V且i≠j,均有d(v i)+d(v j)≥8。

由定理1.7的推论可知,G中存在哈密顿回路,

设C=v i1v i2…v i8为G中一条哈密顿回路,

按这条回路的顺序安排座次即可。

定理1.9若D为n(n≥2)阶竞赛图,则D中具有哈密顿通路。

证明对n作归纳法。

n=2时,D的基图为K

,结论成立。

2

设n=k时结论成立。现在设n=k+1。

设V(D)={v1,v2,…,v k,v k+1}。

令D1=D-v k+1,易知D1为k阶竞赛图,

由归纳假设可知,D1存在哈密顿通路,

=v '1v '2…v 'k为其中一条。

设Г

1

下面证明v k+1可扩到Г1中去。

若存在v 'r(1≤r≤k),有∈E(D),i=1,2,…,r -1,

∈E(D)则Г=v '1v '2…v 'r-1v k+1v 'r…v 'k为D中哈密顿通路。

否则?i∈{1,2,…,k},均有∈E(D),则Г=Г'∪为D中哈密顿通路。

1.3带权图与货郎担问题

定义1.3 给定图G=(G为无向图或有向图),设W:E→R(R为实数集),对G中任意的边e=(v i,v j)(G为有向图时,e=),设W(e)=w ij,称实数w

为边e上的权,并将w ij标注在边e上,称G为带权图,此时常将带权图G记ij

设有n个城市,城市之间均有道路,道路的长度均大于或等于0,可能是∞(对应关联的城市之间无交通线)。一个旅行商从某个城市出发,要经过每个城市一次且仅一次,最后回到出发的城市,问他如何走才能使他走的路线最短?这就是著名的旅行商问题或货郎担问题。这个问题可化归为如下的图论问题。

设G=,为一个n阶完全带权图K n,各边的权非负,且有的边的权可能为∞。求G中一条最短的哈密顿回路,这就是货郎担问题的数学模型。

此问题中不同哈密顿回路的含义:将图中生成圈看成一个哈密顿回路,即不考虑始点(终点)的区别以及顺时针行遍与逆时针行遍的区别。

例1.7 下图为4阶完全带权图K4。求出它的不同的哈密顿回路,并指出最短的哈密顿回路。

解: 由于货郎担问题中不同哈密顿回路的含义可知,求哈密顿回路从任何顶点出发都可以。下面先求出从a点出发,考虑顺时针与逆时针顺序的不同的哈密顿回路。

C

=abcda C2=abdca C3=acbda

1

C

=acdba C5=adbca C6=adcba

4

n阶完全带权图中共存在(n-1)!/2种不同的哈密顿回路,经过比较,可找出最短哈密顿回路。

n=4时,有3种不同哈密顿回路。

n=5时,有12种,

n=6时,有60种,

n=7时,有360种,…,

n=10时,有5×9!=1 814 400种,…。

由此可见货郎担问题的计算量是相当大的。

对于货郎担问题,人们一方面还在寻找好的算法,另一方面也在寻找各种近似算法。

中国邮递员问题

一名邮递员带着要分发的邮件从邮局出发,经过要分发的每个街道,送完邮件后又返回邮局。如果他必须至少一次走过他管辖范围内的每一条街道,如何选择投递路线,使邮递员走尽可能少的路程。

这个问题是由我国数学家管梅谷先生(山东师范大学数学系教授)在1960年首次提出的,因此在国际上称之为中国邮递员问题。

用图论的述语,在一个连通的赋权图G(V,E)中,要寻找一条回路,使该回路包含G中的每条边至少一次,且该回路的权数最小。也就是说要从包含G的每条边的回路中找一条权数最小的回路。

离散数学论文

浅论离散数学的实际应用 摘要: 离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,它在计算机理论研究及软、硬件开发的各个领域都有着广泛的应用。作为一门重要的专业基础课,对于我们电子专业的同学来说,学习离散数学史有其重要现实意义:它不仅能为我们的专业课学习打下基础,也为我们今后将要从事的软、硬件开发和应用研究打下坚实的基础,同时也有助于培养我们的抽象思维、严格的逻辑推理和创新能力。离散数学的应用非常广泛,本文主要研究其在我们所学的重要课程中的应用:数字电路中的门电路设计、软件技术基础中的一些技术以及解决现实生活中的一些问题的应用。 关键字:离散数学、电路设计、软件技术、应用 1.什么是离散数学 1.1简介 离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。1.2离散数学的内容 离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域,它通常研究的领域包括:数理逻辑、集合论、代数结构、关系论、函数论、图论、组合学、数论等。 2.离散数学在门电路设计中的应用 2.1 逻辑门的概念 逻辑门是集成电路中的基本组件。简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。高、低电平可以分别代表逻辑上的“真”与“假”

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

数学小论文范文

数学小论文范文 随着课程改革的不断深入,新课程理念与课堂教学实践正在逐步融合,逐步改变了以教师、课堂或课本为中心的局面,促进了学生 创新意识与实践能力的发展,学生的学习产生了实质性的变化。那么,在课堂教学中如何使学生主动探索在课堂上显现呢?下面结合本 人的教学实践,谈几点体会及做法。 一给学生提供可探索的材料和可探索的学习内容 二给学生提供良好的学习背景和可探究的学习情境 在课堂教学中,教师应结合教学内容为学生的学习,创设良好的学习背景和可探究的学习情境,让学生在数学知识的广阔背景中更 好地建构知识的意义,并感受数学与生活实际的密切联系,体会数 学的价值,让学生的数学学习活动真正变为学生自己探究的创新过程。如,在教学“百分数的意义”时,可为学生创设这样的学习背景:“有甲乙丙三位工人师傅,甲每加工25个零件,有23个及格,乙加工20个零件,有19个及格,丙加工50个零件,有47个及格。如果有一批零件要其中一位师傅加工,你会选择谁?”通过探究,使 学生认识到这个现实问题实际上可转化成“求谁的合格率高”这一 数学问题。又如,教学“分数的基本性质”时,我有意识地给学生 提供以下的可探究学习情境:上课开始,我拿着一捆36本课外书, 从容地走进课堂。同学们在猜想:这节课老师让我们看课外书了。 于是我指着这捆课外书说:“这36本课外书,我要分给你们三个小组,要求让第一组分得这捆书的三分之一,第二小组分得这捆书的 六分之二,第三小组分得这捆书的九分之三,请同学们说一说,这 样分法合理不合理,谁分得多?谁分得少?结果分完没有?”这样问题 的创设,调动了学生思维的积极性,探究活动立即在课堂上显现, 有的按照自己的思路去画线段图,有的一会儿测量,有的一会儿皱 眉思索,兴趣盎然,学生会心地笑了,一样多。这时,学生又产生 困惑,为什么会一样多呢?最后经过引导探究,得出“分数的基本性质”。

离散数学论文课程小论文)

离散数学论文 —浅谈离散数学的学习及其在计算机中的应用一、对离散数学学习的认识 通过这一学期的学习,我对这门课程有一些初步的了解,现在的心情和当初也很不相同。在听过老师讲解以后,我觉得第一部分的数理逻辑自己都能很好的掌握。后面的开始深入一些,对于好多以前没有接触过的名词定义不能马上理解,但是只要跟着老师的思维走,上课认真听讲,课后看一下书本就能懂。有了这些认知,我觉得这门课的难点在于课程比较枯燥,好多理论的知识需要我们去理解。前五章主要是认识逻辑语言符号,了解了数理逻辑的特点,并做一些简单的逻辑推理和运算。第二部分讲的是集合论。在这一部分中进一步认识、运用数理逻辑语言,熟练强化练习,深入理解。这一章的难度相较于前几章要繁琐些,有很多的符号转换,运算,运算过程很复杂。对于计算能力不强的我来说,这一章或许是最吃力的,即使知道原理也需要通过大量的练习强化巩固,而这其中用到的还有线性代数里面的矩阵。在第三部分的代数结构中主要学习了代数系统、群与环,其中二元运算和代数系统有点难度,较以往学习非常吃力!第五部分的图论可以归结为本书的重点之一,“图”“树及其应用”又是其中的重中之重。它的用途非常广泛,并且应用于我们整个日常生活中。比如:一个计算机芯片需要多少层才能使得同一层的路线互不相交?一位流动推销员要以怎样的顺序到达每一个城市才能使得旅行时间最短?这些问题以及其他一些实际问题都涉及“图论”。 这里所说的图并不是几何学中的图形,而是客观世界中某些具体事物间

联系的一个数学抽象,用顶点代表事物,用边表示各式物间的二元关系,如果所讨论的事物之间有某种二元关系,我们就把相应的顶点练成一条边。这种由顶点及连接这些顶点的边所组成的图就是图论中所研究的图。 树是指没有回路的连通图。它是连通图中最简单的一类图,许多问题对一般连通图未能解决或者没有简单的方法,而对于树,则已圆满解决,且方法较为简单。而且在许多不同领域中有着广泛的应用。例如家谱图就是其中之一。如果将每个人用一个顶点来表示,并且在父子之间连一条边,便得到一个树状图。 通过对图论的初步理解和认识,我深深地认识到,图论的概念虽然有其直观、通俗的方面,但是这许多日常生活用语被引入图论后就都有了其严格、确切的含义。我们既要学会通过术语的通俗含义更快、更好地理解图论概念,又要注意保持术语起码的严格。 本以为枯燥乏味的离散数学竟然会是贴近生活是我意想不到的,这些历史难题等等,都让我对它产生了一定的兴趣,虽然不可否认的是,对我来说它确实是一门很难很深奥很抽象的课程,但是仍然不减我对图论产生的兴趣,或许这也就是我选择这门课程最大的收获吧。 二、离散数学在计算机中的应用 离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,它在计算机理论研究及软、硬件开发的各个领域都有着广泛的应用。作为一门重要的专业基础课,对于我们计算机专业的同学来说,学习离散数学史有其重要现实意义:它不仅能为我们的专业课学习打下基础,也为我们今后将要从事的软、硬件开发和应用研究打下坚实的基础,同时也有助于培

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

《离散数学》课程总结论文

《离散数学》课程总结论文 专业:11级计科系计本三班姓名:学号:1104013045 一.课程小结 从学离散数学这门课程开始,到现在学期末也已经有了一个学期的认识。以下是对离散数学这门课程的总结: 第一部分:数理逻辑 1.首先我们学习了命题逻辑的基本概念。其实这一部分的内容在高中时已经讲过。其次.命题公式及其赋值,这一小结主要讲的是什么是合式公式以及命题的解释和成真赋值、成假赋值等。 2.命题逻辑等值演算。在这一章节中主要介绍了一些重要的等值公式,例如德摩根律和蕴含等值式等,然后介绍的就是什么是析取范式与析取范式,又进一步的引出主析取范式与主合取范式的概念。另外一个知识点为连接词的完备集。 3.命题逻辑的推理形式。就是如何去证明推理的正确性。这需要我们记住一些重要的推理定律。然后是自然推理系统。推理的一些构造证明的方法有附加前提证明法和归谬法等等。 4.一阶逻辑基本概念。主要说的是一阶逻辑命题的符号化和一阶逻辑公式及其解释。 5.一阶逻辑等值演算与推理,这节知道量词如何消去和一些基本的量词等值式就可以了。 第二部分:集合论 1.集合代数。这一章节中首先讲的是集合的基本概念和运算等等,其中大部分的知识我们高中的时候都已经接触过了。其中要知道什么是绝对补集,对称差集和绝对补集就可以了。 2.二元关系。要知道二元关系首先要知道什么是有序对和笛卡尔集,这是二元关系的基础。然后要清楚二元关系的表示方法有三种,即集合表达式、关系矩阵和关系图。知道了二元关系,紧接着就是关系的运算和性质。关系的性质有自反性、反自反性、对称性、反对称性和传递性。还有就是关系的闭包,其中包括自反闭包、对称闭包和传递闭包。最后一点就是偏序关系和等价关系,还需要知道哈斯图并且会画哈斯图。 第三部分:代数结构 1.代数系统。首先要能够判断一个运算是否为一个集合上的二元运算。在二院运算的基础上,要知道和能够判断单位元、零元和逆元。2群与环。在这一小节中首先要会判断一个代数系统是否为群。在也是这一章节的核心内容。如果一个代数系统,其二元运算时可结合的,又含有单位元,并且集合中的每个元素都有逆元,则此代数系统叫做群。 第四部分:图论 1.图的基本概念。其实在这一章节中,内容多数为一些基本概念。这就需要我们熟练的去掌握。只有清楚了概念才能够做题,比如说什么是有向图、零图、无向图和空图等等。另外图的矩阵表示在这一章节是尤为重要的。其中包括无向图的关联矩阵、有向图的关联矩阵、有向图的邻接矩阵和可达矩阵等。 2.欧拉图与哈

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

离散数学课程论文

分类号图论密级公开UDC081202编号 计算机科学与技术学院 离散数学及其应用结课论文 图划分方法及其在社会网络分析和佩奇网站排名的应用 李英儒涂超杨凯航张蔚樊哲 指导教师张爱华教授 华中科技大学计算机科学与技术学院 班级计算机科学2013创新实验班 学科专业名称计算机科学与技术 学科名称离散数学及其应用论文提交日期2014年11月学院名称计算机科学与技术学院 学校名称华中科技大学

Typeset by Ying-Ru Li using L A T E X2εat November20,2014 With package CASthesis v0.2of CT E https://www.doczj.com/doc/942484711.html,

The Methods of Graph Partition and Its Applications in Social Network Analysis and PageRank Ying-Ru Li Chao Tu Kai-Hang Yang Wei Zhang Zhe Fan Supervisor: Prof.Ai-Hua Zhang Computer Science and Technology School of Computer Science and Technology Huazhong University of Science and Technology November,2014 Essay about Discrete Mathematics and Its Applications of ACM Class of Computer Science,2013 in Computer Science and Technology

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学在计算机中的应用

SHEN YANG NORMAL UNIVERSITY “离散数学”论文 课题名称:离散数学在计算机中的应用 学校:沈阳师范大学 姓名: 郑珊珊 学号: 08304019 院系:数学与系统科学学院 专业:数学与应用数学 班级: 08级3班 日期: 2010年11月28日

离散数学在计算机中的应用 离散数学是工科类计算机专业必修的基础课。它在科学研究、工程技术、国民经济等诸多领域都有广泛应用,所以说离散数学的重要性是不言而喻的。特别是离散数学对计算机中的程序的设计起着至关重要的作用。 离散数学中的集合论、数理逻辑、关系、图论、代数系统在计算机中有着广泛的应用。具体如下: 集合论:集合论被应用在计算机科学研究的各个方面。集合是构造离散结构的基础,离散结构是计算机的基本结构。从集合构造而来的离散结构包括:计数时广泛使用的组合、表示对象之间相互关联的关系、图形、以及用户模拟计算机的有限状态机等。集合论在人工智能领域、逻辑学及程序设计语言等方面都有着重要的应用。同时,集合论在新一代智能计算机的发展具有重要的应用。计算机智能利用模糊集合理论,把人类的语言和思维过程提炼成数学模型,使人类语言数量化、形式化,并通过对模糊逻辑、模糊控制、模糊识别、模糊聚类分析、模糊决策等方面的分析,使计算机能够模拟人脑的高级智能。 数理逻辑:数理逻辑在计算机科学的计算理论、算法、程序设计、人工智能、计算机硬件系统等方面发挥着重要而广泛的应用。从计算机程序设计语言方面来说,语言的理论基础是形式语言、自动机与形式语义学。而形式语言、自动机和形式语义学所采用的主要研究思想和方法来源与数理逻辑和代数。程序设计语言中的许多机制和方法,如子程序调用中的参数代换、赋值等都出自数理逻辑的方法。此外,在语言的语义研究中,四种语义方法最终可归结为代数和逻辑方法。而且,程序的语义及其正确性的理论基础仍然是数理逻辑或进一步的模型论。不仅如此,数理逻辑在计算机体系结构的研究中起着主导的作用,像容错计算机系统、Transputer计算机、阵列式向量计算机、可变结构的计算机系统结构及其计算机模型等都直接或间接与逻辑及代数密不可分。如容错计算机的重要基础之一是多值逻辑,Transputer计算机理论基础是CSP理论,阵列式向量计算机必须以向量运算为基础,可变结构的计算机系统结构及其计算机模型主要采用逻辑与代数的方法。 关系:数据库是多元关系的一种很重要的应用。通常情况下,我们会使用文件方式将信息保存在计算机上,但是当信息的规模越来越庞大的时候,这种单纯使用文件系统保存信息的方式就会存在很多问题:比如信息的一致性和完整性问题,以及在大量的文件中查找具有某些特征信息的问题,信息的并发访问和安全性问题。这些问题导致了数据库德产生和高速发展。数据库系统能够将大量的数据信息有序的组织起来,并提供相应的查询和访问策略以及安全性措施。数据库系统的应用领域覆盖了我们生活中的方方面面。比如银行和证券交易所得事务处理,所有公司和单位都需要的财务和工资管理以及学校里的学籍管理系统、人事管理系统、题库系统等。近几年来,数据库在决策支持系统、空间数据库、多媒体数据库、移动数据库、信息检索和分布式信息检索等领域发挥着越来越重要的作用。除此之外,关系理论在计算机科学的通讯网络、项目调度以及集合划分和计算机语义等方面具有重要的作用。 图论:图论是研究点线构成的图形问题的一门学科,它的起源很早,但它的发展在初期是比较缓慢的,根本原因在于图的分析计算量非常大,仅靠人工不但耗时耗力,而且也容易出错。直到20世纪50年代之后,随着计算机技术的高速发展,利用计算机的强大处理能力,图论的研究也达到了空前活跃的程度,同时,

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

离散数学小论文

《离散数学》课程论文 方醒10网工二班1004032031 一、对这门课的认识: 首先要明确的是,由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。 作为一门理论抽象,内容广泛,结构严谨的计算机专业基础可它不仅与计算机专业基础课(数据结构,操作系统。数据库原理。人工智能,编译原理,网络理论等)有紧密联系,而且对培养学生的抽象思维能力与逻辑推理能力有着重要作用,为我们今后在是计算机科学的研究与技术的卡法提供了重要的工具。 鉴于《离散数学》在计算科学中的重要性,这是一门必须牢牢掌握的课程。既然如此,在学习《离散数学》时,大家最应该注意学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学集合论、数理逻辑和图论有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。 《离散数学》的特点是: 1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。 2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结, 二、对这门课的建议: 《离散数学》课程的教学内容一般包括四个部分:数理逻辑、集合论、代数

离散数学论文

浅论离散数学的实际应用摘要: 离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,它在计算机理论研究及软、硬件开发的各个领域都有着广泛的应用。作为一门重要的专业基础课,对于我们电子专业的同学来说,学习离散数学史有其重要现实意义:它不仅能为我们的专业课学习打下基础,也为我们今后将要从事的软、硬件开发和应用研究打下坚实的基础,同时也有助于培养我们的抽象思维、严格的逻辑推理和创新能力。离散数学的应用非常广泛,本文主要研究其在我们所学的重要课程中的应用:数字电路中的门电路设计、软件技术基础中的一些技术以及解决现实生活中的一些问题的应用。 关键字:离散数学、电路设计、软件技术、应用 1.什么是离散数学 简介 离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。 离散数学的内容 离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域,它通常研究的领域包括:数理逻辑、集合论、代数结构、关系论、函数论、图论、组合学、数论等。 2.离散数学在门电路设计中的应用 逻辑门的概念 逻辑门是集成电路中的基本组件。简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的 信号。高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现逻辑运算。常见的逻辑门包括“与”门,“或”门,“非”门,“异或”门(也称:互斥或)等等。逻辑门可以组合使用实现更为复杂的逻辑运算。

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学期末论文

离散数学课程总结 离散数学是现代数学的一个重要分支,是计算科学专业的专业主干课之一,课程结合计算科学的特点研究离散对象及相互关系,对提高学生的抽象思维与逻辑推理能力有重要作用.它以研究离散量的结构和相互间的关系为主要目标,在计算科学中的数据结构、操作系统等有广泛的应用。 课程内容: 第一部分:数理逻辑数理逻辑是研究推理的数学分支,推理有一些列的陈述句组成。在数理逻辑中,主要学习了命题逻辑的基本概念、命题逻辑的等值演算、命题逻辑的推理理论、一阶逻辑基本概念、一阶逻辑等值演算与推理。 1、在命题逻辑的基本概念中学习了命题与联结词、命题与联结词、命题及其分类、联结词与复合命题、命题公式及其赋值。 2、在命题逻辑的等值演算中主要学习了等值式与基本的等值式、等值演算与置换规则、析取范式与合取范式,主析取范式与主合取范式、联结词完备集可满足性问题与消解法。 3、在命题逻辑的推理理论中主要学习了推理的形式结构、推理的正确与错误、推理形式结构、判断推理正确的方法、推理定律;自然推理系统P、形式系统的定义与分类、自然推理系统P,在P 中构造证明:直接证明法、附加前提证明法、归谬法 4、在一阶逻辑基本概念中主要学习了一阶逻辑命题符号化、个体词、谓词、量词、一阶逻辑命题符号化、一阶逻辑公式及其解释、一阶语言、合式公式、合式公式的解释、永真式、矛盾式、可满足式。 5、在一阶逻辑等值演算与推理中主要学习了一阶逻辑等值式与基本等值式、置换规则、换名规则、代替规则、前束范式、自然推理系统NL 及其推理规则、数理逻辑应用。 第二部分:集合论在集合论中,主要学习了集合代数、二元关系、函数。 1、在集合代数中,学习了集合的基本概念:属于、包含、幂集、空集、文氏图等;集合的基本运算:并、交、补、差等;集合恒等式:集合运算的算律、恒等式的证明方法。 2、在二元关系中学习了有序对与笛卡儿积、二元关系的定义与表示法、关系的运算、关系的性质、关系的闭包、等价关系与划分、偏序关系。 3、在函数中学习了函数的定义与性质、函数运算。 第三部分图的基本概念及其矩阵表示 1.掌握有关图的基本概念。 2.掌握通路和回路的概念。

离散数学期末考试题

《离散数学》复习题 一、单项选择题(每小题2分,共20分) 1、下列命题中是命题的是( ) A 、 7>+y x B 、雪是黑色的 C 、严禁吸烟 D 、我正在说谎 2下列命题联结词集合中,哪个不是极小全功能集( )。 A 、{,}刭 B 、{,}刳 C 、{}- D 、{,}佼 3、下列公式中哪个不是简单析取式( )。 A 、p B 、p q ∨ C 、()p q ?∨ D 、p q ?∨? 4、设个体域{,}A c d =,公式()()x P x x S x ?∧?在A 中消去量词后应为( ) A ()()P x S x ∧ B (()())(()( P c P d S c S d ∧∧∨ C ()()P c S d ∧ D ()() () (P c P d S c S d ∧ ∧∨ 5、下列是命题公式p ∧(q ∨┓r)的成真指派的是( ) A.110,111,100 B.110,101,011 C.所有指派 D.无 6、下列命题中( )是正确的。 A. 若图G 有n 个顶点,则G 的各顶点的度和为2n; B. 无向树中任意两点之间均相互可达; C. 若有向图G 是弱连通的,则它必定也是单向连通; D. 若无向带权图G 是连通的,则其最小生成树存在且唯一。

7、正整数集合Z +的以下四个划分中,划分块最多的是( ) A .1π={{x }︱x ∈Z + } B .2π= {Z + } C. 3π={12,S S },1S 为素数集,21S Z S + =- D .3π={12,S S ,3S },i S 为Z +中元素除以3的余数 8、给定下列各图: ⑴G 1=,其中V 1=(a ,b ,c ,d ,e), E 1={(a 、b ),(b 、c ),(c 、d ),(a 、e )} ⑵G 2=,其中V 2=V 1, E 2={(a 、b ),(b 、e ),(e 、b ),(d 、e )} ⑶G 3=,其中V 3=V 1, E 3={(a 、b ),(b 、e ),(e 、d ),(c 、c ), (e 、d )} ⑷D 4=,其中V 4=V 1, E 4={} 在以上4个图中A ( )为简单图,B ( )为多重图。 供选答案:A : a: ⑴⑶ b :⑶⑷ c :⑴⑷ B : a :⑵⑶ b :⑴⑵ c :⑴⑷ 9、设X={1, 2, 3, 4},Y={a, b, c, d},则下列关系中为函数的是( )。 A 、{<1, a><1, b><2, c>} B 、{<1, a><2, d><3, c><4, b>} C 、 {<1, a><2, a><3, b>} D 、{<1, a><1, b><2, b><4, b>} 10、设,G V E =<>为无向图,u,v ?V ,u ≠v ,若u,v 连通,则( )。 A 、(,)0d u v > B 、(,)0d u v = C 、(,)0d u v < D 、(,)0d u v 3 二、填空题(每空3分,共30分) 1、设P :我有钱,Q :我去看电影。命题“虽然我有钱,但我不去看电影”符号化为 。

离散论文

离散数学论文 学习离散一学期了,下面谈谈对离散的感受。《离散数学》的特点是:1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法,同时要善于总结。 下面对离散数学欧拉图与哈密顿图做一些总结: 基本内容: 1.1 欧拉图 1.2 哈密顿图 1.3 带权图与货郎担问题

1.1欧拉图 历史背景--哥尼斯堡七桥问题 欧拉图是一笔画出的边不重复的回路。 定义1.1 通过图(无向图或有向图)中所有边一次且仅一次行遍图中所有顶点的通路称为欧拉通路,通过图中所有边一次并且仅一次行遍所有顶点的回路称为欧拉回路。具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图。 说明欧拉通路是图中经过所有边的简单的生成通路(经过所有顶点的通路称为生成通路)。 欧拉回路是经过所有边的简单的生成回路。 举例: (1)欧拉图(2)半欧拉图(3)无欧拉通路(4)欧拉图(5)无欧拉通路(6)无欧拉通路 无向欧拉图的判定定理 定理1.1无向图G是欧拉图当且仅当G是连通图,且G中没有奇度顶点。 证明:若G是平凡图,结论显然成立。 下面设G为非平凡图,设G是m条边的n阶无向图, 并设G的顶点集V={v1,v2,…,v n}。 必要性:因为G为欧拉图,所以G中存在欧拉回路,

相关主题
文本预览