当前位置:文档之家› 单芯电缆和三芯电缆的接地方式

单芯电缆和三芯电缆的接地方式

单芯电缆和三芯电缆的接地方式
单芯电缆和三芯电缆的接地方式

津成电线电缆内部专用

单芯电缆和三芯电缆的接地方式

通常三芯电缆都采用两端接地方式,因为在电缆运行中,流过三个线芯的电流总和为零,在电缆金属屏蔽层两端基本上没有感应电压。(一般为35kV及以下电压等级的电缆)。

而单芯电缆(一般为35kV及以上电压等级的电缆)一般不能采取两端直接接地方式。原因是:当单芯电缆线芯通过电流时金属屏蔽层会产生感应电流,电缆的两端会产生感应电压。感应电压的高低与电缆线路的长度和流过导体的电流成正比,当电缆线路发生短路故障、遭受雷电冲击或操作过电压时,屏蔽上会形成很高的感应电压。将会危及人身安全,甚至可能击穿电缆外护套。

单芯电缆两端直接接地,电缆的金属屏蔽层还可能产生环流,据相关报导单芯电缆两端接地产生的环流可达到电缆线芯正常输送电流的30%--80%,这既降低了电缆的载流量、又浪费电能形成损耗,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。

高压单芯电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求采取特殊的接地方式。一般应按照具体线路选择不同的接地方式,常用的方式有:

1.金属屏蔽层一端直接接地,另一端通过护层保护器接地;

2.金属屏蔽层中点直接接地,两端通过护层保护器接地;

3.金属屏蔽层一端直接接地,电缆中间护层交叉互联接地,另一端通过护层保护器接地;

4.金属屏蔽层一端直接接地,若干个护层交叉互联接地,金属屏蔽层中点直接接地,若干个护层交叉互联接地,另一端金属屏蔽层直接接地。

5.金属屏蔽层两端直接接地(仅适用于短电缆和小负载电缆)。

津成线缆

高压电缆接地的问题

浅谈高压电缆接地的问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。 在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。 为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式? 电力安全规程规定:35kV 及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速

高压单芯电缆接地方式

高压单芯电缆接地 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。 通常35kV及以下电压等级的电缆都采用两端接地方式,这是由于这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。 但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的低级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操纵过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套尽缘。此时,假如仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆尽缘老化,因此单芯电缆不应两端接地。 [个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列题目: 当雷电流或过电压波沿线芯活动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层尽缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济公道的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层尽缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地尽缘。 假如大于此规定电压时,应采取金属护套分段尽缘或尽缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通讯电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层尽缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地----可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地---常用方式; 3.护层交叉互联----常用方式; 4.电缆换位,金属护套交叉互联---效果最好的接地方式; 5.护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

ANR-ZJJD电缆护层直接接地箱说明书

ANR-ZJJD电缆护层直接接地箱 使用说明书 保定市安诺瑞电气设备制造有限公司

一、概述 10kV、35kV大截面电力电缆和66kV、110kV及以上电压等级的电力电缆均为单芯电缆,电缆金属护层一端三相互联并接地,另一端不接地,当雷电波或内部过电压沿电缆线芯流动时,电缆金属护层不接地端会出现较高的冲击过电压,或当系统短路事故电流流经电缆线芯时,其护层不接地端也会出现很高的工频感应过电压。上述过电压可能击穿电缆外护层绝缘,造成电缆金属护层多点接地故障,严重影响电力电缆正常运行甚至大幅减少电缆使用寿命。因此按照电力行业标准 DL/T401-2002《高压电力电缆选用导则》的规定须采用电缆护层保护器以限制电力电缆金属护层(或金属护套)上的感应电压和故障过电压。通常,为限制电力电缆金属护层上的感应电压和故障过电压,并避免在护层中形成环流,电缆金属护层一端直接接地,另一端则须通过保护器接地。如果线路较长,还应将电缆护层分三段(或三的倍数段)相互绝缘,分段处的护层交叉互联后通过保护器接地。为更好的适应市场的需求,方便用户现场安装使用,我公司开发了电缆接地箱,包括电缆护层直接接地箱、保护接地箱和交叉互联保护接地箱等几种形式的护层接地装置。装置采用密封设计,安装使用简便,外型小巧美观。目前,装置已广泛应用于全国各个电力系统,取得了良好的运行经验。 二、产品用途 装置连接于电缆护层与地之间。电缆护层直接接地箱,内部含有连接铜排、铜端子等,用于电缆护层的直接接地。 三、使用条件 1、环境温度-45℃~+55℃。 2、海拔不超过4500m;超出4500m可根据实际情况特制。 3、电源频率:58~62Hz(60Hz系统)、48~52Hz(50Hz系统);安装场所的空气中不应含化学腐蚀气体、爆炸性尘埃。 4、长期施加的工频电压不得超过保护器持续运行电压;对有间隙产品,安装点短时工频电压升高不得超过保护器额定电压。 四、箱体及安装尺寸 外箱尺寸:330x500 内箱尺寸:270x440 安装孔尺寸:320x340 M12 五、使用须知 1、电缆接地箱是保护电缆护层的专用装置,避免雷击及感应过电压对电缆护层的危害。

为什么高压单芯电缆要采用特殊的接地方式

为什么高压单芯电缆要采用特殊的接地方式? 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式。 这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铅包或金属屏蔽层外基本上没有磁链。这样,在铅包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铅包或金属屏蔽 层。 但是当电压超过35kV时,绝大多数采用单芯电缆供电,情况就不一样了。单芯电缆的导体线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铅包(或铝包)或金属屏蔽层,使它的两 端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,当线路发生短路故障、遭受操作过电压或雷电电压冲击时,电缆的金属屏蔽层上会形成很高的感应电压, 甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,严重情况会导致电缆的护套着火,因此单芯电缆不应两端接地。个别情况(如短电缆小于100M或轻载运行时) 方可将铝包或金属屏蔽层两端三相互联接地。 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题: (1)当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端就会出现很高的感应性冲击电压; (2)在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现电缆的金属护层多点接地,并在电缆的长度方向上形成 多处环流。 因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地--可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地--常用方式; 3.护层交叉互联--常用方式; 4.电缆换位,金属护套交叉互联--效果最好的接地方式; 5.护套两端接地--不常用,仅适用于极短电缆和小负载电缆线路。

设备和电缆接地要求工艺通则

电气车间工艺要求 设备和电缆接地要求 为了规范设备和电缆的接地,对于接地施工做出以下要求: 1.电气设备的接地螺母应焊接到船体永久结构或与船体相焊接的基座或支架上。接地点应不易受到机械损伤和油水浸渍。 2.电气设备的接地应采用专门的接地导体,一般采用镀锌接地螺母,不允许将接地线接在托架上。 3.设备端的接地应尽可能采用设备内部的铜质螺丝或接地汇流排,对于照明器具,若在设计时已考虑用电缆中的芯线(即E线或第三芯线)作为接地导体时,在保证可靠的电气连续性下,灯具附近可不设接地螺栓,而采用在分电箱内设集中接地汇流排的方式进行保护接地。对于墙壁开关,如开关只接一极,可利用开关的另一极的螺丝作为接地线的连接点,如开关没有多余的一极,可将接地线用专用的连接头绞接并包裹绝缘胶带。 4.凡具有电源插头的设备,应采用插头的接地极进行可靠的接地。 5.电缆接地是指电缆金属保护层的接地,一般接地的形式有以下两种: A.用电缆金属网编成辫子进行接地,严禁将电缆的金属网剪断绞接后接地。 B.用金属填料函的金属螺母压紧电缆金属网进行接地,一定要采用三个垫圈压紧金属网。 6.专用接地导体一般应采用多股黄绿软线,并在两端设有冷压接头,接地线截面积的选用和接地螺丝的尺寸大小应符合下表的要求。 7.接地线的长度要合适,并要求在最近点接地,以减短接地线的长度。 8.接地施工时要求所有的接地接触面应刮去油漆及锈斑,露出原质,并应光洁、平贴,以保证有良好的接触。 9.特殊设备接地,如测深仪、计程仪等接地时要利用底脚接地,应在设备底脚与支架(或基座)之间垫以厚度不小于0.5mm,大小略等于接触面的锡箔片。 10.电机的接地要采用外壳上的专用接地螺丝,或者将接线盒内的接地螺丝用接地线通过填料函引出接地,如果没有专用的接地螺丝,可在电机外壳的的适当处打孔攻丝接地,严禁使用接线盒螺丝和风扇罩壳螺丝接地。 11.特殊设备接地,如25000T的CPP系统,一定要采用金属填料函的金属螺母压紧电缆金属网进行接地。 12.舵机系统的接地只可在电缆的一端接地。 13.所有接地装置的紧固应牢靠,并均应设有平垫圈和弹簧垫圈或锁紧螺母,以防松动。 14.如果船东、船检有更高的接地要求,则按照新的要求施工。 15.以上各条接地要求请各施工人员遵照执行,各船头档长、单船责任人严格检验。 电气车间 1

单芯电缆接地

随着我国电网改造的深入,大量的架空线被电力电缆取代。电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。 电缆金属护套中间直接接地、两端经过电压保护器接地,是一端直接接地的引伸,可以把一端直接接地电缆的最大长度增加一倍,接线方式和原理与一端直接接地一样。 电缆线路很长时,即使采用金属护套中间接地,也会有很高的感应电压。这时,可以采用金属护套交叉互联。如图2所示。

电缆接地

1、内容 由于船舶是以金属船体作为接地点,所以船用电气设备的接地,对于人身安全和设备安全具有特别重要的意义。 本工艺规定了钢质船舶电气设备和电缆金属护套接地的要求和方法及其检验项目。 2、适用范围 本工艺适用于钢质船舶电气设备和电缆金属护套接地。 3、引用文件 引用CB/T船舶电缆敷设和电气设备安装附件、电缆贯通装置、电缆接地等标准。 4、一般要求 4.1接地应按照有关施工图样和技术文件的接地要求进行。 4.2接地导体应接到船体永久结构或船体相焊接的基座或支架上。接地导体应便于检查并加以保护,防止松动和受到机械损伤及油水浸渍。 4.3所有的接地接触面应处去油漆及锈斑,露出金属光泽,接触面应光洁平整,以保证良好接触。接地电阻应不大于0.02欧 4.4所有接地装置的紧固应牢靠,均应设有弹簧垫圈或锁紧螺母。 4.5接地柱螺栓的直径应不小于6mm。接地柱或接地板的导电能力,至少应相当于专用接地导体的导电能力,且有足够的机械强度。 4.6接地装置紧固后,应随即在接触面的四周涂以防腐层。 5、详细要求 5.1电气设备的保护接地 5.1.1工作电压超过50V的电气设备均应接地。 5.1.2工作电压不超过50V的电气设备,若安装在通讯导航等专用舱室及露天舱面上的电铃、蜂鸣器、电喇叭、电键等设备的外壳仍应接地。 5.1.3电气设备的保护接地一般应设有专用接地导体,接地导体应与设备接地装置进行连接。 5.1.4设备直接紧固在船体金属结构或紧固在与船体有可靠电气连接的支架或基座上时,可利用设备金属底角进行接地。设备底角与支架(或基座)之间垫以厚度不小于0.5mm、大小等于接触面得锡箔或镀锡铜片。接地结束后,接地脚周围应涂以防腐层。如设备带有接地保护螺丝,可在船体结构或设备基座上焊接接地镀锌丝柱或接地板,采用专用导体进行接地连接。 5.1.5具有电源插头的设备,应采用插头的接地极进行接地连接。 5.1.6对采用专用导体接地,导体材料应用表面镀锡的纯铜或导体良好的耐蚀金属制成的多股软线,并在两端设有接头。纯铜专用接地导体的截面积应按表1规定。采用其他材料时,导体的电导应不小于纯铜导体的电导。 表1 mm2 接地导体的形式 相关载流导体截面积S 铜接地导体最小截面积Q 电缆的接地导体 ≤16 Q=S,但不小于1.5 >16 Q=S/2,但不小于16 单独固定的接地导体 ≤2.5 Q=S,但不小于1.5 2.5~120 Q=S/2,但不小于4

高压电缆接地—同轴接地电缆的使用

高压电缆接地—同轴接地电缆的使用 1定义 同轴电缆也叫做同轴接地电缆。该同轴接地电缆包括内导体、绝缘层、外导体、外保护套;绝缘层采用交联聚乙烯材质,耐受温度高;外导体采包括内外相邻的第一层导体和第二层导体;外保护套采用阻燃交联聚乙烯材料,阻燃防爆,具有良好的化学稳定性、憎水性和密封性。使用时,同轴接地电缆的一端可以与高压电力电缆金属护层连接,另一端与接地保护装置连接,可将高压电力电的缆金属护层端的过电压导入接地保护装置从而有效地保护高压电力电缆的正常运行。一般来讲10kV的单芯电缆也是可以的,采用屏蔽的同轴电缆优点更明显。同轴电缆内外导体连接方式合理,方便,使用可靠.。结构上讲,这些是属于双铜芯电缆,外铜芯铜丝是屏蔽作用,内铜丝导电流。所有,这些10kV的同轴电缆的价格一般是普通10kV铜芯单芯电力电缆的双倍价格。 2型号 一般来讲同轴接地电缆电压等级为10kV;主要型号有VOV、YJOV和YOY三种型号,截面积从1×50~1×300mm2都有。正规的写法例如:YJOV-8.7/10-240/240。

(1)表示:YJ:交联聚乙稀绝缘;V:聚氯乙稀绝缘;Y:聚乙稀绝缘; (2)表示: O同轴电缆; (3)表示:PVC护套;V是聚氯乙稀护套,Y是氯乙稀护套 3使用范围 高压电缆,按照单回路、双回路甚至更多回路设计,如果单根的电缆长度越长,感应电势越大,没有保护装置的情况下最好不要超过50V,即50伏的电压。如果有保护装置,例如回流线、同轴电缆等,不应超过300V,如果超过,对超高压电缆外护套,其他动植物的安全,人的安全都是有一定影响的,对电缆的影响也是有的。同轴电缆的作用可见一斑。同轴接地电缆一般用于避雷器引线和防雷接地线,交联电缆线路护层绝缘保护装置的接地箱相连接线,因为雷电或浪涌电压对地泄放时间极短,就要求电缆需要具有低阻抗,同轴接地电缆对于瞬态具有低阻抗特性。 VOV(YOV、YJOV)一般用于高压电缆交叉互联的,用来减小金属护套的感应电势的。用于110kV~220kV交联电缆线路护层绝

35kV及以下电压等级的电力电缆接地方式

35kV及以下电压等级的电力电缆接地方式 35kV及以下电压等级的电力电缆接地方式 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。gwsd_re 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不

接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器

01单芯电缆线路接地系统的 处理及感应电势计算

单芯电缆线路接地系统的处理及感应电势计算 1 概述 一般情况下,高压电力电缆和截面较大的中压电力电缆常常制造成单芯结构。在单芯电缆线路的敷设过程中,常常要涉及到电缆的接地方式及电缆金属屏蔽的感应电势计算。 单芯电缆的导线与金属屏蔽的关系,可看作一个变压器的初级绕组与次级绕组。当电缆的导线通过交流电流时,其周围产生的一部分磁力线将与屏蔽层铰链,使屏蔽层产生感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷击冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。如果屏蔽两端同时接地使屏蔽线路形成闭合通路,屏蔽中将产生环形电流,电缆正常运行时,屏蔽上的环流与导体的负荷电流基本上为同一数量级,将产生很大的环流损耗,使电缆发热,影响电缆的载流量,减短电缆的使用寿命。因此,电缆屏蔽应可靠、合理的接地,电缆外护套应有良好的绝缘。 2 几种常用的接地方式 以下是单芯电缆线路接地线路的几种常用接地方式: 2.1 屏蔽一端直接接地,另一端通过护层保护接地 当线路长度大约在500~700m及以下时,屏蔽层可采用一端直接接地(电缆终端位置接地),另一端通过护层保护器接地。这种接地方式还

须安装一条沿电缆线路平行敷设的回流线,回流线两端接地。敷设回流线时应使它与中间一相电缆的距离为0.7s(s为相邻电缆间的距离),并在线路一半处换位。见图1: 图1

1、电缆 2、终端 3、电缆金属屏蔽(护套)接地线 4、护层保护器 5、接地保护箱 6、回流线 7、接地箱 2.2 屏蔽中点接地 当线路长度大约在1000~1400m时,须采用中点接地方式。 在线路的中间位置,将屏蔽直接接地,电缆两端的终端头的屏蔽通过护层保护器接地。中间接地点一般需安装一个直通接头。见图2:

高压电缆接地保护装置的优化设计

高压电缆接地保护装置的优化设计 摘要:近年来,江苏地区110kV及以上超高压电缆应用急剧增加,电缆事故数量也在逐年上升。部分设计与施工单位对高压电缆接地保护装臵参数选择不合理、设备的选择随意性较大,尤其是用于保护电缆安全稳定运行的接地系统,由于接地电阻、保护器等选型没有统一标准,易发生保护器失效或损坏等不正常的现象,引发高压电缆故障。 文章分析了电缆护层保护器的不同接线方式对电缆外护套和保护器的影响,研究了电缆护层保护器的额定电压、起始动作电压(参考电压)、最大持续运行电压、工频耐受电压、通流容量、残压、电压比、荷电率、保护比等主要技术参数与电缆保护之间的关系,提出了电缆护层过电压保护器的优化设计方案,并通过工程实践验证。现场应用表明该电缆附件参数设计以及接线方式选择方案能够满足单芯电力电缆线路金属套过电压保护要求,有效减少了单芯电缆金属护层保护接地故障率。 关键词:电缆护层保护器接线方式保护器参数优化设计 1.前言 近年来,江苏地区110kV及以上超高压电缆应用急剧增加,电缆事故数量也在逐年上升。部分设计与施工单位对高压电缆接地保护装臵(SVL)参数选择不合理、设备的选择随意性较大,尤其是用于保护电缆安全稳定运行的接地系统,由于接线方式、接地电阻、保护器参数等选型没有统一标准,易发生保护器失效或损坏等不正常的现象,引发高压电缆故障。 因此需要研究不同接线方式对SVL和电缆的影响,研究电缆护层保护器的额定电压、起始动作电压(参考电压)、最大持续运行电压、工频耐受电压、通流容量、残压、电压比、荷电率、保护比等主要技术参数与电缆保护之间的关系,规范SVL的设计。 2.SVL的接线方式选择 江苏无锡某220KV线路交叉互联接SVL,基本参数如下,计算电缆金属护层的感应电压。 电缆导体正常工作电流I=680 A

高压电缆金属护套分段、接地方式及应用

高压电缆金属护套分段、接地方式及应用 [摘要]包有金属护套的单芯或每根芯线包有金属护套的三芯高压电缆,其金属护套上都会产生感应电压,当电压超过一定限值时,将会影响电缆的安全运行。一般设计会根据电缆长度选择适当的接地方式,或者将电缆金属护套在电气上进行分段,以此降低护套感应电压。本文通过汇集各文献所述观点和作者多年电缆设计的经验,并结合电缆实际运行情况,分析各种金属护套接地方式和不同护套分段形式对于降低护套感应电压的作用,以及在实际工程中的应用,以期能够为高压电缆线路设计提供有用的参考和经验。 【关键词】电缆;金属护套;感应电压;分段;接地;应用 当高压电缆为单芯并包有金属护套或者是每根芯线上有金属护套的三芯电缆时,这种结构的电缆可以被看作是延长的变压器,导线作为一次绕组,金属护套作为二次绕组,一般高压电缆均为这种结构。这样在以交变电流或三相电流运行时产生交变磁场,在金属护套上产生感应电势,该电势值与导线电流、频率、导线和金属护套间的互感量、电缆长度,直接成正比。当金属护套上的感应电压达到一定值时将危及人身安全。电力生产安全规程规定:电气设备非带电部分的金属外壳都要接地。因此金属护套要采取适当的接地措施。本文以下将介绍各种护套分段及接地形式和应用条件。 一、两端直接接地 此接地方式也叫做全接地,就是将电缆金属护套在两端终端头处分别并联接地,这样护套内就产生环流。在35kV以上高压电缆中若采用此种接地形式后,产生的环流可占到电缆工作电流的50%左右,甚至更高至80%以上。从而由于环流的存在造成附加损耗,使护套发热,降低电缆的输送容量。因此110kV及以上高压电缆金属护套较少采用这种接地方式,一般应用在电缆利用小时低,裕度大,长度仅几十米的短35kV以上高压电缆或者是35kV及以下电缆线路,由于其阻抗值不像35kV以上电缆那么小,环流尚不过分显著,只占工作电流的10%以下,尚可以接受。 在电缆采用了此种接地方式后一般以接触式三角形敷设,这样可以避免过分的护套损耗,因为这种排列是电气上平衡的方式,该方式下护套的阻抗及损耗在所有三相中是相等的。另外其要求接地电阻应不大于2Ω。 二、单点直接接地 1、首端接地 首端接地是单点接地方式的一种,就是将电缆线路一端的金属护套互联后直接接地,另一端经互层保护器后互联接地。这样在正常运行条件下金属护套和大地之间形不成回路,不会形成环流,但是对于相同长度的电缆线路来说,首端接

110KV单芯电缆直接接地与保护接地的区别

110KV单芯电缆直接接地与保护接地的区别 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯

时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位臵采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。①如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1、护层一端直接接地,另一端通过护层保护接地----可采用方式; 2、护层中点直接接地,两端屏蔽通过护层保护接地---常用方式; 3、护层交叉互联----常用方式; 4、电缆换位,金属护套交叉互联---效果最好的接地方式; 5、护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

超高压电缆接地方式

超高压电缆的接地方式选择 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交*互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,

关于同轴接地电缆的说明

关于同轴接地电缆的说明 35kV大截面电力电缆和66kV、110kV、220kv及以上电压等级的电力电缆均为单芯电缆,电缆金属护层一端三相互联并接地,另一端不接地,当雷电波或内部过电压沿电缆线芯流动时,电缆金属护层不接地端会出现较高的冲击过电压,或当系统短路事故电流流经电缆线芯时,其护层不接地端也会出现很高的工频感应过电压。上述过电压可能击穿电缆外护层绝缘,造成电缆金属护层多点接地故障,严重影响电力电缆正常运行甚至大幅减少电缆使用寿命。因此按照电力行业标准DL/T401-2002《高压电力电缆选用导则》的规定须采用电缆护层保护器以限制电力电缆金属护层(或金属护套)上的感应电压和故障过电压。通常,为限制电力电缆金属护层上的感应电压和故障过电压,并避免在护层中形成环流,电缆金属护层一端直接接地,另一端则须通过保护器接地。如果线路较长,还应将电缆护层分三段(或三的倍数段)相互绝缘,分段处的护层交叉互联后通过保护器接地。为更好的适应市场的需求,方便用户现场安装使用,我公司开发了电缆接地箱,包括电缆护层直接接地箱、保护接地箱和交叉互联保护接地箱等三种形式的护层接地装置。装置采用密封设计,安装使用简便,外型小巧美观。目前,装置已广泛应用于全国各个电力系统,取得了良好的运行经验。 概述35kV大截面电力电缆和66kV、110kV及以上电压等级的电力电缆均为单芯电缆,电缆金属护层一端三相互联并接地,另一端不接地,当雷电波或内部过电压沿电缆线芯流动时,电缆金属护层不接地端会出现较高的冲击过电压,或当系统短路事故电流流经电缆线芯时,其护层不接地端也会出现很高的工频感应过电压。上述过电压可能击穿电缆外护层绝缘,造成电缆金属护层多点接地故障,严重影响电力电缆正常运行甚至大幅减少电缆使用寿命。因此按照电力行业标准DL/T401-2002《高压电力电缆选用导则》的规定须采用电缆护层保护器以限制电力电缆金属护层(或金属护套)上的感应电压和故障过电压。通常,为限制电力电缆金属护层上的感应电压和故障过电压,并避免在护层中形成环流,电缆金属护层一端直接接地,另一端则须通过保护器接地。如果线路较长,还应将电缆护层分三段(或三的倍数段)相互绝缘,分段处的护层交叉互联后通过保护器接地。为更好的适应市场的需求,方便用户现场安装使用,我公司开发了电缆接地箱,包括电缆护层直接接地箱、保护接地箱和交叉互联保护接地箱等几种形式的护层接地装置。装置采用密封设计,安装使用简便,外型小巧美观。目前,装置已广泛应用于全国各个电力系统,取得了良好的运行经验。 二、产品用途装置连接于电缆护层与地之间。电缆护层直接接地箱,内部含有连接铜排、铜端子等,用于电缆护层的直接接地。电缆护层保护接地箱和电缆护层交叉互联接地箱内含电缆护层保护器、连接铜排、铜端子等,用于电缆护层的保护接地。保护器采用ZnO压敏电阻作为保护元件,无串联间隙,保护特性好,具有优良的非线性伏安特性曲线。既具有瓷套式金属氧化物避雷器的优点,还具有电气绝缘性能好、介电强度高、抗漏痕、抗电蚀、耐热、耐寒、耐老化、防爆等优点及良好的化学稳定性、憎水性、密封性。图三:接地箱接线原理图三、产品型号说明电缆护层接地箱电缆接地箱类别:ZJJD-电缆护层直接地地箱BHJD-电缆护层保护接地箱JHJD-电缆护层交叉互联保护接地箱四、保护器性能参数表1、电缆护层保护器电气特性表特性型号系统额定电压工频耐压/时间kV/s 10kA雷电冲击电流下的残压直流U1mA 参考电压(有效值) 2ms方波通流容量0.75U1mA 下的泄漏电流kV(有效值) ≤kV ≥kV A ≤μA LHQ-6 6 2/2 4.6 2.2 200 50 LHQ-10 10 3/2 6.5 3.25 200 50 LHQ-27.5 27.5 5/4 7.5 4 600 50 LHQ-35 35 5/4 13 5.5 400 50 LHQ-66 66 5/4 15 5.5 600 50 LHQ-110(Ⅰ) 110 5/4 15 5.5 600 50 LHQ-110(Ⅱ) 110 10/4 30 11 600 50 LHQ-220 220 6/3 35 17 800 50 LHQ-500 500 7.5/4 18* 8.3 800 50 注:标*为雷电冲击电流16kA下的残压。五、使用条件1、环境温度-45℃~+55℃;2、海拔不超过4500m;超出4500m可根据实际情况特制;3、电源频率:58~62Hz(60Hz系统)、48~52Hz(50Hz系统);安装场所的空气中不应含化学腐蚀气体、爆炸性尘埃;4、长期施加的工频电压不得超过保护器持续运行电压;对有间隙产品,安装点短时工频电压升高不得超过保护器额定电压;5、长期使用于异常条件,保护器需特别制作,定货时应说明.

10kV户外电缆分支箱技术说明书

10kV户外电缆分支箱技术说明书 浙江红苏电气科技有限责任公司 二〇一八年六月

1. 总则 1.1本技术规格书只适用于本次10kV电缆分支箱的的采购,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本次电缆分支箱设备表见附件1。 1.3卖方所提供的组件或附件如需向第三方外购时, 卖方应对质量负责,并提供相应的出厂和验收证明及相关技术文件。 1.4卖方应有有效质量保证体系。 2. 引用标准 提供的产品应满足本技术说明书规定的技术参数和要求以及如下的 3. 技术要求

3.1环境条件 3.2.1周围空气温度 最高温度: +40 最低温度: 0C -30 最大日温差: 0C 25 日照强度:0C 0.1 3.2.2海拔高度 W/cm 2(风速0.5m/s ) 3.2.3 最大风速 1300 m 35 m/s 3.2.4 环境相对湿度 (不超过700Pa) 日平均值: 95 月平均值: % 90 3.2.5 地震烈度: % 8 水平加速度: 度 0.3 垂直加速度: g 0.15 3.2.6 污秽等级: g E 3.2.7 覆冰厚度: 级 10 3.2.8 安装位置:户外 mm 3.2.9使用环境场所:(无火灾、爆炸,有轻微腐蚀性气体的场所)马路上、绿化带,要求倾斜度不大于3°。 3.3 系统运行条件 3.3.1额定工作电压:10kV 3.3.2最高工作电压:12kV 3.3.3额定频率:50Hz 3.4 主要技术参数 本次采购的电缆分支箱,其技术参数除应满足系统条件外,还应满足本技术说明书以下要求:

3.5 技术要求 3.5.1 外壳 1)电缆分支箱外壳材料采用覆铝锌板,其厚度≥2mm,表面覆盖层为静电喷涂而成,涂层漆膜厚度不少于150μm并均匀一致,至少15年不退色,颜色为军绿色。 2)外壳的防护等级不低于IP44。外壳应有足够的机械强度,在起吊、运输和安装时不应变形或损伤。外壳具有防火、防尘、防水、防潮、耐腐蚀、防盐雾、抗污染等特点,适合各种恶劣的环境。 3.5.2箱体 1)箱体的结构应满足户外全天候运行条件,保证工作人员的安全,且便于运行、维护、检查、监视、检修和试验。严禁将只能用于户内使用的环网开关柜装于箱体内,用于户外使用。 2)电缆分支箱箱体尺寸外型尺寸(宽X深X高)要求一致。尺寸不小于640×600×1000mm。箱体底部有电缆进出口,每回线路各相必须有固定的电缆支架,有防小动物及其他固体异物进入措施。 3)电缆分支箱要求全部带防雨檐。电缆分支箱锁配置带防雨罩的插销锁。箱体的门应具有限位和防回夹功能,门的设计尺寸应与所装用的设备尺寸相配合。 4)箱体外有明显的铭牌标识、运行标志和安全标志。厂家名称只能出现在产品铭牌中。标识不受气候影响和具有防腐蚀的功能。 5)箱体应设足够的自然通风口和隔热措施,以保证在一般周围空气温度下运行时,所有电器设备的温度不超过其最大允许温度。 3.5.4电缆终端头 电缆分支箱进出线电缆终端头全部选用冷缩配套的全密封硅橡胶插头,插头连接方式必须紧密,不能有缝隙,达到全封闭结构,不可带电插拔,但可拆卸。每套电缆头都应配置电缆头接地线,电缆的接线鼻子均为全铜锡锌的线鼻子。 3.5.5接地 1)电缆分支箱的接地系统应符合GB 50065-2011《交流电气装置的接地设计规范》的要求。

关于高压电缆铠装接地论文

关于电缆的铠装接地论文 京沪高铁四电集成电气化二工区第二作业队管段共有高压电缆42组,而高压电缆铠装接地按设计都是用接地铜牌和150mm2的接地电缆组成。但是高压电缆铠装接地又分好多种情况,有在线路上接综合接地端子的,有在格构式钢柱上接桥下综合接地端子的,还有高压电缆根据长短选择是否单边铠装接地。但由于施工地形复杂,电缆价格高,导致接地电缆往往被盗窃,盗窃后造成的后果很严重,会导致高压电缆未铠装接地造成高压电缆头爆炸引起行车事故。下边对高压电缆铠装接地所用的接地铜牌和150mm2的接地电缆是否能改用价格低的材料,防止被盗窃而破坏正常的行车安全展开我个人的论述观点。 首先来具体分析高压电缆铠装接地的电路原理及铠装接地的作用。高压电缆的组成:有高压铜芯,绝缘层,铜丝,绝缘层,铝丝,屏蔽层,最后时绝缘层。高压电缆的接地最要是在加装电缆头时引出的小辫子接线端,然后接在接地铜牌上。接地对电缆的重要性分析:当高压电缆在受到高压电的冲击时,难免会和电缆层产生很强的电势差,导致电缆接地形成较大的电流难也释放,产生很大的热量,导致电缆头爆炸,电缆烧坏。所以高压电缆的铠装接地多施工工艺是非常要求高的。 在京沪高铁电气化高压电缆施工中,我们采取的铠装接地工艺是有150mm的电缆和接地铜牌相接的,接地效果十分完好,且电缆小于200米的情况下我们采取的是单边接地,另外一端有绝缘带把接

地小辫子密封完好。这样的电缆铠装接地对电缆的保护作用完全满足设计要求,也能保证完全的供电,但是电缆的价格昂贵,我们在施工完毕后没几天接地电缆就被盗了,而且盗的地方很多,带着这个问题的我开始假设以下要论述的接地方式。 我们用设计一种接地铝牌去取代原有的接地铜牌,用铝绞线和PVC塑料管去取代原有的150mm的接地电缆,然后把铜接线线鼻子换成铝线鼻子。这样在电气连接和化学性连接上都是合理的。 下面来分析这种连接的安全性和可靠性。首先我们不去计算电缆究竟会产生多大的感应放电电流,但是原有的接地铜牌是和电缆终端托架连在一起的,而电缆终端托架又是和格构式钢柱连在一起的,格构式钢柱又是经过三级接地极接地的,比起我们的论述改进,我们通过用铝接地牌直接连在原来装铜接地牌的地方,然后用套好PVC 塑料管的铝绞线直接压好铝线鼻子连在接地铝牌上,然后再埋入地下,连到综合接地端子上。PVC管固定在格构式钢柱上,露出地面的高度约为2.5米。通过比对,如果采用我们假设的方式接地不可靠,会电击到人,那么设计上用的接地方式也会电击到人,因为他们的共同点都是把接地牌直接安装在电缆终端托架上的,如果说铝绞线在露出地面上的部分会电击人,那么我们采取用绝缘的PVC塑料管套住的,而且露出地面2.5米,而且安装设计,我们在电缆所接的格构式钢柱基础边有砌有高2.5米的防护墙,且在钢柱上挂有“高压危险,严禁攀登”的牌子,人很难接触到钢柱的,所以我认为这样接地安全性和可靠性都没问题。

相关主题
文本预览
相关文档 最新文档