当前位置:文档之家› 关于高速铁路线型控制问题

关于高速铁路线型控制问题

关于高速铁路线型控制问题
关于高速铁路线型控制问题

文献综述

关于高速铁路线型控制问题

前言

高速铁路,因速度快,对线路线型,要求很高。速度就是力量。列车在高速运行中,要求铁轨铺设,不管是水平方向还是纵向,都必须非常顺畅,直线,必须笔直;曲线,必须按照设计给予的缓和曲线引导,很圆滑的进入圆曲线,强大的离心力,由外轨超高来消除;纵向,斜坡坡度必须一致,坡度的改变,要通过设计规定的巨大曲率半径竖曲线缓慢过渡。中间任何微小误差和改变,都会造成强大侧向分力,使列车左右摇摆和上下颠簸。列车的左右摇摆和上下颠簸是有限度的,超过某种限度,从小的说,会影响到列车的舒适度,从大的方面说,有可能造成列车脱轨,掉道,甚至侧翻等安全事故。高速铁路线路线型控制,主要靠测量人员反复精确测量和其他施工人员的规范操作来实现。可以说测量人员的工作质量,直接关系到高速铁路的成败。

正文

高速铁路,因速度快,要求精度高,在施工测量中应处理好以下几项技术问题。

一、提高投影带边界控制点测量精度。

地球是个球体,地球表面是个曲面;但是,测量人员在施工测量中,都是把某小范围地表投影到另一水平面上,然后按平面直角坐标进行计算。地表经过投影,会产生投影误差;投影带中心部位,投影误差最小,边界地区投影误差最大;为保证高速铁路线型控制精度,就必须提高投影带边界地带CPI,CPII控制点的测量精度,进一步满足CPIII的布设精度,最终保证线路铺轨的精度要求。特别是隧道工程和桥梁工程,该两项工程,轨道平面线形调整幅度小,可以提高该地区控制点测量精度,对提高工程质量具有重要意义。

提高控制点精度的方法,一般有:

1、进口和出口同时观测,提高其相对精度。

2、增加同时观测控制点个数,延长观测时间,提高其绝对精度。

3、有必要经精度观测两次,取平均值。

4、加大洞口加密点间距离,一般不小于300m提高隧道洞内导线起始边精度等。

二、提高隧道洞口加密点测量精度:

隧道工程,洞口往往地势狭小,两边高山耸立,给测量工作带来极大困难。他别是2000m 以上隧道中间斜井,遇到这种情况,应认真对待,想方设法,提高洞口加密点测量精度:

1. 隧道进口和出口附近加密点同时观测,提高隧道洞口加密点相对精度。

2. 首先在洞口较宽阔地带,选择地基稳定,不受施工影响的地点选

择一点;然后在山势下坡、山腰或山顶距洞口点大于300m处再选择另一点;如该点选择有困难,一定要请示领导,在合适的地方,作人造平台,保证控制点精度和洞内导线起始边精度。

3. 在洞口加密点GPS观测时,若洞口观测条件不好,应适当增加CP I.CPII控制点个数,并适当延长观测时间,保证加密点测量精度。

4. 洞口加密点GPS观测完后,应尽快用全站仪测量两加密点与第三点之间的水平角值和两边的水平距离,测量精度应不低于以后洞内导线测量精度;该第三点,作为检查点。防止洞口加密点位移。第三点点位选择应于洞口加密点同时选择,该点至洞口点的距离不应小于200m.

京福客专安徽段站前五标方坑隧道,隧道长761m,隧道出洞后联测误差△y为38mm,

该隧道属于中小隧道,38mm误差值有些偏大,其主要原因就是:洞口地势狭窄,加密点精度低进洞起始边方位角误差大所至。三、处理好大长隧道测量精度等问题:

我国高速铁路已向西部延伸,西部山大,隧道也长,有的达20多公里;这么长的隧道,要保证高速铁路线型精度要求,对测量人员来讲,是一个很大的技术难题。

根据高速铁路工程测量规范,隧道长19≦L﹤20公里,洞内外综合贯通中误差允许180mm,贯通限差允许360mm.这么大的贯通误差,在隧道内,怎么调整,也不可能满足高速铁路的线型控制要求。本人认为,大长隧道,为保证工期,中间必然要增设斜井,我们

应充分利用斜井的作用,把大长隧道割断,缩短隧道长度。设计单位应与现场施工人员联系,收集隧道贯通数据;设计、施工、测量各自都采取一些措施,把大长隧道斜井位置尽可能控制在合理范围内,即可保证大长隧道每段贯通精度都能满足高速铁路线型控制精度要求。随着国内外高速铁路及客运专线的大量兴建,高速铁路无砟轨道大号码板式道岔在铁路工程上应用数量越来越多。高速铁路无砟轨道大号码板式道岔由于道岔组件重、外形尺寸大、施工精度要求高,变形控制、铺设、调整、施工难度大。高速板式道岔的调整精度的高低,关系到铁路道岔的使用年限、运行平稳性和安全性,对于铁路运营过程中道岔的使用具有十分重要的现实意义。

2.高速道岔结构特点

高速铁路无砟轨道大号码板式道岔系德国设计,与国产道岔存在以下不同:

2.1转辙器结构

转辙器是带有动态轨距优化(fakop)的转辙器。这种转辙器与普通线形相比有一定的几何线形变化,在尖轨与基本轨相贴合处,主线基本轨也不再是一条直线,而是一种特殊的轨道曲线,直基本轨向外弯曲加宽轨距,最大轨距加宽为15 mm。

fakop转辙器在道岔的尖轨部件区域使车轮和直基本轨之间接触性能和另一侧类似,车轮在直基本轨上也以比在线路上较小的直径滚动,此时轮对的两个轮子以大约相同的直径滚动,从而就防止了轮对发生侧转的趋势就降低了轮缘与尖轨的磨耗。同时fakop结构的转辙器基本轨向外弯曲加宽轨距,尖轨厚度可迅速增加,提早承受轮重,能够大大地延长尖轨的使用寿命。

2.2可动心辙叉结构

辙叉上增加液压下拉装置,非常有效的达到了心轨防跳的效果,同时翼轨部分均有加高,加强了对心轨的保护。

3.道岔调整控制

3.1道岔测量

具备cpiii控制网坐标数据和线路设计数据,线路设计数据包括平曲线、竖曲线、超高、道岔关键点里程及坐标,收集道岔类型、曲股线型等设计数据;注意道岔测量特殊点:尖轨尖端藏尖、心轨尖端藏尖、翼轨加高等承轨台处。

将cpiii坐标数据导入全站仪,道岔相关线性要素输入轨检小车。采用轨检小车测量道岔轨道线性,直向和曲向同时测量。

每次测量时全站仪依据cpш基准测量网按自由设站法在轨道中线位置建立空间坐标体系,轨检小车置于两股道上,对每对扣件螺栓对应的轨道位置进行逐点测量,为保证测量数据准确性,全站仪距离轨检小车范围宜为5~80m,两次设站重复测量不应少于5点,重复测量区应避开转辙器及辙岔区,同时轨检小车的主轴应始终保持在一个方向,通常是直向的直尖轨侧和曲向的曲尖轨侧。

道岔直向轨道线性测量。将道岔尖轨、心轨转至直向位置并锁闭。轨检小车使用道岔直向轨道线性设计完成道岔直向线性测量。

道岔曲向轨道线性测量。将道岔尖轨、心轨转至侧向位置并锁闭。轨检小车使用道岔侧向轨道线性设计完成道岔曲向线性测量。

测量完成后,通过轨检小车系统可直接得到单独道岔直向、曲向线性数据,每个数据

可直接显示轨道的绝对高程、方向、轨距、水平以及30m、150m的方向短长波和高低短长波。

3.2测量数据分析

道岔精调数据分析要根据采集的道岔前、后段正线数据一起分析。道岔数据报表中平面轨以内侧轨(通过活动心轨那一侧轨)为基准轨,高程以外侧轨(道岔外侧运行轨)为基准轨。

道岔数据分析利用精调软件分析,模拟出道岔调整量分析;通过报表生成csv文件导入eecel进行分析和调整。

由于输入轨检小车系统的轨道设计线性没有反应道岔转辙器fakop区轨距加宽值,因此,轨检小车测量显示结果是全部超差。该段线路轨距需要对比设计值与实测值之差单独评估。

直向、曲向线性数据应对照评估,当直向线性良好,对应的曲向线性有超差时,应作对照分析。若不是在同一弹性基板位置,应该不合格评估,在同一承轨台位置,则需要综合直向、曲向的方向偏差,以优先直向兼顾曲向的原则酌情判定是否合格。

道岔辙岔区域结构特殊位置,起轨道轨距、方向应以优先直向兼顾曲向的原则单独评估。

3.3道岔工务调整

道岔线型横向、轨距、方向的调整量计算应遵循“先保证直股,再兼顾曲股;转辙器及辙岔区少动,两端线路顺接”的原则。

第一阶段:除调整直基本轨方向外,不需要计算量调整清单。

1. 对调整量清单,将道岔尖轨、心轨转到直向位置,优先调整道岔基本轨的岔前缝及与导轨相连的位置,为道岔转辙器调整确定基本方向。

2. 沿道岔直基本轨外侧在转辙器全长范围张拉弦线,使用钢板尺检查扣件螺栓处弦线距fakop区拉槽的距离,对偏差大于1㎜的点通过更换偏心锥的方式予以调整。

3. 对照设计,用支锯尺检查曲基本轨与直基本轨间距,对偏差大于1㎜的点通过更换偏心锥的方式调整曲基本轨轨向。

4. 用塞尺检查曲尖轨与直基本轨、直尖轨与曲基本轨间隔铁间隙,对间隙大于1㎜的点进行调整,调整方法:首先调整两尖轨尖端平齐,其次是辙岔跟段以远尖轨外侧与弹性基板挡肩密帖,调整时可在尖轨内侧与弹性基板挡肩间加入间隙片,但间隙片不得加在尖轨外侧与弹性基板挡肩之间。检查尖轨限位器两侧差值,不得大于0.5mm。

5. 用轨距尺检查转辙器区段直向轨距,对偏差超过1㎜的点通过跟换偏心锥的方式调整曲基本轨及直尖轨轨向。

6. 根据调整量清单完成直基本轨后导轨的方向调整,其控制方法是先检查并记录调整位置的直向,再通过控制轨距变化调整直基本轨方向。

7. 一直向轨距控制完成对尖轨后导轨方向的调整,以支距控制完成对曲向尖轨后导轨轨向的调整,以曲向轨距控制完成对曲向基本轨后导轨方向的调整。

8. 辙岔区原则上不做调整,这在调整量计算时应当考虑。

9. 直向调整完成后,将道岔尖轨、心轨转到曲向位置。

10. 直向调整完成后,通过轨距检查核对转辙器区段轨道线型质量,通常情况下直向调整到位,轨距值偏差不会超过设计范围。

第二阶段精调:对照调整量清单,逐一完成对轨距、方向超差点的调整。

1. 对照调整量清单,按直接更换偏心锥的方式完成拟定的轨距、轨向超差点的调整。

2. 每调整完成一次,用轨检小车复测道岔轨道线型数据,重新评估和计算线型调整量,再重新调整和复测,重复以上过程直到评估结果显示道岔轨距、轨向合格。

3. 在道岔轨距、方向调整完成后,依据新的道岔线型数据计算道岔高度、水平、高低调整

量,现场调整时仍按照“先直向,后曲向”分别调整,同样是一个调整、复测、再评估、再调整、再复测的过程,直到轨道线型数据合格,调整道岔的高度、水平、高低的同时,须兼顾调整道岔方向、轨距等新出现的超差点。

4. 高程调整时,以尖轨侧为基准轨,对照调整量清单直接更换调高垫板,以水平变化值控制调整量,之后用电子水准仪复测调整效果,不合格处重复调整及复测,再以水平控制另一钢轨高程调整。

5. 调整曲向高程时,道岔直向与曲向高程在转辙器区和辙岔区时一致,在辙岔区则以直向高程控制曲向高程,导轨段可自由调整。通过3~4次的反复调整,即可使道岔的轨道线型测量数据评估合格。

参考文献

[1].《中国高铁时代的新生活》,作者:李康平,出版社:中国铁道出版社。

[2].《高铁时代下的城市交通规划》,作者:戴帅,程颖,盛志前,出版社:中国建筑工业出版社。

[3].《工作的开始——高速铁路施工新技术》,作者:李向国等,出版社:机械工业出版社。

[4].《高速铁路技术》,作者:李向国,出版社:机械工业出版社。

[5].《高速铁路无砟轨道路基设计原理》,作者:胡一峰,李怒放,出版社:中国铁道出版社。

[6].《高速铁路电气化工程》,作者:李群湛,连级三,高仕斌,出版社:西南交通大学出版社。

[7].《高速铁路桥梁施工技术与装备》,作者:张晓炜,智小慧,出版社:华中科技大学出版社。

[8].《高速铁路运营组织》,作者:赵鹏,出版社:中国铁道出版社。

[9].《高速铁路轨道施工与维护》,作者:文妮,出版社:西南交通大学出版社。

[10].《高速铁路高性能混凝土应用管理技术》,作者:赵国堂,李化建,出版社:中国铁道出版社。

[11].《京沪高速铁路系统优化研究》,作者:张曙光,出版社:中国铁道出版社。

高速铁路旅客列车开行方案大纲

高速铁路旅客列车开行方案大纲 第一章绪论(第五周写完,第六周周一交) 1.1选题背景 1.2选题意义 1.3国内外高速铁路开行方案研究现状 1.3.1国内高速铁路开行方案研究现状 1.3.2国外高速铁路开行方案研究现状 1.4 论文的主要研究内容和思路 1.4.1 论文的主要研究内容 1.4.2 论文的主要研究思路 第二章国外高速铁路开行方案优缺点分析(第六周写完,第七周周一交) 2.1 德国高速铁路开行方案分析 2.2 法国高速铁路开行方案分析 2.3 日本高速铁路开行方案分析 2.4 各国开行方案优缺点总结 第三章高速铁路旅客列车开行方案影响因素分析(第七周写完,第八周周一交)3.1 旅客列车开行方案的定义 3.2 旅客列车开行方案的设计原则 3.3 旅客列车开行方案影响因素分析 3.3.1 高速铁路运输组织模式 3.3.2 高速铁路客流量 3.3.3高速铁路旅客出行费用 3.3.4 高速铁路点线能力和列车编成 3.3.5 铁路部门收益 第四章开行方案模型的建立(第八周写完,第九周周一交) 4.1旅客列车开行方案相关条件假设 4.2旅客列车类型的确定 4.3旅客列车开行数量的确定 4.4 停站方案的确定 第五章算法分析(第九周写完,第十周周一交) 5.1 路网结构图的构造与简化 5.2 旅客列车开行方案模型的简化 5.3 旅客列车开行方案的求解 5.4 计算机编程算法分析 总结(余下部分,第十周写完,第十一周周一交) 致谢 参考文献 附录 5.4最新最完整的论文,翻译的论文和原版的论文,日志和指导记要,自查表,PPT(5-10分钟)题目,姓名,指导老师,(5分钟内容,大纲为主,10张PPT左右)28正文,32标题(字号)

高速铁路道控制网

高速铁路轨道控制网 客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。把客运专线铁路精密工程测量控制网简称“精测网”。 客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。 一、客运专线精测网特点 1.传统的铁路工程测量方法 初测:初测导线、初测水准; 定测:交点、直线、曲线控制桩(五大桩); 线下程施工测量:以定测控制作为施工测量基准; 铺轨测量:穿线法、弦线支距法或偏角法测量。 2传统的铁路测量方法的缺点 (l)平而坐标系投影误差大; (2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线; (3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复; (4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改; (5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。 由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点 (1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一; (2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则; (3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系; (4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式; (5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级; (6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。 二、客运专线精测网的建立 l测量基本工作流程

高速铁路安全常识

高速铁路安全常识 铁路线上的路外安全,与社会公众密切相关。很多事实证明,发生路外伤亡事故,主要原因是行人在铁路线路上行走、坐卧、横过线路、穿越铁路站场、爬车、钻车、跳车,行人、机动车辆抢过铁路道口以及自杀等。铁路有明文规定,铁路桥梁和铁路隧道是禁止一切行人通过的。 在享受高速铁路给我们带来出行更方便、更快捷、更实惠的同时,更要关注高速铁路的安全。因为高速铁路列车速度快,因此我们在铁路周边生活或经过铁路时必须严格遵守相关安全规定,避免给铁路运输和我们自身人身安全带来严重的后果,我们应该做到以下几个严禁: 一、严禁行走、坐卧或在铁路线上跨越 速度快是动车组列车的一大特点,动车组列车运行时,每秒达到70 米。由于惯性作用,刹车之后还要滑行1200 米。而人如果行走在铁路中间的道心上,需要离开道心到道肩这一简单的动作,从反应到完成要2-3 秒的时间;如果横穿、跨越一条单线铁路要3-4 秒的时间,况且现在高速铁路均为双线双向铁路。因此,行走、跨越铁路时即便在200-300 米人的视线范围内发现火车也难于幸免,更不用说有时会听不到火车的声音,铁路弯道、路树遮挡等原因,看不见行驶的火车。另外火车经过时,会掀起8-10 级翰旋大风,行人在铁路边2-3 米的范围内可能被风吹倒吸入车轮。根据已通车的高速铁路有关数据显示,行走、跨越铁路发生人身伤亡事故的概率高达92.3%。在通过铁路道口时,行人和车辆违反有关通行规定,撞、钻、爬、越道口栏杆(栏门),也是发生人身伤亡事故的重要因素。 二、严禁在铁路上置放障碍物 众所周知火车是在两根平行的钢轨上行驶,列车的向心力是保证列车运行的速度和平稳的关键要素之一。

高速铁路列车运行控制系统

高速铁路列车运行控制系统 ----轨道电路 李波 一 CTCS的体系结构 CTCS分为CTCS0至CTCS4五级,按铁路运输管理层、网络传输层、地面设备层和车载设备层配置,如图1所示。 二 CTCS2系统 CTCS-2级列控系统是基于轨道电路加点式应答器传输列车运行许可信息并采用目标距离模式监控列车安全运行的列车运行控制系统,包括车载设备和地面设备。 1 地面子系统 (1)列控中心:根据列车占用情况及进路状态计算行车许可及静态列车速度曲线并传送给列车。 (2)轨道电路:完成列车占用检测及列车完整性检查,连续向列车传送控制信息。车站与区间采用同制式的轨道电路。 (3)点式信息设备:用于向车载设备传输定位信息,选路参数,线路参数,限速和停车信息等。

2 车载子系统 车载ATP设备包括:安全计算机、STM、BTM、DMI、记录单元,机车接口单元,测速单元,LKJ监控装置。 三轨道电路 轨道电路提供的信息包括:行车许可,空闲闭塞分区数量,道岔限速等。 1 车站采用ZPW-2000系列电码化,为列车提供运行前方闭塞分区空闲数,道岔侧向进路等信息。 2 车站相邻股道电码化应采用不同载频,列控车载设备根据进站信号机处应答器的轨道信息报文对接收轨道电路信息载频进行锁定接收。 3 车站电码化轨道同一载频区段轨道电路最小长度,应满足列车以最高运行速度时车载轨道电路信息接收器(STM)可正常接收信息。 4 轨道电路采用标准载频为1700HZ﹑2000HZ﹑2300HZ﹑2600HZ。低频信息按表进行。 5 轨道电路信息满足最高250Km/h速度列车安全运行的要求,基本码序为: 1)停车:L5- L4- L3- L25- L- LU- U- HU

高速铁路控制中心信号设备(RBC、TSRS)维修作业标准

高速铁路控制中心信号设备(RBC、TSRS)维修 作业标准 1、范围 本标准规定了铁路电务系统高速铁路控制中心信号设备的无线 闭塞中心(RBC)、临时限速服务器(TSRS)维修的工作内容。 本标准适用于铁路电务系统高速铁路控制中心信号设备(RBC、TSRS)维修作业。 2、规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用 文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 铁路技术管理规程(高速铁路部分) 铁路信号维护规则 高速铁路信号维护规则 铁路营业线施工安全管理办法 高速铁路主要行车工种岗位准入管理办法 铁路局高速铁路行车组织细则 铁路局铁路营业线施工及安全管理实施细则 铁路局电务系统现场作业安全风险控制制度 铁路局高速铁路信号设备检修标准化作业程序及质量标准 铁路局高速铁路岗位准入管理实施办法

3、工作内容与要求 3.1日常巡检作业 3.1.1作业前准备 3.1.1.1召开作业准备会,作业负责人布置巡检任务,明确作 业地点、时间、任务及相关人员分工。 3.1.1.2班前安全讲话,安全员布置劳动安全和行车安全的具 体措施并督导检查。 3.1.1.3工具材料准备,检查通信工具作用良好、电池电量充足;准备好相关工具材料,并逐一清点登记。 3.1.1.4作业人员按规定正确穿防护服、佩戴标志及携带规定 的防护用具。 3.1.2登记联系 3.1.2.1严格执行《铁路局电务系统现场作业控制制度》的有 关规定。 3.1.2.2作业前,室内联系防护人员必须按照规定在《行车设 备检查登记簿》或《行车设备施工登记薄》内进行登记。 3.1.2.3作业人员须经室内联系防护人员同意,方可进行作业。 3.1.2.4作业过程中,室内联系防护人员须随时监视设备运用 情况。 3.1.3巡视检查内容 3.1.3.1检查机房温、湿度,确认无异常,无异声、异味,设 备及器材表面无过热现象。

欧洲铁路信号系统概况

欧洲铁路信号系统概况 欧洲是世界上铁路最发达的地区之—。欧洲国家多,国土面积小,各国内部的铁路网很密集。近几年来,欧洲铁路公司和信号公司在对各自的既有信号系统进行升级或者技术改造的同时,在欧盟(EU)委员会和国际铁路联盟(UIC)的推动下,欧洲7大铁路信号公司,如法国的Alstom(阿尔斯通)公司、瑞典的Adtranz公司、德国的Siemens(西门子)公司、法国的Alcatel(阿尔卡特)公司、意大利的Ansaldo(安萨尔多)公司(含法国CSEE公司)、英国WestingHouse(西屋)公司,以及Invensys公司,联合起来为信号系统的互联和兼容问题制定信号标准,并制造了相关的产品: 在较大范围内开发并应用新型计算机辅助铁路运输管理系统; 在进路控制方面,随着区域计算机联锁技术逐步取代陈旧技术,自动化系统得到广泛应用; 在列车防护和控制系统方面,研制了基于通信的列车控制系统(CBTC); 为了欧洲铁路信号系统的互联和兼容问题,制定了统一的、开放性信号系统标准,从而实现欧洲各国铁路互通运营。 本章根据搜集到的有关欧洲铁路信号系统的论文、报道和技术资料,对它们进行了归纳整理,从列车运行控制系统、欧洲统一先进的列车运行控制系统(即ETCS)、联锁系统、行车指挥系统、高速铁路,以及磁悬浮铁路等方面介绍欧洲铁路信号系统的现状和发展,有关法国、英国和德国的铁路信号系统的详细情况在另外章节专门介绍。 第一节列车运行控制系统 一、种类繁多的列控系统 欧洲有7大铁路信号公司(Alstom、Adtranz、Siemens、Invensys、Alcatel、Ansaldo、WestingHouse,它们都是UNIFE的成员),它们研制生产的列车运行控制系统(ATP/A TC)有十余种,如德国的LZB系列和FZB系列、法国的TVM系列等。这些运行控制系统有的适用于中速铁路,有的适用于高速铁路。在欧洲铁路网上,各个国家的铁路部门使用各自不同的信号制式管理列车的运营。 二、基于通信的列车运行控制系统 近年来,几乎所有欧洲国家铁路都在建立列车运行管理和保证行车安全系统方面寻求新的经济有效的技术方案,其中包括地区性线路。德国铁路和Adtranz公司共同研究制定了无线通信管理列车运行(FFB)地区性线路运营规划,在建立的列车运行管理系统中,几乎全部通过无线通信系统来实现通信服务联系,完全不用地面信号和监督线路空闲的线路设备,保证在任何线路上的列车运行安全。基于通信的列车控制系统(CBTC)按欧洲统一的安全标准设计,系统符合欧洲PrEN50129和PrEN50128标准设计的一体化安全要求(SIL4,安全完善度等级4)。 三、列车控制系统向标准化、统一化发展 目前,欧洲由于种类繁多的铁路信号帛式互不兼容,影响了欧洲铁路跨国运输的效率。在欧盟(EU)和国际铁路联盟UIC的支持下,欧洲铁路制定了统一的列车运行管理系统ERTMS(欧洲铁路运输管理系统),包括欧洲列车运行控制系统ETCS(欧洲列车控制系统)、列车与地面的双向无线通信系统GSM-R和欧洲运输管理系统ETMS。

高速铁路服务用语

高速铁路服务用语 服务用语遵循的原则是态度热情、用语文明、表达准确清晰、使用普通话。在服务时应注重语言沟通,尊重旅客,礼貌热情,讲普通话。讲话时应音量适当,用语准确得体、简洁清晰,根据不同的服务对象和服务场合运用恰当的称呼。1、汇报用语 在列车门口遇领导时,应说“领导您好,欢迎检查指导”。乘务作业时在车厢两端遇领导,必须进行一分钟汇报:“领导您好,欢迎检查指导。我是本车厢列车员,胸章号码是××号,车厢标准定员××人,现有人数××人,重点旅客在×号,我已为他提供了重点服务,治安联防队员在××号座,到站为终点站,本车厢设施齐全完好。下面将按程序作业,请领导多指示。” 2、车门用语 在列车门口要说好三句话,即“您好”“欢迎乘车,请出示车票”“请勿带危险品上车,谢谢”。 3、迎宾词 当列车开出后,乘务员要致迎宾词:“各位旅客,大家好!欢迎大家乘坐本次列车,本次列车是由××开往××的列车,我是本车厢乘务员,胸章号码是××号,在旅途中我将服务在大家周围,旅客们有什么困难和要求,请向我提出,我会尽力帮助大家解决。本车厢为无烟车厢,需要吸烟的旅客请到车厢两端的连接处。旅客们对我们的服务工作有什么意见和要求,请您写在意见簿上,以便我们改进,更好地为大家服务。最后祝大家旅途愉快,一路平安。下面请大家把茶杯准备好,我将为您送水泡茶,谢谢!” 4、送水用语 “旅客们,现在为大家供应茶水,需要开水的旅客请您把茶杯准备好。”5、整理行李架及车帽钩时的用语 “旅客们,为了大家的旅途安全和车厢的美观,下面我将进行行李架和衣帽钩的整理,请大家予以配合,谢谢!” 6、检查危险品时的用语 “旅客们,为了保证您的旅行安全,列车是不能携带危险品的。下面我们将进行危险品检查,请旅客们给予协助,谢谢!”

高速铁路精测控制网的布设和测量

高速铁路精测控制网的布设和测量 1、高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为 (82.5〃),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 、长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5〃)。设AB为900米,则Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所

高速铁路概论

. 一、绪论+高速铁路线路 高速铁路的定义:最高行驶速度在200km/h以上、旅行速度超过150km/h的铁路系统。 高速列车:以最高速度200km/h以上运行的列车。它不但包括轮轨式列车,还应包括磁悬浮列车等。 高速铁路运营特征:概括为高速度、高舒适性、高安全性、节能环保和高密度。 要求高速线路具有高平顺性、高稳定性、高可靠性及一定的耐久性。 高速铁路的平纵断面设计的标准要以提高线路的平顺性为主。 高速铁路线路平面标准:包括超高(欠超高,过超高)、最小曲线半径、缓和曲线长度等。 线路纵断面标准:包括最大坡度值和竖曲线等。 外轨超高:为了平衡离心力,使内外两股钢轨受力均匀,垂直磨耗均等,旅客不因离心加速度而感到不适,将外轨抬高一定程度。 轨距加宽:为防止轮对被轨道楔住或挤翻钢轨,对于小半径曲线的轨距要适当加宽,以使机车车辆能顺利通过曲线,减少轮轨间的磨耗。 欠超高产生离心加速度从而影响旅客舒适度; 欠超高、过超高都会使钢轨承受列车的偏压而内外轨磨耗不均。限制欠超高、过超高以保证高速铁路线路所要求的高平顺性和高舒适度。保证高速列车的旅客乘坐舒适度,因此取过超高允许值与欠超高允许值一致。高、低速列车共线允许时欠、过超高之和的允许值[hq+hg]。 最小曲线半径与运输组织模式、速度目标值、旅客乘坐舒适度和列车运行平稳度等有关。 最大曲线半径标准关系到线路的铺设、养护、维修能否达到要求的精度。 缓和曲线:为了使列车安全、平顺地由直线运行到圆曲线(或由圆曲线运行到直线)而在直线与圆曲线之间设置一个曲率半径逐渐变化的曲线称为缓和曲线。 缓和曲线长度由车辆脱轨加速度、未被平衡横向离心加速度时变率和车体倾斜角速度确定,即主要是由超高时变率和欠超高时变率两项因素确定缓和曲线的长度。 线路的最大坡度:应根据地形条件、动车组功率、运输组织模式、设计线的输送能力、牵引质量、工程数量和运营质量等,经过牵引计算验算并经技术经济比选分析后确定。 相邻坡段的坡度差:允许的最大值,主要由保证运行列车不断钩这一安全条件确定,常规铁路相邻坡段的坡度差主要受货物列车制约。 相邻坡段的坡度差大于1‰时,应采用圆曲线形竖曲线连接。 高速铁路的基本组成:由钢轨、轨枕、扣件、道床、道岔等部分组成。 高速铁路(分为有砟和无砟轨道) 钢轨的作用:钢轨是轨道的主要结构之一,用于支承并引导机车车辆的车轮,直接承受来自车轮和其他方面的力并传递给轨枕,同时为车轮的滚动提供阻力最小的表面。 钢轨的要求: (1)高稳定的轨道结构; (2)平顺的运行表面; (3)良好的轨道弹性; (4)可靠的轨道部件; (5)便利的养护与维修。

高速铁路旅客服务系统

高速铁路旅客服务系统 1、铁路局集中管控模式 铁路局集中管控模式采用两级架构,即铁路局中心和车站级。车站旅服系统集中接入铁路局旅服中心,车站端设置旅服系统应急管理平台。 (1)铁路局旅服系统以列车时刻表为基础,组织开展车站各类生产和服务业务。其通过设置在铁路局的TRS接口,从TRS获取列车时刻表信息,并具备手工编制和调整时刻表的功能,在旅服系统集成管理平台内形成系统可用的基础性数据。(2)铁路局旅服系统采用预设模板的方式,由操作员以列车时刻表为基础,根据所辖各站客运作业要求制订各站客运广播、导向显示、自动检票等业务的作业计划,铁路局旅服系统在设定时间生成作业计划,并将其下发到所辖车站数据库或终端设备。 (3)铁路局旅服系统将作业计划下发至各车站接口,所辖车站通过接口程序执行作业计划,按计划控制广播、显示屏、自动检票机等终端设备或控制器做出响应,开展车站客运组织和服务工作。 (4)铁路局旅服系统通过设置在铁路局的运输调度管理系统(transportation dispatch management system,TDMS)接口获取实时列车运行信息,通过与列车时刻表的比对,按照预设的规则对所辖车站作业计划进行动态调整。 (5)铁路局旅服系统通过设置在铁路局的TRS接口,按一定的时间间隔获取实时余票信息,分类下发到相应车站,按预设的格式展现在车站票额屏上。 (6)铁路局旅服系统通过设置在铁路局的综合视频监控系统接口获取所辖车站的实时视频图像。通过网络,采用无线语音技术,铁路局旅服系统集成管理平台可对所辖车站现场进行无线语音指挥。 (7)在铁路局旅服系统岀现故障时,若网络和TDMS接口服务器正常工作,可远程启动所辖车站应急平台的应急处置功能,并将TDMS接口服务器重新定向到各站应急平台。车站应急平台执行已下发的作业计划,并根据实时列车运行信息动态调整并执行作业计划。 (8)铁路局旅服系统与某个所辖车站网络中断时,故障车站操作员可手工启动应急平台的应急处置功能。车站应急平台执行已下发的作业计划,操作员根据掌握的列车运行信息调整并执行作业计划。

第二章 高速铁路与高速列车

高速铁路与高速列车 2.1 高速铁路的发展 自 20 世纪 40 年代开始,铁路受到了公路和航空的竞争。随着高速公路的发展,铁路的优势逐渐减小,长距离上更不能同航空竞争,因此不少人认为铁路已是一个夕阳企业,在某些国家铁路甚至处于萎缩状态。 1964年日本东海道新干线的运营,在铁路的发展史上,无疑是一个新的里程碑。它的成功吹响了铁道技术革命的号角。日本第一列0系列高速列车以 210 km/h的成功运行,成为高速列车研制的典范。日本新干线的成功,不单显示其运量大、投资省、污染小的优点,更充分地发挥了高速又不失安全的特点。 从运输的角度看,人们关心的不单是速度,更关注的是从出发到目的地的时间,即所谓门对门的时间。因此一个运输工具不单注意本身速度提高、节约旅途时间,还应千方百计缩短其辅助时间。例如旅客到车站的时间、候车的时间等。 为了缩短旅途时间,必须提高运输工具的速度。 随着铁路技术的发展,运输需求的提高,铁路在不断地提高运行速度,因此高速的概念也随着不断地更新。以往把运行速度在 200 km/h 以上的铁路称之谓高速铁路。而《欧洲高速铁路联网高速列车技术条件》中,对公共交通的高速要领规定为:对新建线路为 300 km/h,对旧线(可能经现代化改造)为 220 km/h,在这种速度时一列在平直线上行驶的动车组的后备加速度为 0.05 m/s2。 从这一规定看到,在高速铁路的概念中,不单规定了速度,还规定了高速列车在最高速运行时必需的加速能力。 日本新干线的成功,推动了高速铁路技术的发展。1981年法国的 TGV 东南线投入运行,最高运行速度为270 km/h,1989年 TGV 大西洋线将速度提高到 300 km/h。德国的ICE(Intercity Express)特快列车于 1991 年 6 月投入使用,运营速度达到 250 km/h。至今开行 200 km/h 以上高速列车的国家已有日本、法国、德国、英国、意大利、瑞典、俄罗斯、瑞士、奥地利、比利时、西班牙、丹麦等国。近40年的运行经验证明,它在高速、大运量、安全、经济等方面与公路、航空的竞争中,取

高速铁路二等高程控制网施工复测(可编辑修改word版)

高速铁路二等高程控制网施工复测 1.一般规定 1.1工程开工前,施工单位应会同设计单位参加由业主组织并有监理单位参与的控制桩和测量成果资料交接工作。 1.2施工单位应对设计单位交付的高程控制网进行同精度复测。 1.3为确保高速铁路轨道的线性,相邻施工标段、相邻施工单位之间应共同协商并现场确认交界处附近的同一个水准点作为搭接和公共点进行复测。双方应签订共用控制点协议并使用满足精度要求的相同高程成果。 1.4线下工程开工前或至迟在结构工程施工前应完成二等水准点的复测工作。 1.5高程复测应采用几何水准测量。 1.6高程控制网布网要求应按表1.6 规定执行。 表 1.6 控制网布网要求 1.8测量仪器的配置应符合下列规定。 水准仪标称精度应不低于DS1并应配相应的因瓦尺。 L 1.9当复测的水准基点间高差不符值二等超过6 时应再次测量确认;当核实复测精度符合相应等级要求后,应将复测成果报设计单位认定。满足精度要求时,应采用设计成果。 2.高程控制网复测 2.1二等水准基点的复测和加密测量可采用几何水准同时进行。 2.2高程控制网复测宜优先使用满足精度要求的电子水准仪。若采用补偿式自动安平水准仪时,其补偿误差△α不应超过0.2″,并应符合《国家一、二等水准测量规范》(GB/T 12897-2006)、《新建铁路工程测量规范》的相关规定。二等水准测量的主要技术标准应符

合表2.2-1 的规定。水准测量作业的主要技术要求应符合表 5.2-2 的规定。观测的读数限差应符合表5.2-3 规定。 表 2.2-1 水准测量主要技术标准 注:L 为往返测段、附合或环线的水准路线长度,单位为km。 表 2.2-2 水准测量作业的主要技术要求 2.3二等水准测量应进行测段往返观测。测站观测宜采用下列观测顺序: 往测:奇数站采用“后-前-前-后”,偶数站采用“前-后-后-前”。 返测:奇数站采用“前-后-后-前”,偶数站采用“后-前-前-后”。 由往测转向返测时,两根标尺应互换位置。 2.4二等水准测量观测读数和记录的数字取位: 表2.4.1 二等水准测量读数取位 仪器读数取位(mm) DS05 0.05 DS1 0.1 数字水准仪0.01 表 5.4.2 二等水准测量计算取位

高速铁路的主要技术特征

高速铁路的主要技术特征 高速铁路在激烈的客运市场竞争中以其突出的优势,不但在其发祥地日、法、德等国家已占据了城际干线地面交通的主导地位,并在世界诸多经济发达的国家和地区迅速扩展。时至今日,高速铁路新线总长已逾5000 km。由于高速铁路与既有干线固有的兼容性,高速列车通过既有线服务的里程已扩展至20 000km以上。高速铁路在不长的时期内之所以能取得如此的发展势头,根本原因是基于轮轨系的高速技术充分发挥了既先进又实用的特点,特别是在中长距离的交通中的独特优势。实践表明,高速铁路已是当代科学技术进步与经济发展的象征。高速铁路虽然源于传统铁路,但借助于多项高新技术已全面突破了常规铁路的概念,已形成一种能与既有路网兼容的新型交通系统。高速铁路在运营过程中更新换代,其技术还在不断发展与完善。为了深刻认识高速铁路特点,本节将从总体角度出发剖析其主要技术特征。 一、高速铁路是当代高新技术的集成 在世界上,高速铁路的诞生是继航天行业之后,最庞大复杂的现代化系统工程。它所涉及的学科之多、专业之广已充分反映了系统的综合性。20世纪后期科学技术蓬勃发展,迅速转化为生产力的三大技术有:计算机及其应用;微电子技术、电力电子器件的实用化与遥控自控技术的成熟;新材料、复合材料的推广。高速铁路绝非依靠单一先进技术所能成功,它正是建立在这些相关领域高新技术基础之上,综合协调,集成创新的成果。因此,高速铁路实现了由高质量及高稳定的铁路基础设施、性能优越的高速列车、先进可靠的列车运行控制系统、高效的运输组织与运营管理体系等综合集成,如图1.2.1所示。系统协调的科学性,则是根据铁路行业总的要求,各子系统均围绕整体统一的经营管理目标,彼此相容,完整结合。 高速铁路在实施中,从规划设计开始就把各项基础设施、运载装备、通信信号、运输组织及经营管理等子系统纳入整个大系统工程之中统筹运作。为实现总体目标,采用了多项关键技术。虽然这些新技术分别隶属于各有关的子系统,但其主要技术指标、性能参数是相互依存、相互制约的,均须经详细研究、反复论证与修订,才能保证实现大系统综合集成特性的要求,达到整个系统的合理与优化。 二、高速度是高速铁路高新技术的核心 不言而喻,高速铁路的速度目标值是由常规铁路发展到高速铁路最主要的区别。按照铁道部现行的规定,列车速度的级别划分见表1.2.1。 表1.2.1列车速度级别划分表 序号列车最高运行速度km/.h 列车级别 1 ≤120普速列车 2 120< ≤200快速列车 3 >200高速列车

高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究 发表时间:2019-06-21T16:03:58.057Z 来源:《防护工程》2019年第6期作者:刘磊 [导读] 作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。 中铁建电气化局集团南方工程有限公司湖北武汉市 430074 摘要:作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。另一方面,高速铁路采用的综合接地方式、共用的接地钢轨使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战,由此可了解本文研究具备的较高现实意义。 关键词:高速铁路;信号系统;抗电磁干扰技术;研究 1高速铁路信号系统抗电磁干扰技术措施 1.1基本抑制措施 高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循(表1)规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线与回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面。具体来说,通信系统在设计阶段应选择适当的接收电平,电磁兼容设计需使用,浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,此种措施下冲击电流可得到较好抑制(如雷电、变电所过流保护开关瞬时开闭引发的相关现象)。 表1 不同类别电缆之间的最小距离 同样以车载信号系统为例,其处理流程可概括为:“故障现象分析→现场实际测试→干扰耦合途径验证→敏感设备分析→抗干扰措施实施→验证试验”,通过列举可能导致故障现象的因素、选择针对性较强的仪器设备、围绕典型干扰传输耦合途径开展分析、建立被干扰信号系统电磁抗扰度模型,即可完成高质量的电磁干扰故障处理,最终合理应用抗干扰措施并验证其有效性,即可有效解决电磁干扰导致的故障问题。为取得优秀的高速铁路信号系统抗电磁干扰效果,一般需同时应用屏蔽、接地、滤波技术,但如果三种技术存在应用不当情况,则很容易引起更为严重的电磁干扰问题,因此必须保证抗干扰措施应用的针对性、定制性,并从整个系统角度思考问题,避免解决问题的过程引入新的电磁干扰耦合,结合故障实际和相关经验属于其中关键,这些必须得到相关业内人士的重点关注。 2实例分析 2.1故障现象分析 为提升研究的实践价值,本文选择了某高速列车作为研究对象,在通过某一位置时,该高速列车出现了ATP(车载自动列车防护系统)和多次报人机交互单元DMI出现通信超时故障,结合故障现象开展分析,技术人员初步确定了电磁骚扰源及其耦合途径,具体判断如下:①由于DMI临近的弱电设备未出现类似故障(通信超时故障报警时),因此可初步判断空间的辐射电磁场骚扰与主要电磁干扰信号基本不存在联系。②与DMI共用电源的弱电设备未出现类似故障,因此来自电源线的传导电压/电流骚扰与主要电磁干扰信号基本不存在联系。③ATP与DMI间的Profibus总线平行于220V交流输电线平行走线,且长度为23m,电压骚扰信号进入Profibus总线因此获得可行性较高的方式,即线间的容性耦合方式,ATP与DMI之间的数据传输也很容易出现误码故障,因此可初步判断信号线的传导电压骚扰为干扰源。 2.2敏感设备分析 图1为车载ATP系统基本结构图,结合该图不难发现,主机柜内的设备主要有JRU单元、BTM单元、DC/DC电源、车载电台、ATP核心运算单元,主机柜外则安装有天线、速度传感器、DMI单元等设备,ATP与DMI间的数据传输采用Profibus总线,设备的连接采用菊花链结构,在ATP核心运算单元支持下,总线可实现间隔性的DMI状态查询,必要时需上报DMI通信超时故障,如出现多次无法收到响应数据包的

高速铁路精测控制网的布设和测量

1 高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。设AB为900米,则 Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示: 控制网级别测量方法测量等级点间距备注 CPⅠGPS B级≥1000m≤4㎞一对点 CPⅡ GPS C级 800~1000m 导线四等

高速铁路信号系统

高速铁路信号系统 近年来,我国高速铁路建设取得了迅猛发展,截至2011年底,高速铁路营业里程达7 531 km(不包括台湾地区),在建高速铁路1万多千米,已成为世界高速铁路运营速度最高,运营里程最长、在建规模最大的国家.铁路信号系统是为了保证铁路运输安全而诞生和发展的,它的第一使命是保证行车安全,没有铁路信号,就没有铁路运输的安全.随着列车运行速度的提高,完全靠人工望、人工驾驶列车已经不能保证行车安全了,当列车提速到200km/h时,紧急制动距离将达到2 km(常用制动距离超过3 km),因此,国际上普遍认为当列车速度大于时速160 km 时,必须装备列车运行控制系统(简称列控系统),以实现对列车间隔和速度的自动控制,提高运输效率,保证行车安全.要实现列车自动控制,需要解决许多关键技术问题,例如:车-地之间大容量、实时和可靠信息传输,列车定位,列车精确、安全控制等,需要车载设备、轨旁设备、车站控制、调度指挥、通信传输等系统良好的配合才能实现,以现代列车运行控制技术为核心的信号系统可以称为现代铁路信号系统. 高速铁路装备了列控系统后,提高了列车运行速度和行车密度,同时对中国铁路信号技术还具有积极的促进作用,但由于发展速度太快,设备、标准、管理与养护都免不了存在一些缺陷和不足.本文作者简要阐述了中国列车运行控制系统为我国铁路发展所产生的促进作用,也对现有系统存在的若干问题进行了分析,在分析的基础上,针对今后中国列车运行控制系统的建设提出了改进建议. 中国列车控制系统(CTCS) 2003年,铁道部参照欧洲列车运行控制系统(ETCS)相关技术[3],根据中国高速铁路建设需求制定了5中国列车运行控制系统(CTCS)技术规范总则(暂行)6,以分级的形式满足不同线路运输需求.CTCS系统由车载子系统和地面子系统组成.地面子系统包括:应答器、轨道电路、无线通信网络(GSM-R)、列控中心(TCC)/无线闭塞中心(RBC).车载子系统包括:CTCS车载设备、无线系统车载模块等. CTCS依次分CTCS-0~CTCS-4共5个等级, 以满足不同线路速度需求.CTCS0级为既有线的现状;CTCS1级为面向160 km/h以下的区段;CTCS2级为面向干线提速区段和200~250 km/h高速铁路;CTCS3级为面向300~350 km/h及以上客运专线和高速铁路;CTCS4级为面向未来的列控系统. TCS-2级列控系统[5]是基于轨道电路和点式应答器传输列车运行许可信息,并采用目标-距离模式监控列车安全运行的控制系统.地面一般设置通过信号机,是一种点-连式列车运行控制系统.在CTCS-2级列控系统中,用轨道电路实现列车占用及完整性检查,并连续向车载设备传送空闲闭塞分区数量等信息.用应答器向车载设备传输定位、线路参数、进路参数、临时限速等信息.列控中心具有轨道电路编码、应答器报文储存和调用、区间信号机点灯控制、站间安全信息传输等功能.同时,列控中心根据轨道电路、进路状态及临时限速等信息,产生行车许可,并通过轨道电路及有源应答器将行车许可传递给列控车载设备.列控车载设备根据地面设备提供的信号动态信息、线路参数、临时限速等信息,结合动车组参数,按照目标-距离模式生成控制速度,监控列车安全运行. CTCS-3级的列控系统[6]是基于无线通信网GSM-R传输列控信息并采用轨道电路检查列车占用的连续式控制系统.CTCS-3级列控系统采取目标距离控制模式和准移动闭塞方式,地面可不设通过信号机,司机凭车载信号行车,同时具有CTCS-2级功能.CTCS-3级列控系统地面设备包括:无线闭塞中心、列控中心、轨道电路、点式应答器、GSM-R通信接口设备等.车载设备包括:车载安全计算机、GSM-R无线通信单元、轨道电路信息接收单元、应答器信息接收模块、列车接口单元等. 在CTCS-3级列控系统中,无线闭塞中心根据轨道电路、联锁进路等信息生成行车许可,

高速铁路设计规范(最新版)

1 总则 1.0.1 为统一高速铁路设计技术标准,使高速铁路设计符合安全适用、技术先进、经济合理的要求,制定本规范。 1.0.2 本规范适用于旅客列车设计行车速度250~350km/h 的高速铁路,近期兼顾货运的高速铁路还应执行相关规范。 1.0.3 高速铁路设计应遵循以下原则: (1)贯彻“以人为本、服务运输、强本简末、系统优化、着眼发展”的建设理念; (2)采用先进、成熟、经济、实用、可靠的技术; (3)体现高速度、高密度、高安全、高舒适的技术要求; (4)符合数字化铁路的需求。 1.0.4 高速铁路设计速度应按高速车、跨线车匹配原则进行选择,并应考虑不同速度共线运行的兼容性。 1.0.5 高速铁路设计年度宜分近、远两期。近期为交付运营后第十年;远期为交付运营后第二十年。 对铁路基础设施及不易改、扩建的建筑物和设备,应按远期运量和运输性质设计,并适应长远发展要求。 易改、扩建的建筑物和设备,可按近期运量和运输性质设计,并预留远期发展条件。 随运输需求变化而增减的运营设备,可按交付运营后第五年运量进行设计。

1.0.6 高速铁路建筑限界轮廓及基本尺寸应符合图1.0.6 的规定,曲线地段限界加宽应根据计算确定。 7250 5500 4000 2440 1700 1750 1250 650 ③ ① ② ④ ⑤ 1700 25 1250 ①轨面 ②区间及站内正线(无站台)建筑限界 ③有站台时建筑限界

④轨面以上最大高度 ⑤线路中心线至站台边缘的距离(正线不适用) 图1.0.6 高速铁路建筑限界轮廓及基本尺寸(单位:mm) 1.0.7 高速铁路列车设计活载应采用ZK 活载。 ZK 活载为列车竖向静活载,ZK 标准活载如图1.0.7-1 所示,ZK 特种 活载如图1.0.7-2 所示。 图1.0.7-1 ZK 标准活载图式 图1.0.7-2 ZK 特种活载图式 1.0.8 高速铁路应按全封闭、全立交设计。 1.0.9 高速铁路设计应执行国家节约能源、节约用水、节约材料、节省用地、保护环境等有关法律、法规。 高速铁路结构物的抗震设计应符合《铁路工程抗震设计规范》(GB 50111)及国家现行有关规定。 高速铁路设计除应符合本规范外,尚应符合国家现行有关标准 的规定。 2 术语和符号 2.1 术语 2.1.1 高速铁路high-speed railway(HSR) 新建铁路旅客列车设计最高行车速度达到250km/h 及以上的铁路。

中国列车运行控制系统ctcs

CTCS CTCS是(Chinese Train Control System)的英文缩写,中文意为中国列车运行控制系统。CTCS系统有两个子系统,即车载子系统和地面子系统。CTCS根据功能要求和设配置划分应用等级,分为0~4级。 1. CTCS概述 TDCS是铁路调度指挥信息管理系统,主要完成调度指挥信息的记录、分析、车次号校核、自动报点、正晚点统计、运行图自动绘制、调度命令及计划的下达、行车日志自动生成等功能,换句话说就是原来行车调度员和车站值班员需要用笔记下的东西现在都可以由TDCS自动完成。 中国铁路调度指挥系统 参考欧洲ETCS规范,中国逐步形成了自己的CTCS(Chinese Train Control System)标准体系。如何吸收ETCS规范并结合中国国情更好地再创新,是值得深入研究的课题。 铁路是国民经济的大动脉,是中国社会和经济发展的先行产业,是社会的基础设施,铁路运输部门又是国民经济中的一个重要部门,它肩负着国民经济各种物资运输的重任,对中国社会主义建设事业的发展有着举足轻重的作用。为了满足国民对铁路运输的要求,进入二十一世纪以后,铁路部门致力于高速铁路和客运专线的建设,并取得了骄人的成绩。

为了适应中国高速铁路、客运专线的迅速发展和保证铁路运输安全的需要,铁道部有关部门研制成功了“CTCS系统”(即:铁路列车控制系统,是Chinese Train Control System 的缩写“CTCS”) 2. 产生背景 由于早期欧洲铁路的列车运行控制系统种类繁多,且各国信号制式复杂、互不兼容,为有效解决各种列车控制系统之间的兼容性问题,保证高速列车在欧洲铁路网内跨线、跨国互通运行,1982年12月欧洲运输部长会议做出决定,就欧洲大陆铁路互联互通中的技术问题寻找解决方案。 2001年欧盟通过立法形式确定ETCS(European Train Control System)为强制性技术规范。ETCS的主要目标是互通互用、安全高效、降低成本、扩展市场,在规范的设计上融入了欧洲各主要列控系统的功能,制定了比较丰富的互联互通接口。经过长期的发展,ETCS系统目前已经比较成熟,得到了欧洲各国铁路公司和供货商的广泛认可。 中国人口密集,资源紧张,城市化发展非常迅速。一直处于发展中的中国铁路,始终存在着运量与运能之间的突出矛盾。铁路运输至今仍相当程度地制约着国民经济的快速发展,铁路仍是我国国民经济发展中的一个薄弱环节。为了缓解铁路运输的压力,铁路部门先后实行了六次大提速。 与此同时,高速铁路的蓬勃发展,对铁路的中枢神经——信号系统也提出了新的技术要求。但由于历史及技术原因,中国铁路存在多种信号系统,严重影响了运输效率。铁路信号系统迫切需要建立统一的技术标准,确立数字化、网络化、智能化、一体化发展方向,国产高速铁路列车运行控制系统标准的制定迫在眉睫。为实现高铁战略,铁道部组织相关专家开始制定适合我国国情的中国列车控制系统CTCS(Chinese Train Control System)。 在CTCS 技术规范中,根据系统配置CTCS按功能可划分为5 级。为满足客运专线和高速铁路建设需求,通过对ETCS标准的引进、消化、吸收,并结合成功应用的CTCS-2级列车运行控制系统的建设和运营经验,我国构建了具有自主知识产权的CTCS-3级列控系统标准。CTCS-3级列车运行控制系统是基于GSM-R无线通信的重要技术装备,是中国铁路技术

相关主题
文本预览
相关文档 最新文档