当前位置:文档之家› 高速铁路道控制网

高速铁路道控制网

高速铁路道控制网
高速铁路道控制网

高速铁路轨道控制网

客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。把客运专线铁路精密工程测量控制网简称“精测网”。

客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。

一、客运专线精测网特点

1.传统的铁路工程测量方法

初测:初测导线、初测水准;

定测:交点、直线、曲线控制桩(五大桩);

线下程施工测量:以定测控制作为施工测量基准;

铺轨测量:穿线法、弦线支距法或偏角法测量。

2传统的铁路测量方法的缺点

(l)平而坐标系投影误差大;

(2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线;

(3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复;

(4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改;

(5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。

由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点

(1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一;

(2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则;

(3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系;

(4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式;

(5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级;

(6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。

二、客运专线精测网的建立

l测量基本工作流程

2平向控制测量

(1)平面控制刚布设原则

客运专线无砟轨道铁路工程测量平向控制网宜按分级布网的原则分三级布设:

第一级:基础平面控制刚(CPI),为勘测、施工、运营、维护提供坐标基准;

第二级:线路控制刚(CPⅡ),为勘测和施工.提供控制基准;

第三级:基桩控制网/施工加密网(CPⅢ).为线下工程、无砟轨道施工和运营维护提供控制基准。

(2)各级平而控制网应满足的精度(如表1-1)

表1-1各级平面控制网应满足的精度

(3)平面控制嘲起算基准

①CPI控制网投影长度变形值不应大于l0mm/km;

②CPⅡ控制网应附合到CPI上,并采用固定数据平差;

③当采用导线测量时,CPⅢ控制网应附合到CPI或CPⅡ上,并采用固定数据平差;

当采用后方交会法测量时,CPⅢ控制网应采用独立自由网平差,然后在CPI或CPⅡ中置平,分段附合或置平时相邻段应有足够的重叠,重整长度不应小于lkm。

(4)各级平而控制网布网要求(如表1-2)

表1-2各级平面控制网布网要求

(5)平面控制测量作业流程

①CPI控制测量:一般在初测时完成,为客运专线无砟轨道铁路工程提供平面基准:

②CPⅡ控制测量:一般在定测时完成,作为客运专线无砟轨道铁路工程施工平面控制网;

③CPⅢ平面控制测量:在施工测量时施测,线下工程施工时作为施工加密平面控制网,铺设无砟轨道时作为无砟轨道铺设基桩控制网。

(6)平面控制测量方法

①GPS测量:用于建立CPI、CPⅡ控制网;

②导线测量:用于建立CPⅡ、CPⅢ平面控制网;

③后方交会网测量:用于建立无砟轨道铺设基桩控制网。无砟轨道的施工验收标准平面偏差必须满足2mm/lOm和lOmm/l50m。即l0m 弦长轨向偏差不得大于2mm和150m长波轨向偏差不得大于l0mm。 3高程控制测量

(1)高程控制网精度(如表1-3)

表1-3高程控制网精度

(2)高程控制网的基准

水准基点控制网应以国家一等水准点为起算数据,采用固定数据

平差和1985国家高程基准;

CPⅢ控制点应符合于水准基点控制网上,采用固定数据平差。

(3)高程控制测量作业流程

①勘测高程控制测量

②施工高程控制测量

③无砟轨道铺设基桩高程控制测量

(4)勘测高程控制测量

客运专线无砟轨道铁路高程控制网应按二等水准测量精度要求施测。在勘测阶段,不具备二等水准测量条件时,可分两阶段实施,即:勘测阶段按四等水准测量要求施测,线下工程施工完成后,全线再按二等水准测量要求建立水准基点控制网。

(5)施工高程控制测量

①施工高程控制网应按二等水准测量要求施测;

②施工加密水准测量应按精密水准测量要求施测。

(6)无砟轨道铺设基桩高程控制测量

①无砟轨道铺设基桩高程控制测量按精密水准测量精度要求施测。

②精密水准测量起闭于二等水准点,水准路线长度不宜超过2km。 4.线下工程竣工测量

主要由线下工程中线贯通测量,路基竣工测量,桥涵竣工测量和隧道竣工测量等部分组成。

(1)线下工程中线贯通测量:全线(段)二等水准贯通测量;线下工程线路中线平面测量和高程测量,并贯通全线(段)的里程。

(2)路基竣工测量:路基竣工测量主要是横断面测量,应在路基沉降稳定后进行。

(3)桥涵竣工测量:主要有桥梁墩台竣工测量,桥梁中线贯通测量和涵洞竣工测量。

(4)隧道竣工测量:主要有洞内水准基点测量和隧道净空断面测量。

5无砟轨道铺设阶段测量

(1)建立无砟轨道铺设控制网(CPⅢ)

①平面测量:导线测量:150m~200m 1个点,五等导线;后方交会网:60m~70m l对点。

②高程测量:与平面控制点共桩,精密水准测量。

(2)无砟轨道的安装测量

主要包括加密基桩测量,轨道安装测量,轨道衔接测量和线路整理测量。

(3)轨道铺设竣工测量

主要有维护基桩测量和轨道几何形态测量

三、高速铁路无砟轨道控制网测设标准

1.高速铁路无砟轨道控制网CPO、CPI、CPII、CPⅢ和水准基点测设标准应符合《高速铁路工程测量规范》,工程验交时,设计、施测单位须提交完整的测量数据档案。

2.同一控制点(CPO、CPI、CPII和水准基点)在测量资料移交时应有不少于三次且测量时间间隔大于三个月的观测成果数据,以确定控制点的稳定性及维护标准。

3.为及时、准确的获得无砟轨道各个时间段内线路整体及各段(区间)的本次和累计沉降变形数据,正线上的路基、桥、涵、隧等建筑物上应设置稳固的监测桩标,监测桩标按无砟轨道沉降监测有关规定设置。

4.无砟轨道线路按50~70m间隔设立维护基点,均匀分布在CPⅢ点对中间(如图1-1所示)。

图1-1线路维护基点位置关系图

(1)线路维护基点三维坐标测量应依据CPⅢ控制点,采用全站仪自由设站极坐标法进行测量。使用的全站仪精度不应低于(1″、 lmm+2ppm)。以左线为例,在线路维护基准点上放置可以调节水平的强制对中装置(如图1-2)。

图1-2全站仪、棱镜强制对中装置

(2)自由设站观测的CPⅢ控制点不应少于4对,相邻基点的观测重叠的CPⅢ控制点不应少于2对,如图1-3所示。

图1-3 自由设站观测的CPⅢ控制点布置图

(3)完成自由设站后,CPⅢ控制点的坐标不符值应满足表l-4的要求。当CPⅢ点坐标不符值x、y、h大于表1-4的规定时,该CPⅢ点不应参与平差计算。每一测站参与平差计算的CPIII控制点不应少于6个。

表1-4 CPIII控制点坐标不符值限差要求

自由设站点精度应符合表1-5的精度要求

表l-5 自由设站CPⅢ控制点精度

(4)线路维护基点必须统一编号,使用反光牌清晰标记。上行为按每公里偶数顺序编号,下行为按每公里奇数顺序编号,如图1-4所示。

图LB11-4线路维护基点编号

5.高速铁路竣工验收前应进行竣工测量。无砟轨道线路交验

的控制网竣丁资料主要包括以下内容:

(1)控制网联测的国家平面及高程控制点成果表及点之记;

(2)CPO、CPI、CPⅡ控制桩原测、复测成果(含设计、复测及评估报告)及点之记;

(3)水准点原测、复测成果(含设计、复测及评估报告1及点之记;

(4)CPO、CPI、CPⅡ、CPⅢ及水准基点平面示意图、控制点成果表:

(5)CPⅢ、CRP各种测量原始记录(包括磁卡、电脑记录)、计算成果和图表。

(6)大跨度桥梁和长连续梁桥上CPⅢ测点温度变化坐标改正表。

(7)评审合格的完整沉降观测数据及分析报告。

(8)无砟轨道维护基点成果表。

四、高速铁路无砟轨道控制网的应用

1.高速铁路无砟轨道客运专线养修执行“绝对控制、相对平顺”的作业原则,静态检测及调整标准应符合表1-6规定。

表1-6静态检测及调整标准

注:当轨道中线绝对偏差超限时,由路局设计部门进行线型拟合重新确定中线坐标。

2日常检测使用的控制点主要包括轨道控制网(CPⅢ)和轨道维护基点(CRP)。使用轨道几何状态测量仪时,可使用CPⅢ点进行边角交会自由建站,也可使用GRP焦强制对中建站测量。岔区检测宜使用强制对中建站以保证精度。

3轨道几何状态测量仪进行自由建站,应采用4对CPⅢ点边角交会测量,参与平差的CPⅢ点数不得少于6个,换站重叠CPⅢ点不少于3个点。自由设站点精度应符合表l-7的精度要求。

表1-7 自由设站CPⅢ控制点精度

4.轨道几何状态测量仪使用GRP强制对中建站测量,应使用全站仪、棱镜强制对中装置。后视对点距离控制在100—150米,一般中间联测一个CRP点做精度检校。

5高速铁路无砟轨道客运专线配套轨道几何状态测量仪及使用的棱镜组件需经路局相关部门鉴定认证。全线检测数据应及时上传路局数据库管理。

五、高速铁路无砟轨道控制网的维护管理

1.高速铁路无砟轨道控制网所有控制点数据的维护、认证由路局工务处工务检测所统一管理。

2.设备管理单位应有专人负责管内CPO、CP I、CPⅡ.CPⅢ、GRP 及水准基点的基桩维护管理,负责安排周期性的巡查监管及标记刷新,按季上传汇总情况。

3.CPO、CP I、CPⅡ及水准基点的复测由路局统一安排。原则上CPO、CP I、CPⅡ平面坐标复测应结合数字平面地形图更新、大地坐标转换、控制点损坏修复等需求按2—3年同期进行,水准基点复测安排按无砟轨道沉降监测实施管理有关规定办理。

4.CPⅢ、CRP点原则上采用与检测、修复同步进行的方法,即在利用CPⅢ、CRP点测量轨道状态同时,使用软件自动采集、检核CP Ⅲ或GRP相对精度数据,由]_务检测所进行系统统计和分析,个别超限点位坐标可由处理系统修复。当有连续三个以上CPⅢ或CRP点超限差范围,应结合况降观测数据安排专业队伍进行局部或全线复测。 5.铁路局安排有资质的测绘单位进行测量作业时,设备管理单

位应配合派员做好安全防护工作。

高速铁路道控制网

高速铁路轨道控制网 客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。把客运专线铁路精密工程测量控制网简称“精测网”。 客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。 一、客运专线精测网特点 1.传统的铁路工程测量方法 初测:初测导线、初测水准; 定测:交点、直线、曲线控制桩(五大桩); 线下程施工测量:以定测控制作为施工测量基准; 铺轨测量:穿线法、弦线支距法或偏角法测量。 2传统的铁路测量方法的缺点 (l)平而坐标系投影误差大; (2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线; (3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复; (4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改; (5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。 由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点 (1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一; (2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则; (3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系; (4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式; (5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级; (6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。 二、客运专线精测网的建立 l测量基本工作流程

高速铁路精密控制测量技术

地理空间信息 GEOSPATIAL INFORMATION 收稿日期:2009-08-19 2007年,中国首条长度达100km 高速铁路京津城际轨道交通完成铺轨。2009年,全长1000km ,时速350km 的武汉至广州客运专线建设完成并开通运行,标志着我国将全面跨入高速铁路时代。 按照中国《中长期铁路网规划》,在今后几年时间 内,我国通过建设高速铁路客运专线、发展城际客运轨道交通和既有线提速改造,形成以“四纵四横”高速铁路客运专线为骨干,以及三个城际快速客运系统,连接全国主要大中城市的高速铁路客运网络。 m_gisBas.gisPrjByIndexGetTypeAreaObj (viewport,Convert.ToInt16(layArr [i ]),out TypeAreaObj ); switch (TypeAreaObj.getAreaType ()){case AreaTypeEnum.aPnt://点 ((MpPntArea )TypeAreaObj ).pArea.pMpAtt.ClearLst (); //调用组件接口的矩形查询函数:gisSearchByRect m_gisSearch.gisSearchByRect (viewport,(MpPntArea )TypeAreaObj,rect,out m_nCount,out m_AreapLst ); break;... 5结语 WebGIS 是GIS 发展的必然趋势。组件式WebGIS 的二次开发不仅降低了应用系统的复杂程度,而且降低了开发成本,增强了系统的易维护性和可扩展性;. NET 框架解决了跨语言、跨平台和对开放互联网标准和协议的支持,使用户可以更快、更好地开发出适合互联网特点的WebGIS 。因此,采用组件技术和.NET 构架实现WebGIS 的应用是一个比较好的解决方案。 参考文献 [1]吴信才.WebGIS 地理信息系统参考手册[M ].武汉:中国地质大学,2001 [2]刘南,刘仁义.WebGIS 原理及其应用-主要WebGIS 平台开发示例[M ].北京:科学出版社,2004[3]蒋泰,邓一星.基于Map GIS-IMS 的WebGIS 应用研究[J ].计算机应用研究,2004(12):196-197 [4] 潘爱民.COM 原理与应用[M ].北京:清华大学出版社,2001[5]谢忠,胡虹雨,李越.基于ASP 组件技术的WebGIS 解决方案[J ].中国图象图形学报,2001,6(A 版)(8):795-799[7] James Liu.组件式GIS 与MapX [EB/OL ].https://www.doczj.com/doc/0d2948150.html,/forum/dispbbs.asp?boardID =4&ID=802,2006-05-20第一作者简介:李均,助理工程师,研究方向为GIS 、GPS 理 论及应用。

高铁控制测量技术方案(090629)

新建铁路 贵阳至广州线工程措施加强后精密控制测量技术方案 中国中铁二院工程集团有限责任公司工程勘察证书甲级编号220011-kj 工程设计证书甲级编号220011-sj 中铁第四勘察设计院集团有限公司工程勘察证书甲级编号170010-kj 工程设计证书甲级编号170010-sj

二○○九年六月成都

新建铁路 贵阳至广州线工程措施加强后精密控制测量技术方案 中铁二院工程集团有限责任公司 二〇〇九年六月成都

文件编制单位: 中铁二院工程集团有限责任公司 中铁第四勘察设计院集团有限公司 中铁二院项目编制人员名单: 总体设计负责人:陈亮 编写:梅熙 复核:王智 审定:卢建康 铁四院项目编制人员名单: 编写: 朱雪峰 复核:周芳洪 审定:郭良浩

文件分发单位表

目录 1 概述 (1) 1.1编制依据 (1) 1.2工作范围及内容 (1) 1.3线路的地理位置和地形气候特点 (3) 2 既有精密控制网情况 (4) 3精密控制网改造方案 (6) 4技术要求 (8) 4.1执行的标准及规范 (8) 4.2坐标与高程系统 (8) 4.3布网原则 (9) 4.4平面控制网要求 (10) 4.5高程控制网要求 (11) 5 平面控制网测量 (12) 5.1GPS框架网(CP0)测量 (12) 5.2CPI控制网测量 (17) 5.3隧道外CPⅡ控制网测量 (20) 5.4隧道内CPⅡ控制网测量 (23) 6高程控制网测量 (24) 7 CPⅢ控制网测量 (28) 7.1CPIII平面控制测量 (28) 7.2CPIII高程测量 (29) 8 控制网维护与复测 (29) 9工程措施加强后工作量估算 (30) 9.1贵阳至贺州段工作量估算 (30) 9.2贺州至广州段工作量估算 (31) 10 提交的成果资料 (32) 附录A 控制点标志及埋石要求 (34) 附表 (38)

高速铁路控制中心信号设备(RBC、TSRS)维修作业标准

高速铁路控制中心信号设备(RBC、TSRS)维修 作业标准 1、范围 本标准规定了铁路电务系统高速铁路控制中心信号设备的无线 闭塞中心(RBC)、临时限速服务器(TSRS)维修的工作内容。 本标准适用于铁路电务系统高速铁路控制中心信号设备(RBC、TSRS)维修作业。 2、规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用 文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 铁路技术管理规程(高速铁路部分) 铁路信号维护规则 高速铁路信号维护规则 铁路营业线施工安全管理办法 高速铁路主要行车工种岗位准入管理办法 铁路局高速铁路行车组织细则 铁路局铁路营业线施工及安全管理实施细则 铁路局电务系统现场作业安全风险控制制度 铁路局高速铁路信号设备检修标准化作业程序及质量标准 铁路局高速铁路岗位准入管理实施办法

3、工作内容与要求 3.1日常巡检作业 3.1.1作业前准备 3.1.1.1召开作业准备会,作业负责人布置巡检任务,明确作 业地点、时间、任务及相关人员分工。 3.1.1.2班前安全讲话,安全员布置劳动安全和行车安全的具 体措施并督导检查。 3.1.1.3工具材料准备,检查通信工具作用良好、电池电量充足;准备好相关工具材料,并逐一清点登记。 3.1.1.4作业人员按规定正确穿防护服、佩戴标志及携带规定 的防护用具。 3.1.2登记联系 3.1.2.1严格执行《铁路局电务系统现场作业控制制度》的有 关规定。 3.1.2.2作业前,室内联系防护人员必须按照规定在《行车设 备检查登记簿》或《行车设备施工登记薄》内进行登记。 3.1.2.3作业人员须经室内联系防护人员同意,方可进行作业。 3.1.2.4作业过程中,室内联系防护人员须随时监视设备运用 情况。 3.1.3巡视检查内容 3.1.3.1检查机房温、湿度,确认无异常,无异声、异味,设 备及器材表面无过热现象。

欧洲铁路信号系统概况

欧洲铁路信号系统概况 欧洲是世界上铁路最发达的地区之—。欧洲国家多,国土面积小,各国内部的铁路网很密集。近几年来,欧洲铁路公司和信号公司在对各自的既有信号系统进行升级或者技术改造的同时,在欧盟(EU)委员会和国际铁路联盟(UIC)的推动下,欧洲7大铁路信号公司,如法国的Alstom(阿尔斯通)公司、瑞典的Adtranz公司、德国的Siemens(西门子)公司、法国的Alcatel(阿尔卡特)公司、意大利的Ansaldo(安萨尔多)公司(含法国CSEE公司)、英国WestingHouse(西屋)公司,以及Invensys公司,联合起来为信号系统的互联和兼容问题制定信号标准,并制造了相关的产品: 在较大范围内开发并应用新型计算机辅助铁路运输管理系统; 在进路控制方面,随着区域计算机联锁技术逐步取代陈旧技术,自动化系统得到广泛应用; 在列车防护和控制系统方面,研制了基于通信的列车控制系统(CBTC); 为了欧洲铁路信号系统的互联和兼容问题,制定了统一的、开放性信号系统标准,从而实现欧洲各国铁路互通运营。 本章根据搜集到的有关欧洲铁路信号系统的论文、报道和技术资料,对它们进行了归纳整理,从列车运行控制系统、欧洲统一先进的列车运行控制系统(即ETCS)、联锁系统、行车指挥系统、高速铁路,以及磁悬浮铁路等方面介绍欧洲铁路信号系统的现状和发展,有关法国、英国和德国的铁路信号系统的详细情况在另外章节专门介绍。 第一节列车运行控制系统 一、种类繁多的列控系统 欧洲有7大铁路信号公司(Alstom、Adtranz、Siemens、Invensys、Alcatel、Ansaldo、WestingHouse,它们都是UNIFE的成员),它们研制生产的列车运行控制系统(ATP/A TC)有十余种,如德国的LZB系列和FZB系列、法国的TVM系列等。这些运行控制系统有的适用于中速铁路,有的适用于高速铁路。在欧洲铁路网上,各个国家的铁路部门使用各自不同的信号制式管理列车的运营。 二、基于通信的列车运行控制系统 近年来,几乎所有欧洲国家铁路都在建立列车运行管理和保证行车安全系统方面寻求新的经济有效的技术方案,其中包括地区性线路。德国铁路和Adtranz公司共同研究制定了无线通信管理列车运行(FFB)地区性线路运营规划,在建立的列车运行管理系统中,几乎全部通过无线通信系统来实现通信服务联系,完全不用地面信号和监督线路空闲的线路设备,保证在任何线路上的列车运行安全。基于通信的列车控制系统(CBTC)按欧洲统一的安全标准设计,系统符合欧洲PrEN50129和PrEN50128标准设计的一体化安全要求(SIL4,安全完善度等级4)。 三、列车控制系统向标准化、统一化发展 目前,欧洲由于种类繁多的铁路信号帛式互不兼容,影响了欧洲铁路跨国运输的效率。在欧盟(EU)和国际铁路联盟UIC的支持下,欧洲铁路制定了统一的列车运行管理系统ERTMS(欧洲铁路运输管理系统),包括欧洲列车运行控制系统ETCS(欧洲列车控制系统)、列车与地面的双向无线通信系统GSM-R和欧洲运输管理系统ETMS。

高速铁路精测控制网的布设和测量

高速铁路精测控制网的布设和测量 1、高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为 (82.5〃),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 、长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5〃)。设AB为900米,则Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所

高速铁路测量方案

目录 1、编制依据............................................................ 错误!未定义书签。 2、工程概况............................................................ 错误!未定义书签。 2.1工程规模简介................................................ 错误!未定义书签。 2.2路线平面布置................................................ 错误!未定义书签。 2.3地形地貌........................................................ 错误!未定义书签。 3、测量方案............................................................ 错误!未定义书签。 3.1本工程测量的特点........................................ 错误!未定义书签。 3.2控制测量方案设计........................................ 错误!未定义书签。 3.2.1接桩和复测....................................... 错误!未定义书签。 3.2.2地面导线控制测量 ............................ 错误!未定义书签。 3.2.3地面高程控制测量 ............................ 错误!未定义书签。 3.3施工放样及测量............................................ 错误!未定义书签。 4、测量人员和仪器的配置 ................................... 错误!未定义书签。 5、测量技术保证措施 ........................................... 错误!未定义书签。 6、附:全站仪检定证书 ....................................... 错误!未定义书签。 7、附:水准仪检定证书 ....................................... 错误!未定义书签。 8、附:钢尺检定证书 ........................................... 错误!未定义书签。

高速铁路信号工程监理实施细则 (适用

新 建 高 速 铁 路 250-350Km/h 信号工程
监理实施细则
编制: 审核: 审批:
Kk 工程监理公司 二〇一二年四月

高速铁路信号工程专业监理实施细则


第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 第七部分 第八部分
应答器安装监理实施细则 地面固定信号机安装监理实施细则 地面信号标志安装监理实施细则 转辙装臵监理实施细则 轨道电路监理细则 光电缆线路监理实施细则 室内信号设备安装监理实施细则 信号联锁试验监理实施细则
第一部分 应答器安装监理实施细则
2

高速铁路信号工程专业监理实施细则
第一章
一、特点 略
专业工程(或专项工作)特点及其技术、质量标准
二、技术、质量标准 1.《高速铁路信号工程施工质量验收标准》(TB10756-2010) 2.《高速铁路信号工程施工技术指南》(铁建设{2010}241 号) 3.《铁路建设工程监理规范》(TB10402-2007) 4.《铁道部技术管理规程》 5.《铁路信号设计规范》 6. 施工图纸及业主下发的相关文件要求等。 (一)应答器技术、质量标准 1、应答器设备进场应进行验收,其规格、型号、数量及质量应符合设计要 求和相关技术标准的规定。 2、应答器实际设臵位臵与设计位臵允许偏差±0.5m。应答器组内相邻应答 器间的距离为5+0.5 0m。 3、应答器安装位臵与设备编号必须相符。 4、 应答器安装固定应符合下列要求: 1)在有砟轨道窄型混凝土枕上,应采用抱箍方式固定在轨枕上。 2)在有砟轨道宽型混凝土枕及无砟轨道板上,应采用化学锚栓方式安装。 3)在框架式轨道板中空地段,应采用连接支架方式安装。 4)两个或四个安装孔的应答器安装均应牢固、固定螺栓齐全。 5)应答器安装支架结构应具有抗震能力。 5、 应答器尾缆固定在轨道板、宽枕板上时,应采用卡具及采用化学锚栓固 定。应答器尾缆固定在路肩上时,应采用防护管防护并埋入沥青防水层下。应答 器尾缆与应答器连接口应连接应牢固,无松动。 6、 应答器周围无金属体空间位臵应符合下列要求:
3

(完整)高铁CP3控制网测量作业指导书

CPⅢ控制网测量作业指导书 学院: 班级: 姓名: 学号:

新建合肥至福州铁路(闽赣段) CPⅢ控制网测量作业指导书 1.1CPⅢ控制网测量的准备工作 1.1.1线下工程沉降和变形评估 无砟轨道对线下基础工程的工后沉降要求非常严格,CPⅢ控制网测量应在线下工程沉降和变形满足规范要求且通过沉降评估(以沉降评估单位出具的线下工程沉降评估报告为准)后开展。 1.1.2CPⅡ控制网加密 为了高效、准确地建立CPⅢ轨道控制网,一般情况下都需要加密CP Ⅱ控制网。CPⅡ加密的主要目地是为了方便轨道控制网CPⅢ的观测,以及弥补被损毁的和无法利用的CPⅡ点。在路基、桥梁地段CPⅡ加密可采用GPS测量在原精密平面控制网基础上按同精度内插方式加密;隧道地段应根据隧道长度布设相应精度要求的洞内CPⅡ控制网。 1.1.3精测网全面复测 按《高速铁路工程测量规范》要求, CPⅢ建网前应对精测网(CPI、CPⅡ及二等高程控制网)进行复测,并采用复测合格的精测网(CPI、CP Ⅱ及二等高程控制网)成果进行CPⅢ轨道控制网测设。 (1)采用GPS复测CPⅠ、CPⅡ控制点时,复测与原测成果较差应满足表1.2-1、表1.2-2的规定。

注:表中坐标较差限差指X 、Y 坐标分量较差。 表1.2-2 GPS 复测相邻点间坐标差之差的相对精度限差 注:表中相邻点间坐标差之差的相对精度按式1.2.3计算 ()s Z Y X 2ij 2ij 2ij ?+?+?=s d s 式1.2.3 式中:△Xij=(Xj –Xi )复 –(Xj –Xi )原 △Yij=(Yj –Yi )复 –(Yj –Yi )原 △Zij=(Zj –Zi )复 –(Zj –Zi )原 s---相邻点间的二维平面距离或三维空间距离; △Xij ,△Yij — 相邻点i 与j 间二维坐标差之差(m ); △Zij — 相邻点i 与j 间Z 方向坐标差之差,当只统计二维坐标差之差的相对精 度时该值为零(m )。 (2)采用导线复测CP Ⅱ控制点时,满足相应等级规定后,应进行水平角、边长和平面点位较差的分析比较,较差应符合表1.2-3的规定: 表1.2-3 导线复测CP Ⅱ控制点精度要求 (3)水准点间的复测高差与原测高差之较差限差为±L 6。 2 技术依据 (1)《高速铁路工程测量规范》(TB10601-2009); (2) 《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号); (3)《关于进一步规范铁路工程测量控制网管理工作的通知》(铁建设[2009]20号);

浅谈高速铁路信号系统

浅谈高速铁路信号系统 发表时间:2018-06-20T15:28:32.577Z 来源:《建筑学研究前沿》2018年第2期作者:张广智 [导读] 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。 通号工程局集团有限公司天津分公司天津市 300240 摘要:中国高速铁路自九十年代到如今,经过了十多年的科学研究和时间积累,依靠国内自身的技术力量,走过了学习、引进、创新、超越的一个不平凡的道路,形成了中国高速铁路技术体系,中国高铁是中国改革开放成果的一个成功典范。目前中国高速铁路营运里程两万五千多公里,占世界营运里程三分之二,“复兴号”动车组奔驰在祖国的大江南北,中国高铁为中国国民经济发展插上腾飞的翅膀。而高速铁路信号系统是高铁核心技术,被形象的比喻为高铁的眼睛。 关键词:高速铁路;信号 1.高速铁路与普速铁路的区别 高速铁路最重要的指导理念是动车组在经过特殊建造的专用线路上高速、高密度安全运行并得到最佳匹配。与普速铁路的主要区别有:1.列车运行速度大于200KM/h;2.列车晚点在1-2分钟;3.列车追踪间隔在3-5分钟;4.采用全封闭式、全立交;5.采用列车自动控制(ATC)系统,地面不设信号机,司机按车载信号显示行车,具有超速防护系统;6.车站进路不用值班员办理而是由调度中心的计算机统一控制;7.站间距离较大,区间建有无人值守的中继站;8.具有安全监控系统,监视轴温、线路、风、雨、地震灾害并进行报警。 2.保证高速列车运行安全的主要手段 火车是靠车轮在钢轨上运行的,停止时靠车轮踏面产生摩擦力使列车减速。考虑最不利条件下,也能安全停车并顾及旅客乘车舒适性,司机制动时的平均速度一般只有0.5-0.8m/s时,时速120KM/s.时,时速120km/h的列车制动距离约为800m,列车制动距离与列车制动初速的平方成正比。制动初速高,制动距离较长。 高速列车采用普通自动闭塞,红灯停、绿灯行,闭塞分区要达到6~8KM,才能保证安全。这样线路上的列车间隔加大,降低了通行能力。因此高速铁路闭塞分区设为1~2km,但是信号要分成若干速度等级,这样才能保证安全又满足行车密度的要求。 普速铁路地面信号机显示距离为1000m,时速120km/h的列车走过这段距离为30s,如果列车时速为320120km/h则只有11s。如果闭塞分区为1.5km,则高铁列车司机每十几秒就要辨认一次信号显示,既紧张又不安全。国外曾做过实验,当列车速度超过200120km/h时,司机辨识信号的错误率会大大增加,据此不可以使用地面信号机指挥列车运行。 司机靠地面信号驾驶列车需要经过识别信号、理解信号、按照信号要求操纵列车。司机从看信号到做出正确反应需要4~5s左右,任何环节出现错误,都会造成事故。据此高速铁路闭塞改为列车自动控制系统(ATC),其特点是:1.以车载信号显示为行车凭证;2.用速度命令代替色灯含义;3.信号直接控制列车制动。 3.高速铁路信号安全系统 高速铁路信号安全系统是完成行车控制、运营管理的综合自动化系统。这个系统主要由行车、指挥系统、列车运行自动控制系统、车站联锁系统等组成。 3.1综合调度系统:高速铁路有许多车站,线路上有许多列车要协调一致运行,必须实行统一的行车指挥,高速铁路的服务宗旨是:快速、舒适、安全、正点。要做到这八个字光靠总调度协调调度员、调度员向所属基层站、段下计划、下命令,再向各站、段值班人员实施,这套管理需要人数众多,环节也多。为了取得高效率,需要利用先进的通信网和计算机组成综合调度系统。全线所有列车位置、进路、信号及各种行车设备状态、列车及旅客售检票情况、接触网及供电设备状况显示在调度中心。 为了使各列车均能按运行图正点运行,调度中心的计算机自动排列进路,控制车站的信号设备,直接通过列控系统向列车发出速度命令。这一切都自动进行,只有在特殊情况下例如设备故障、天灾、人祸等,调度员才干预计算机计算机控制亲自下达命令。计算机系统在涉及安全或者不允许中断工作时多采用多系统设置。调度中心一般采用两套或者三套系统,并且供电和通信网也有冗余并形成闭环。保证高速列车的指挥一般不会中断,列车的正点率也会大大提高。 调度中心主要任务是:行车计划编制、行车调度、机车车辆调度、电力调度、客运调度及旅客服务、行车设备监视及维修管理、维修点及天窗点管理、安全监控和应急抢险指挥。 3.2列车运行自动控制系统(ATC):列车运行控制系统直接控制列车运行,主要由车载设备和地面设备组成。列车控制系统在车站设有控制中心,如果距离较大,则每15~20公里还要设置单独的控制中心。控制中心通过电缆与铁路上的轨道电路、信号机等设备相连。主要王城列车位置检测、形成速度信号并将此信号传递给列车。车载设备将按照速度信号控制列车制动。地面设备与车载设备一起才能完成列车运行控制功能。 3.3车载设备主要由天线、信号接收单元、制动控制单元、司机操作显示屏、速度传感器等组成。地面信号命令通过轨道电路向机车传送。机车头部的天线接收速度信号命令,经过信号接收机放大、滤波、解调后将此命令的数据送到司机显示器和制动控制单元。制动控制单元收到速度传感器传来的信号,测量出列车的实际速度,将超级速度与信号命令比较,如果判断列车需要制动则产生制动信号,直接控制列车制动系统,列车就会自动减速和停车。列控系统主要任务是:1.防止列车冒进信号;2.防止列车错误出发;3.防止列车超速通过道岔; 4.防止列车超过线路允许的最大速度; 5.监督列车通过临时限速区段;6在出入库无信号区段限制列车速度。为保证列车运行控制系统不间断的工作和加强设备维修和管理,列车运行控制系统中在地面和车上都安装有监视设备。地面监视系统可以检测信号机、轨道电路、地面控制中心的接收和发送设备等。检测结果可以在维修工区显示、储存,也可以通过通信网送往调度中心。 车上监视设备可以将列车运行过程中速度信号、制动装置动作以及列车实际速度和司机操作等状态保存下来。 3.4列控系统是高速铁路信号控制核心,目前国内普遍使用的高速铁路列控系统基于GSM-R无线传输方式的CTCS3级和ZPW-2000轨道电路与点式应答器构成的CTCS2级组成的冗余配置的列控系统,预留CTCS3级系统接口。CTCS2级系统与既有200km/h提速线列控系统兼容。同时作为CTCS3级系统备用系统,CTCS2级系统中的轨道电路、点式应答器等在CTCS3级系统中作为列车占用检查和列车定位对标的平台。CTCS2级列控系统由车站列控中心,ZPW2000轨道电路、点式应答器设备及车载列控设备等组成。CTCS3级列控系统在

高速铁路二等高程控制网施工复测(可编辑修改word版)

高速铁路二等高程控制网施工复测 1.一般规定 1.1工程开工前,施工单位应会同设计单位参加由业主组织并有监理单位参与的控制桩和测量成果资料交接工作。 1.2施工单位应对设计单位交付的高程控制网进行同精度复测。 1.3为确保高速铁路轨道的线性,相邻施工标段、相邻施工单位之间应共同协商并现场确认交界处附近的同一个水准点作为搭接和公共点进行复测。双方应签订共用控制点协议并使用满足精度要求的相同高程成果。 1.4线下工程开工前或至迟在结构工程施工前应完成二等水准点的复测工作。 1.5高程复测应采用几何水准测量。 1.6高程控制网布网要求应按表1.6 规定执行。 表 1.6 控制网布网要求 1.8测量仪器的配置应符合下列规定。 水准仪标称精度应不低于DS1并应配相应的因瓦尺。 L 1.9当复测的水准基点间高差不符值二等超过6 时应再次测量确认;当核实复测精度符合相应等级要求后,应将复测成果报设计单位认定。满足精度要求时,应采用设计成果。 2.高程控制网复测 2.1二等水准基点的复测和加密测量可采用几何水准同时进行。 2.2高程控制网复测宜优先使用满足精度要求的电子水准仪。若采用补偿式自动安平水准仪时,其补偿误差△α不应超过0.2″,并应符合《国家一、二等水准测量规范》(GB/T 12897-2006)、《新建铁路工程测量规范》的相关规定。二等水准测量的主要技术标准应符

合表2.2-1 的规定。水准测量作业的主要技术要求应符合表 5.2-2 的规定。观测的读数限差应符合表5.2-3 规定。 表 2.2-1 水准测量主要技术标准 注:L 为往返测段、附合或环线的水准路线长度,单位为km。 表 2.2-2 水准测量作业的主要技术要求 2.3二等水准测量应进行测段往返观测。测站观测宜采用下列观测顺序: 往测:奇数站采用“后-前-前-后”,偶数站采用“前-后-后-前”。 返测:奇数站采用“前-后-后-前”,偶数站采用“后-前-前-后”。 由往测转向返测时,两根标尺应互换位置。 2.4二等水准测量观测读数和记录的数字取位: 表2.4.1 二等水准测量读数取位 仪器读数取位(mm) DS05 0.05 DS1 0.1 数字水准仪0.01 表 5.4.2 二等水准测量计算取位

高铁CPIII控制网测量

高铁CPIII控制网测量 摘要:本文针对客运专线,对CPIII控制网的构成,布网要求,观测方法等进行简单的阐述,对测量过程中的重点和难点进行探究,对较大缓和曲线测量要领进行分析,进一步明确了CPIII控制网的重要性。 关键词:高铁;CPIII控制网;布网要求;测量; Abstract:Based on the passenger dedicated line, the CPIII control network structure, network requirements, observation method, this paper briefly discusses the measuring process, the key point and difficulty in the study of larger, transition curve measurement methods were analyzed, further clarified the importance of CPIII control network Key words: High-speed railCPIII control networkNet requirements Measurement 概述 CPIII控制网又名基桩控制网,是高速铁路测量最基本的控制网,在高速铁路的修建过程中,从线路的中线放样、底座混凝土钢模放样方案、轨道板调整到钢轨精调系统都会用到CPIII控制网,CPIII控制网在施工中显得极为重要。CPIII 网具有测量精度高、点位分布密集、外业观测工作量大、使用周期长等特点。目前,我国客运专线无砟轨道CPIII网控制测量方法采用从德国引进的方法,国内铁路施工技术人员有必要在消化、吸收国外CPIII测量经验的基础上进行进一步探讨,形成符合我国无砟轨道施工实际需求的作业方法与技术标准,以满足当前国内客运专线无砟轨道施工测量的要求。 1 高速铁路控制网的构成 精密测量是建设高质量高速铁路最重要、最基本的条件之一,必须严格按照相关规定,适时建立“四网合一”的控制测量网络。 高速铁路平面控制网一般由四级构成,分别为CP0框架基准网、CPI基础平面控制网、CPⅡ线路控制网和CPIII控制网。 2CPⅢ布网要求 CPⅢ控制点距离布置一般为60m左右,且不应大于80m 离线路中线3-4m,且应成对布设。CPⅢ控制点布设高度应比轨道面高度高30cm左右。

高速铁路信号系统的抗电磁干扰技术研究

高速铁路信号系统的抗电磁干扰技术研究 发表时间:2019-06-21T16:03:58.057Z 来源:《防护工程》2019年第6期作者:刘磊 [导读] 作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。 中铁建电气化局集团南方工程有限公司湖北武汉市 430074 摘要:作为高速移动的复杂巨系统,高速列车在高速运行的过程中,整个系统受到了数量众多的电磁干扰,且相关干扰多为突发性脉冲干扰。另一方面,高速铁路采用的综合接地方式、共用的接地钢轨使得电磁骚扰传输耦合途径错综复杂,这些均对高速铁路信号系统的抗电磁干扰提出了较高挑战,由此可了解本文研究具备的较高现实意义。 关键词:高速铁路;信号系统;抗电磁干扰技术;研究 1高速铁路信号系统抗电磁干扰技术措施 1.1基本抑制措施 高速铁路信号系统的抗电磁干扰技术措施一般由三个方面入手,以高速铁路车载信号系统为例,具体的抑制措施如下:①骚扰源:高速铁路的电磁噪声在1.88~2.6GHz频段基本不会对设备的孔缝、信号端口、电源线端口造成影响,设备的天线端口也不会受到影响,因此仅需要考虑实际工程中的具体设备以采用针对性措施。②耦合途径:需考虑电缆的合理布线和接地,并保证不同类别的电缆间隔敷设,不同类别电缆之间的最小距离应遵循(表1)规定,同时保证电缆间互为直角;如出现不同类别间电缆最小距离无法满足情况,需设法将电缆隔开,一般采用连接整体屏蔽、金属电缆槽、金属板、金属管的方式,在信号电缆和电力电缆共存情况下,还需要重点关注电路馈线与回流电缆的敷设距离,保证二者尽可能拉近,将在接近导电的机车结构处安装电缆能够有效抑制电缆的发射场,一般情况下电缆屏蔽层需接地,且需要关注机箱屏蔽,机箱孔缝尺寸需满足最小波长要求,必要时可通过安装金属密闭塾片、导电性填料进行改善,接地线应短而宽并与接地面实现可靠搭接,电缆合理的接地和布线可有效提升其抗电磁干扰能力。③敏感设备:信号设备的电磁兼容性也需要得到重视,由于高速铁路车载信号系统本身属于敏感设备,该设备本身的防护措施必须得到重视,这种重视需体现在设计层面。具体来说,通信系统在设计阶段应选择适当的接收电平,电磁兼容设计需使用,浪涌防护器件设置电压限幅环节,瞬变电压抑制器、压敏电阻、硅雪崩二极管、放电管均属于常用的浪涌防护器件,此种措施下冲击电流可得到较好抑制(如雷电、变电所过流保护开关瞬时开闭引发的相关现象)。 表1 不同类别电缆之间的最小距离 同样以车载信号系统为例,其处理流程可概括为:“故障现象分析→现场实际测试→干扰耦合途径验证→敏感设备分析→抗干扰措施实施→验证试验”,通过列举可能导致故障现象的因素、选择针对性较强的仪器设备、围绕典型干扰传输耦合途径开展分析、建立被干扰信号系统电磁抗扰度模型,即可完成高质量的电磁干扰故障处理,最终合理应用抗干扰措施并验证其有效性,即可有效解决电磁干扰导致的故障问题。为取得优秀的高速铁路信号系统抗电磁干扰效果,一般需同时应用屏蔽、接地、滤波技术,但如果三种技术存在应用不当情况,则很容易引起更为严重的电磁干扰问题,因此必须保证抗干扰措施应用的针对性、定制性,并从整个系统角度思考问题,避免解决问题的过程引入新的电磁干扰耦合,结合故障实际和相关经验属于其中关键,这些必须得到相关业内人士的重点关注。 2实例分析 2.1故障现象分析 为提升研究的实践价值,本文选择了某高速列车作为研究对象,在通过某一位置时,该高速列车出现了ATP(车载自动列车防护系统)和多次报人机交互单元DMI出现通信超时故障,结合故障现象开展分析,技术人员初步确定了电磁骚扰源及其耦合途径,具体判断如下:①由于DMI临近的弱电设备未出现类似故障(通信超时故障报警时),因此可初步判断空间的辐射电磁场骚扰与主要电磁干扰信号基本不存在联系。②与DMI共用电源的弱电设备未出现类似故障,因此来自电源线的传导电压/电流骚扰与主要电磁干扰信号基本不存在联系。③ATP与DMI间的Profibus总线平行于220V交流输电线平行走线,且长度为23m,电压骚扰信号进入Profibus总线因此获得可行性较高的方式,即线间的容性耦合方式,ATP与DMI之间的数据传输也很容易出现误码故障,因此可初步判断信号线的传导电压骚扰为干扰源。 2.2敏感设备分析 图1为车载ATP系统基本结构图,结合该图不难发现,主机柜内的设备主要有JRU单元、BTM单元、DC/DC电源、车载电台、ATP核心运算单元,主机柜外则安装有天线、速度传感器、DMI单元等设备,ATP与DMI间的数据传输采用Profibus总线,设备的连接采用菊花链结构,在ATP核心运算单元支持下,总线可实现间隔性的DMI状态查询,必要时需上报DMI通信超时故障,如出现多次无法收到响应数据包的

高速铁路控制测量方法及精度优化措施研究

高速铁路控制测量方法及精度优化措施研究 摘要:近年来,我国的交通行业有了很大进展,高速铁路工程建设越来越多。 基于高速铁路项目施工中精密工程测量的特殊性及复杂性,将三维数字测量技术 应用其中尤为重要,但我国三维数字测量技术相对还不够成熟。文章通过高速铁 路精密工程控制测量精度进行分析研究,并提出相关的优化措施与参考建议,为 日后相关工作的进一步开展奠定坚实基础。 关键词:高速铁路;控制测量;问题 引言 铁路不仅属于一种重要的交通方式,而且还与一个国家的经济发展有着极为 紧密的关系。近几年,随着我国社会经济的蓬勃发展,我国铁路建设也步入了一 定的发展阶段,特别是高速铁路成功建设与通行,更是促使我国交通运输进入了 世界先进发展之列。高速铁路的一大主要特点就是效率高、速度快,同一般铁路 不同,高速铁路对于基础控制测绘工作与轨道工程精度的要求更为严格。传统的 测量方法已经不能很好地满足当前时代的发展需求,而且之前的铁路控制网也存 在装点密度不足与精度低等诸多问题,所以,建立一套轨道铁路精密测量控制网 也就显得尤为关键。 1高速铁路控制测量方法 1.1选择适用的测量方法及技术 首先,可以采用三维可视测量分析法,对其桥梁承台进行三维测绘,并将图 像及影像进行保存,通过计算机及精度测绘软件对其测量数值进行核准。其次, 采用数字测量技术通过卫星定位对其地理“数据”、结构“数据”进行采集,并通过 其后测算得出最终结果。最后,可以将二者测量结果进行比对,对存在的差异性 进行汇总分析,其后得出最终精准数值。因此,在测量精度控制中其方法、技术 的采用尤为重要。方法技术的采用主要依照以下条件:1)项目工程的结构性及结 合性,通过对精密项目的掌握了解及影响因素排查,才能起到实质性测量精度控 制目的。2)测量技术的保障性与效果性,测量技术及相关仪器的效果保障尤为 重要,所以一定要对测量仪器、设备等进行有效维护,并对传统技术、滞后技术 进行相应创新,以保障测量技术、设备仪器的质量、效率性。综上所述,针对不 同精度工程应采取不同测量技术及方法应用。 1.2在控制加密测量中的应用 通常情况下,高速铁路工程控制点需要设置在高速线路中线两侧,而在实际 施工中控制点极易被破坏,且工程测量精度要求比较严格,相关人员需要做好控 制点加密工作。传统的控制测量方法需要控制点之间通视,需要消耗大量的人力、时间,无法确保测量精度,而GPS静态测量技术无需点与点之间通视,但需要先 进行外业测量再处理内业数据,无法及时获取定位结果,测量效率相对较低。GPS-RTK技术的测量效率、测量精度相对较高,满足了各项高速铁路工程对精度 的要求,适用于高速铁路工程中的控制加密测量工作。 1.3基于相对测量原理的矢矩法 当轨道平顺性和轨道几何参数较好时,既有线控制网测量一般采用相对测量 的方法进行调整优化。与卫星定位测量绝对坐标相比,基于相对测量原理的矢矩 法更加方便快捷,便于实际施工作业时灵活运用。相对测量控制桩测量包括测量 控制桩到基准轨的支距(横向偏距)和高差(垂向偏距),确定轨道相对于控制桩的相 对坐标,建立相对坐标网。控制桩的位置可以灵活设置,无需绝对坐标。测量时,

高速铁路精测控制网的布设和测量

1 高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。设AB为900米,则 Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示: 控制网级别测量方法测量等级点间距备注 CPⅠGPS B级≥1000m≤4㎞一对点 CPⅡ GPS C级 800~1000m 导线四等

相关主题
文本预览
相关文档 最新文档