当前位置:文档之家› 高速铁路施工控制网的若干问题分析

高速铁路施工控制网的若干问题分析

高速铁路施工控制网的若干问题分析
高速铁路施工控制网的若干问题分析

高速铁路施工控制网的若干问题分析

摘要:截止2016年底,我国高速铁路通车里程数突破2.2万公里,位居世界第一。随着高速铁路建设规模的不断增加和施工技术水平的日趋成熟,人们对高铁

质量也提出了更加严格的要求。与普通铁路相比,高铁施工中对测量精度的要求

更高,不断革新高速铁路控制网施工测量技术,成为保障高铁运行安全和提高施

工质量的关键。文章首先概述了国内外高铁施工控制网的发展现状,随后在分析

控制网测量存在问题的基础上,就如何进一步精确测量结果、消除误差影响提出

了几点建议。

关键词:高速铁路;控制网;存在问题;解决措施

为了切实保证高速铁路施工质量和行车安全,要求在施工之前必须开展严格的测量工作,以便于为施工平面控制提供必要的数据参考。在以往的施工中,经常会发现因为测量误差过大,导致控制网测量数据不匹配的现象,不仅延误了正常的施工进度,还有可能导致整条线

路无法正常联通。因此,必须要积极革新技术、引进设备,推动控制网测量的现代化发展,

提高测量结果的精确度。

一、高速铁路施工控制网测量的现状分析

高速铁路施工中,目前所用的测量控制技术虽然也能够为工程施工提供必要的数据支持,但是随着我国高速铁路建设项目的快速增长,无论是数据的获取速率还是精确程度,都难以

满足现有工作的要求。近年来,国内外许多国家在控制网测量技术方法投入了大量的人力、

物力和财力,极大地推动测量技术的发展。

1、国外高速铁路测量技术

不同国家由于在发展历史、经验积累和支持力度等方面的不同,因此高铁测量技术的实

际水平也有很大差异。本文仅以部分发达国家为例,就其高铁测量技术现状进行简单概述。

其中法国、德国等老牌资本主义国家由于高铁建设历史较久,多年来积累了相对丰富的经验,包括现场测量管理体系和后期数据复检等方面,都有相对成熟和完善的制度做保障;日本是

近年来高铁技术发展最快的国家之一,早在20世纪80年代,日本高铁最快速度就可以达到200km/h,高铁控制网测量技术也长期位居世界前列;进入21世纪后,韩国、印度等国家也

加强了对高速铁路建设的重视,在国家资金和技术支持的推动下,控制网测量技术也取得了

较为明显的发展。

2、我国高速铁路测量技术

1999年始建的秦沈客运专线被认为是国内高速铁路的开端,历经近20年的发展,我国

高速公路不仅通车里程数位居世界第一,而且高速铁路施工的相关技术水平也走在世界前列。早在2009年铁道部颁布的《高速铁路工程测量规范》中,就对施工控制网测量流程、标准

参考和技术要求作出了明确要求。随着现代测量设备的升级,其适用性和精确度都有了很大

程度的提升,为技术人员开展全面的控制网测量提供了数据支持。例如用全站仪代替经纬仪,利用电子设备、信息设备代替传统的光学设备等。当然,我们也应当树立发展的眼光,紧跟

高速铁路建设需求,不断进行技术革新,推动控制网测量工作更进一步。

二、高速铁路控制网测量存在的问题

1、平面控制网测量误差偏大

根据《高速铁路桥涵工程施工技术指南》中的相关说明,我国高速铁路平面控制网主要

分为四级布设,分别是CP0(框架控制网)、CPI(基础平面控制网)、CPII(线路平面控制网)和CPIII(轨道控制网)。其技术要求如表1所示。

本文主要在施工单位的角度浅析高速铁路线下控制网Ⅰ和Ⅱ的相关测量问题。因为铁路

建设为线状的特殊性导致控制网需要布设成条带状,并且有较大的跨度,有时甚至跨越好几

个投影带。而Ⅰ控制网为沿线路周围一次性布网,统一观测并整体平差,施工复测时同样要

尽可能完成全线复测。在线路施工测量过程中复测线路平面控制网一般交由各施工单位独立

高速铁路道控制网

高速铁路轨道控制网 客运专线铁路精密工程测量是相对于传统的铁路工程测量而言,客运专线铁路的平顺件要求非常高,轨道测量精度要达到毫米级。其测量方法、测量精度与传统的铁路工程测量完全不同。通常把适合于客运专线铁路工程测量的技术体系称为客运专线铁路精密工程测量。把客运专线铁路精密工程测量控制网简称“精测网”。 客运专线铁路精密工程测量的内容有:线路平面高程控制测量、线下工程施公告测量、轨道施工测量、运营维护测量。 一、客运专线精测网特点 1.传统的铁路工程测量方法 初测:初测导线、初测水准; 定测:交点、直线、曲线控制桩(五大桩); 线下程施工测量:以定测控制作为施工测量基准; 铺轨测量:穿线法、弦线支距法或偏角法测量。 2传统的铁路测量方法的缺点 (l)平而坐标系投影误差大; (2)不利于采GPS、RTK、全站仪等新技术采用坐标法定位法进行勘测和施工放线; (3)没有采用逐级控制的方法建立施工控制网,线路测量可重复性较差;中线控制桩连续丢失后,很难进行恢复; (4)测量精度低:导线测角中误差12.5″、方位角闭合差25″Vn;全长相对闭合差:1/6000;施工单值复测经常出现曲线偏角超限;改变设计偏角施工,设计线形被改; (5)轨道的铺设不是以控制网为基准按照设计的坐标定位,而是按照线下工程的施工现状采用相对定位进行铺设。 由于测量误差的积累,轨道的几何参数与设计参数不一致。

3.客运专线铁路精密工程测量的特点 (1)确定了客运专线铁路精街T程测量“三网合一”的测量休系:勘测控制网CP I、CPⅡ、准基点;施工控制网CPI、CPU、水准基点、CPⅢ;运营维护控制网:CPⅢ、加密维护基桩。并要求:勘测控制网、施工控制网、运营维护控制网坐标高程系统的统一;勘测控制网、施工控制网、运营维护控制网起算基准的统一;线下工程施工控制网与轨道施工控制网、运营维护控制网的坐标高程系统和起算基准的统一;勘测控制网、施工控制网、运营维护控制网测量精度的协调统一; (2)确定了客运专线铁路工程平面控制测量分三级布网的布设原则; (3)提出了客运譬线铁路工程测带平面坐标系统应采用边长投影变形值≤l0mm/km(无砟)/25mm/km(有砟)的工程独立坐标系; (4)确定了客运专线铁路轨道必须采用绝对定位与相对定位测量相结合的铺轨测量定位模式; (5)确定了客运专线无砟轨道铁路工程测量高程控制网的精度等级; (6)提出客运专线无砟轨道铁路工程控制测量完成后,应由建设单位组织评估验收的要求,并制定了评估验收内容和要求。 二、客运专线精测网的建立 l测量基本工作流程

高速铁路精测控制网的布设和测量

高速铁路精测控制网的布设和测量 1、高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为 (82.5〃),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 、长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5〃)。设AB为900米,则Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所

高速铁路隧道工程衬砌标准化施工

隧道衬砌标准化施工措施 1.仰拱施工 (1)仰拱开挖 洞身仰拱开挖时,采用控制周边眼外插角度的办法,确保开挖平顺,严禁仰拱欠挖;爆破之后要求基底清理干净,必须无虚渣、无积水。 (2)五线上墙 为有效控制水平施工缝位置、仰拱钢筋和盲管位置,在边墙初支表面上测量放样“五线”(即:仰拱混凝土顶面标高线、仰拱钢筋搭接上下线、纵向和环向盲管线),并用红线明显标记(包括接地钢筋位置),为仰拱及后续防排水及衬砌施工提供控制依据。仰拱钢筋安装时分别自施工缝截面环向延伸固定长度,且仰拱内外环向钢筋在隧道环向、纵向均长短相间布置。环向盲管线根据设计要求,一般地段每组台车设置一道;岩溶发育地段需加密设置。如图 1.1 所示。 图 1.1 仰拱五线上墙 (3)仰拱钢筋预弯及定位 采用自制仰拱钢筋预弯机对仰拱钢筋进行预弯,利用液压千斤顶调节弧度大小,保证成型质量。如图1.2 所示。 图 1.2 仰拱钢筋预弯平台

安装仰拱钢筋时由测量定位(共九条:中间 1条,两侧位置各 4 条),确保钢筋间间距、排距和弧的准确。 仰拱钢筋安装时必须使用钢筋卡,使钢筋间距均匀。钢筋卡距可用角钢刻槽或钢管焊接卡具,相邻槽中心间距为设计钢筋间距。钢筋卡长度一般取6m,可根据施工方便设置长度。如图1.3 所示。 图 1.3 仰拱钢筋定位 (4)仰拱弧模与端模安装 通过轻质曲面钢模板,与仰拱端头钢模连接,整体采用地锚加固的方式施工,实现仰拱与仰拱填充的分层浇筑。端模与腹模连接,确保仰拱尺寸准确;通过整体曲面腹模,确保仰拱设计弧面和曲率;通过分窗进料振捣,保证仰拱混凝土密实度和强度;通过使用上、下钢端模,实现了仰拱环向中埋式止水带的准确定位。如图 1.4 所示。 图 1.4 弧模与端模 (5)纵、环向排水管安装 纵向排水盲管采用土工布包裹;盲管中间不得有凹陷、扭曲等,以防泥砂淤积堵塞;纵向排水盲 管按设计规定的排水坡度安装,并用钢筋卡固定,严格按照设计尺寸控制埋设高度。 (6)混凝土浇筑 混凝土浇筑过程,必须保证仰拱与拱墙小边墙一次性整体浇筑,确保边墙混凝土完整性,保证混 凝土浇筑质量良好。仰拱填充必须在仰拱衬砌浇筑完成之后分次浇筑,确保两者厚度、强度符合设计要求。 2 防排水安装

铁路施工控制测量

铁路施工控制测量 编著李学仕 订购此书:https://www.doczj.com/doc/e612540569.html,/sm.asp

内容提要 本书从测量基础理论开始,讲述普速和高速铁路工程施工控制测量所涉及的主要测量工作任务、测量方法和数据处理技术,主要包括测量基础知识、测量误差与平差基础、线路测量、高程测量、边角网测量、GPS网测量和隧道、桥涵的控制测量和测量数据处理方法;并配合工程测量数据处理通用软件GSP介绍了相应的数据处理方法;包含了作者多年在工程测量技术领域中的实践经验和研究、开发成果。 本书可作为铁路工程施工单位现场测量工程师、测量主管技师和测量人员学习、查阅和提高的工具书,也可作为非测量专业毕业的大专院校毕业生走上测量主管岗位的培训、入门、快速上手的材料,还可作为各大中专院校测量专业的参考书。

第1章测量基础 1.1 铁路施工控制测量概述 1.1.1 铁路施工控制测量目的和意义 1.1.2 铁路施工控制测量的内容与手段 1.2 测量参考系 1.2.1 椭球体与空间直角坐标系 1.2.2 平面坐标系及独立坐标系 1.2.3 高程系统 1.3 测量基本术语和数学公式 1.3.1 方位角与坐标增量 1.3.2 导线计算 1.3.3 闭合差计算 1.4 主要测量方法 1.4.1 水准测量 1.4.2 角度距离测量 1.4.3 GPS测量 1.5 测量误差与平差 1.5.1 误差概念 1.5.2 中误差与限差 1.5.3 方差与权 1.5.4 方差传播 1.5.5 条件平差与间接平差原理 1.5.6 附有条件的坐标平差方法 1.6 实用计算 1.6.1 坐标转换 1.6.2 面积和土方测量 第2章线路测量 2.1 线路元素及其计算 2.1.1 线路元素 2.1.2 曲线要素 2.1.3 线路里程 2.2 铁路线路设计参数 2.2.1 高速铁路轨道平顺性参数 2.2.2 曲线半径 2.2.3 缓和曲线 2.2.4 夹直线 2.2.5 线间距 2.2.6 轨道超高 2.3 线路坐标计算 2.3.1 直线段 2.3.2 圆曲线段 2.3.3 缓和曲线段 2.3.4 边桩坐标 2.4 中桩里程反算 2.4.1 直线段 2.4.2 圆曲线段 2.4.3 缓和曲线段

高速铁路隧道施工控制爆破方案设计

文章编号:1009-6825(2013)06-0156-02 谈高速铁路隧道施工控制爆破方案设计 收稿日期:2012-12-15 作者简介:赵君(1980-),男,工程师 赵君 (中铁十八局集团有限公司,天津300222) 摘要:就京沪高铁金牛山隧道下穿既有公路的综合施工技术作为研究内容,结合金牛山隧道的特点,采用经验公式对爆破方案进行设计,以此确定单段最大装药量,从而为工程实践提供参考。 关键词:隧道,数值计算,爆破 中图分类号:U455.6文献标识码:A 1工程概况 京沪高速铁路作为我国高速铁路网中“四纵”的重要组成部分,于2008年4月开工建设,线路总长度达1300余千米,设计时速350km/h,是新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高速铁路现已建成并于2011年6月正式开通运营。本文研究之金牛山隧道位于山东省泰安市岱岳区六郎坟村与高新区小官庄村之间,隧道进口里程为DK465+335,出口里程为DK467+240,隧道全长1905m,隧道内为单面坡,坡度3?和12?的上坡,隧道所处地形起伏较大,其中隧道最大埋深为35.37m,隧道在里程为DK466+230 DK466+330区段下穿京福高速公路C匝道,此区段内埋深仅为9.8m,属于超浅埋隧道,在DK466+560 DK466+660段下穿京福高速公路正线,其中高速公路宽度为36m,隧道与公路匝道和正线的交角分别为14.57?和36.7?,属于斜交。隧道的工程地质情况为风化花岗片麻岩,局部夹杂角闪岩和部分石英,其中围岩已经风化,尤其接近地表埋深较浅处节理裂隙较发育,岩石比较破碎并有地下裂隙水发育,属Ⅳ级围岩。 2控制爆破方案设计 当隧道采用钻爆法进行开挖时,由于炸药的爆破产生的震动,对既有隧道的结构和洞周围岩影响非常大,并且使得既有隧道比静力状态下更容易遭到破坏。京沪高铁金牛山隧道为超浅埋隧道,围岩风化比较严重,加之地表有既有高速公路通过,在进行爆破开挖时,这种破坏将会更加严重。所以如何将爆破对隧道支护结构、围岩以及上部的既有公路的影响减小到最低限度是本文所要研究的核心内容。 1)现行爆破震动影响控制标准。工程中常以引起结构的位移、速度和加速度等物理量来衡量爆破震动的强度,那么就必须要有一个临界值或者说标准来衡量这些物理量对既有结构的影响,并由此来判断爆破震动强度。在实际爆破工程中以上几个因素一旦超过临界值,就认为相应岩体已经被破坏,而这一临界值被称为爆破震动的破坏标准。对爆破震动的影响进行了文件性总结并给出了极限值(见表1)。 表1爆破的影响和特定的Ⅴ极限值的文件性总结表 种类V/cm·s-1类型岩石注释 地下爆破试验(美国)46引发值砂岩在直径2m 10m的毛洞中进行高强爆炸使用,实验中有些岩石落下Koi隧道(日本)33.8引发值花岗岩混凝土衬砌中出现小裂缝瑞典30临界值杂岩未衬砌隧道中有石块落下 瑞典7限值短时间连续爆破时,采用该值 北美空防联合司令部5.6引发值旁边隧道爆破时,地下洞室无损坏瑞士3限值使用或未使用混凝土衬砌的地下室和隧道需强制实行该限值Dinorwic(英国)4.5限值强制实行该限值主要在于防止破坏预应力混凝土和安装的仪器 我国学者吴德伦等人参考欧洲国家的做法,建议的爆破震动标准见表2。 表2爆破震动控制建议标准 建筑物分类频率范围/Hz质点震动速度/cm·s-1 现浇混凝土结构<103.5 钢结构10 403.5 4.0 坚固堡坝40 1004.0 5.0良好设计的砖混结构<102.5 一般条石砌筑堡坝10 402.5 3.0 挡土墙40 1003.0 3.5灰岩砂浆或条石建筑<101.5 砖木混合结构10 401.5 2.0 木结构40 1002.0 2.5 陈旧危险建筑<100.8 精密防震设备建筑10 400.8 1.0 历史建筑40 1001.0 1.2水工隧道、下水管道10 5012有支护的地下洞室或构筑物50 20013 综上所述,可以看出不同的国家、科研部门以及不同的学者对爆破震速的认识和想法是不同的,因此提出爆破震动速度的限值差别很大,在实际工程中,由于地质条件、爆破方式、隧道结构形式存在差异,所以可操作性很差,针对不同的隧道施工项目应从工程实际情况角度出发,提出相适应的爆破方案。 根据GB6722-2003爆破安全规程中的规定,各类建筑物的爆破震动安全允许标准如表3所示。设计中只考虑爆破对已衬砌隧道的结构安全。根据规定,隧道安全允许震速标准值为10cm/s 20cm/s,设计中取安全控制值为10.0cm/s。 a.选取建筑物安全震速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。 b.省级以上(含省级)重点保护古建筑物与古迹的安全允许震速,应经专家论证选取,并报相应文物管理部门批准。 c.选取隧道、巷道安全允许震速时,应综合考虑构筑物的重要性、围岩情况、断面大小、埋深大小、爆源方向、地震震动频率等因素。 d.非挡水新浇大体积混凝土的安全允许震速,可按表3给出 · 651 ·第39卷第6期 2013年2月 山西建筑 SHANXI ARCHITECTURE Vol.39No.6 Feb.2013

(完整)高铁CP3控制网测量作业指导书

CPⅢ控制网测量作业指导书 学院: 班级: 姓名: 学号:

新建合肥至福州铁路(闽赣段) CPⅢ控制网测量作业指导书 1.1CPⅢ控制网测量的准备工作 1.1.1线下工程沉降和变形评估 无砟轨道对线下基础工程的工后沉降要求非常严格,CPⅢ控制网测量应在线下工程沉降和变形满足规范要求且通过沉降评估(以沉降评估单位出具的线下工程沉降评估报告为准)后开展。 1.1.2CPⅡ控制网加密 为了高效、准确地建立CPⅢ轨道控制网,一般情况下都需要加密CP Ⅱ控制网。CPⅡ加密的主要目地是为了方便轨道控制网CPⅢ的观测,以及弥补被损毁的和无法利用的CPⅡ点。在路基、桥梁地段CPⅡ加密可采用GPS测量在原精密平面控制网基础上按同精度内插方式加密;隧道地段应根据隧道长度布设相应精度要求的洞内CPⅡ控制网。 1.1.3精测网全面复测 按《高速铁路工程测量规范》要求, CPⅢ建网前应对精测网(CPI、CPⅡ及二等高程控制网)进行复测,并采用复测合格的精测网(CPI、CP Ⅱ及二等高程控制网)成果进行CPⅢ轨道控制网测设。 (1)采用GPS复测CPⅠ、CPⅡ控制点时,复测与原测成果较差应满足表1.2-1、表1.2-2的规定。

注:表中坐标较差限差指X 、Y 坐标分量较差。 表1.2-2 GPS 复测相邻点间坐标差之差的相对精度限差 注:表中相邻点间坐标差之差的相对精度按式1.2.3计算 ()s Z Y X 2ij 2ij 2ij ?+?+?=s d s 式1.2.3 式中:△Xij=(Xj –Xi )复 –(Xj –Xi )原 △Yij=(Yj –Yi )复 –(Yj –Yi )原 △Zij=(Zj –Zi )复 –(Zj –Zi )原 s---相邻点间的二维平面距离或三维空间距离; △Xij ,△Yij — 相邻点i 与j 间二维坐标差之差(m ); △Zij — 相邻点i 与j 间Z 方向坐标差之差,当只统计二维坐标差之差的相对精 度时该值为零(m )。 (2)采用导线复测CP Ⅱ控制点时,满足相应等级规定后,应进行水平角、边长和平面点位较差的分析比较,较差应符合表1.2-3的规定: 表1.2-3 导线复测CP Ⅱ控制点精度要求 (3)水准点间的复测高差与原测高差之较差限差为±L 6。 2 技术依据 (1)《高速铁路工程测量规范》(TB10601-2009); (2) 《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号); (3)《关于进一步规范铁路工程测量控制网管理工作的通知》(铁建设[2009]20号);

高铁隧道隧道仰拱及矮边墙施工

附件26 技术交底 技术交底书 表格编号 1301 项目名称新建XX铁路孝感至十堰段HSSG-X标第 1 页 共 14 页交底编号 工程名称XXX隧道 设计文件图号汉十施图(隧)参XX,汉十施图(隧)参XX 施工部位隧道仰拱及矮边墙施工 交底日期2016年月日 技术交底内容: 一、技术交底范围 本交底适用于XXX隧道Ⅴ、Ⅳ级围岩复合式衬砌有仰拱的仰拱及矮边墙二衬施工技术交底。 二、施工设计情况 隧道二次衬砌纵向施工缝位置如下图。 无砟轨道纵向施工缝

求放线检查边墙基础和拱墙部位有无欠挖及侵入衬砌净空部分。对欠挖部分必须采用风镐处理到位,隧道超挖部分必须采用与二次衬砌同等级混凝土回填。 2、仰拱及矮边墙初支及岩层表处理 先清除喷射砼表面的钢筋、尖石等,并用水泥砂浆抹平。对凹凸不平部位应修凿、喷补或抹水泥砂浆等,使岩面平顺,以免刺破防水板;局部凹凸处矢弦比不大于1:10,且不得侵入净空,否则应凿除。有漏水处应进行引排,根据施工情况,将渗水及地下水采用截排措施,使所施工基底处不积水。 3、矮边墙铺设防水层、排水盲安装 环向、纵向排水管在初期支护施作完成之后,土工布铺设之前安装,结合施工缝布置。纵向排水管根据仰拱及矮边墙施工长度设置一般6m或12m一段,单独排水,两端弯制成135°角,接入侧沟。环向排水管纵向间距一般不大于8至10m并根据地下水情况调整。环向、纵向盲管分别接入侧沟,并留置不小于2%的排水坡,纵、环向盲管在穿过二次衬砌混凝土时采用PVC套管防护。环向排水管采用HDPE50单壁打孔波纹管,纵向排水管采用HDPE107/93双壁打孔波纹管。 打孔波纹管铺设平面示意图 (1)环向排水盲管 隧道环向排水盲管(HDPE50单壁打孔波纹管)沿初支面环向布设,采用400g/m2的无纺布土工布包裹用扎丝捆好。每8至10m设一道,铺设环向盲管前按规定每8至10m在初支表面先划线,后采用宽3cm土工布条带+射钉固定在喷射混凝土面上,固定间距50cm~80cm,并根据初支表面凹凸情况适当加密,确保盲管固定牢固,保证盲管布设位置能有效汇水。环向排水管要注意超出矮边墙预留防水板不小于1m,以便于和拱墙环向排水管连接。

高速铁路精测控制网的布设和测量

1 高速铁路控制网精度控制标准 为保证旅客列车高速运行时的安全性和舒适度,铁路轨道的平顺度是重要指标。轨道平顺度包含线路方向和纵向方向两个分量,线路方向的不平顺是指钢轨头内侧与钢轨方向垂直的凸凹不平顺。高速铁路平顺度要求在线路方向每10米弦实测正矢与理论正矢之差为2毫米。 线路平顺度的要求和控制测量的精度有一定的关系,对于线路形状来说,平顺度只是一种局部误差。不能依线路平顺度的要求作为控制测量的精度标准。因为,平顺度对线路位置误差的影响有积累性和扩大的趋势,当实际线路偏离设计位置很远时,线路仍旧可以满足平顺度要求。 1.1短波平顺度对线路位置的影响 现以直线线路讨论,当在10米处产生2㎜不平顺度时,线路将出现转折角为(82.5″),直线B移至B′点。 每个不平顺度具有偶然性,因此,由各段不平顺度产生的点位移按偶然误差计算,设AB 为150米,则 =127㎜。 短波不平顺累计误差示意图 1.2 长波平顺度对线路位置的影响 长波平顺度要求,150米处不大于10㎜,当在150米处产生10㎜不平顺度时,线路将出现转折角为(27.5″)。设AB为900米,则 Mβ=147㎜。 虽然如此,如果仅仅控制轨道的平顺度,在达到要求的情况下,轨道的整体线形总是不能保证。 由上可知,在客运专线无砟轨道的施工过程当中,仅仅控制轨道的平顺度是不够的,我们还需要建立无砟轨道施工测量控制网来实现轨道的总体线形的正确。 1.3 CPⅠ和CPⅡ误差计算 通过无砟轨道施工中轨道对平顺度的相关要求,我们可以反推出CPⅠ和CPⅡ控制网的相关精度要求。 CPⅠ和CPⅡ最弱点的横向中误差计算按导线测量方法,计算最弱点的横向中误差公式为: 《客运专线无砟轨道铁路工程测量暂行规定》中要求的各级平面控制网布网要求如下表所示: 控制网级别测量方法测量等级点间距备注 CPⅠGPS B级≥1000m≤4㎞一对点 CPⅡ GPS C级 800~1000m 导线四等

铁路工程精密控制网测量数据处理系统

铁路工程精密控制网测量数据处理系统Railway engineering precise control survey data processing system 中铁第四勘察设计院集团有限公司

主要内容?高速铁路精测网概述?系统研发背景 ?系统总体框架 ?系统功能 ?系统技术特性 ?系统运行环境 ?软件推广及应用前景

?目前,日、法、德、意、西班牙、比利时等国家建成投入运营的高速铁路已逾5000km,正在建设及已立项准备修建 高速铁路的国家和地区有十几个,长度在5000km以上。国 内开展高速铁路的研究始于上世纪90年代,在高速铁路基 础理论、技术标准、结构设计等方面取得了重大进展。 “十一五”期间,我国将大规模建设高速铁路客运专线, 并大量采用无砟轨道。与一般铁路相比,无砟轨道工程在 结构上具有良好的连续性、平顺性和稳定性的特点,但需 要高精度、高难度的测量工作作保证,高精度的测量已经 成为制约高速铁路建设的重要保证和成败的关键因素之一。

?高速铁路精密测量控制技术作为高速铁路建设成套技术的一个重要组成部分,在高速铁路建设过 程中也越来越显示出其重要性。在高速铁路建设 中,德国、日本等高速铁路大国都有自己的一套 适合高速铁路建设的铁路工程测量成套技术体系。?以德国高速铁路建设的经验,“要成功地建设无砟轨道,就必须有一套完整、高效且非常精确的 测量系统,否则必定失败”。

?高速铁路工程测量平面控制网应在框架控制网(CP0)基础上分三级布设,第一级为基础平面控制网(CPⅠ),主要为勘测、施工、运营维护提供坐标基准;第二级为线路平面控制网(CPⅡ),主要为勘测和施工提供控制基准;第三级为为轨道控制网(CPⅢ),主要为轨道铺设和运营维护提供控制基准。 ?高速铁路工程测量高程控制网分二级布设,第一级线路水准基点控制网,为高速铁路工程勘测设计、施工提供高程基准; 第二级轨道控制网(CPⅢ),为高速铁路轨道施工、维护提供高程基准。

高速铁路轨道控制网CPIII测量方案

XX高速铁路XXXX-X标段X工区CPⅢ控制网测量方案 审批: 校核: 编制: XXXXXXXX高速铁路土建工程X标段 项目经理部X工区 X零XX年X月

目录 1编制依据 (3) 2 工程概况 (3) 2.1工程概况 (3) 2.2地理环境 (4) 2.3坐标高程系统 (4) 2.4既有精测网情况 (4) 2.5 CPⅢ轨道控制网测量主要内容 (5) 3 CPⅢ网测量前准备工作 (6) 3.1线下工程沉降和变形评估 (6) 3.2 CPⅢ网测量工装准备 (6) 3.3人员培训 (8) 4 CPⅢ网测量标志选用和埋设 (8) 4.1 CPⅢ网点测量标志选择 (8) 5. CPⅢ点号编制原则 (10) 6 CPⅡ控制网加密测量 (10) 6.1.桥梁CPⅡ控制网加密测量 (10) 6.2高程测量 (12) 7 CPⅢ点的埋标与布设 (15) 7.1 CPⅢ标志 (15) 7.2 CPⅢ点和自由设站编号 (20) 7.3CPⅢ点的布设 (21) 8 CPⅢ网测量与数据处理 (22) 8.1CPⅢ网网形 (23) 8.2 CPⅢ网平面测量 (26) 8.3CPⅢ网高程测量 (33) 9数据整理归档 (38) 10 CPⅢ网的复测与维护 (39) 10.1CPⅢ网的复测 (39) 10.2CPⅢ网的维护 (39)

七工区CPⅢ控制网测量方案 1编制依据 《客运专线无砟轨道铁路工程测量暂行规定》(铁建设[2006]189号)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号) 《精密工程测量规范》(GB/T15314-94) 《国家一、二等水准测量规范》(GB12897-2006) 《全球定位系统(GPS)铁路测量规程》(TB10054-1997) 《全球定位系统(GPS)测量规范》(GB/T18314-2001) 铁道部2008[42]、2008 [80]、2008 [246]、2009[20]号文。 《京沪高速铁路CPIII网测量作业指导书》(试行版) 2 工程概况 2.1工程概况 XX高速铁路土建工程XXXX-X标段X工区施工作业段起点为XXX桥,正线起点里程DKXXX+112.1,终点XX特大桥里程为DKXXX+229.73,全长10117.62 m,路基全长4407.14米;桥梁5座,总长5320.49米;隧道1座390米。工程内容包括XX隧道390米(DKXXX+880-DKXXX+270)、XX 大桥332.24米(DKXXX+423.35-DKXXX+755.59)、XX大桥118.2米(DKXXX+164.07-DKXXX+282.27)、XX大桥201.42米(DKXXX+570.15-DKXXX+771.57)、XX村大桥168.63米(DKXXX+226.35-DKXXX+394.98)、XX特大桥4500米(DKXXX+729.73-DK

高铁隧道施工

高铁隧道施工 高铁隧道基本定义: 根据2014年1月1日起实施的《铁路安全管理条例》规定,高速铁路是指设计开行时速250公里以上(含预留),并且初期运营时速200公里以上的客运列车专线铁路。 高铁隧道施工方式——新奥法 新奥法是应用岩体力学理论,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要支护手段,及时的进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分,并通过对围岩和支护的量测、监控来指导隧道施工和地下工程设计施工的方法和原则。新奥法是在利用围岩本身所具有的承载效能的前提下,采用毫秒爆破和光面爆破技术,进行全断面开挖施工,并以形成复合式内外两层衬砌来修建隧道的洞身,即以喷混凝土、锚杆、钢筋网、钢支撑等为外层支护形式,称为初次柔性支护,系在洞身开挖之后必须立即进行的支护工作。因为蕴藏在山体中的地应力由于开挖成洞而产生再分配,隧道空间靠空洞效应而得以保持稳定,也就是说,承载地应力的主要是围岩体本身,而采用初次喷锚柔性支护的作用,是使围岩体自身的承载能力得到最大限度的发挥,第二次衬砌主要是起安全储备和装饰美化作用。 高铁隧道施工方式——新奥法基本原则: (1)充分保护围岩,减少对围岩的扰动。

(2)充分发挥围岩的自承能力。 (3)尽快使支护结构闭合。 (4)加强监测,根据监测数据指导施工。 可扼要地概括为”管超前、严注浆、短开挖、强支护、勤量测、快封闭”因为隧洞的主要承载部分是围岩,支护结构起到发挥和保护围岩承载能力的作用。在静力学理论中,隧道的结构可视为岩体承载环和支护衬砌组成的圆筒结构,承载环的闭合起到了关键作用,因此围岩和衬砌的整体化应在初期衬砌中就及早完成,保证衬砌环的稳定与完整。从应力的重分布来考虑.全断面掘进是比较理想的开挖方式。因此,施工方式归根结底要把握一个出发点,那就是保护,调动和发挥围岩的自承能力,在此基础上根据工程实际条件灵活地选择施工及辅助手段。

高速铁路二等高程控制网施工复测(可编辑修改word版)

高速铁路二等高程控制网施工复测 1.一般规定 1.1工程开工前,施工单位应会同设计单位参加由业主组织并有监理单位参与的控制桩和测量成果资料交接工作。 1.2施工单位应对设计单位交付的高程控制网进行同精度复测。 1.3为确保高速铁路轨道的线性,相邻施工标段、相邻施工单位之间应共同协商并现场确认交界处附近的同一个水准点作为搭接和公共点进行复测。双方应签订共用控制点协议并使用满足精度要求的相同高程成果。 1.4线下工程开工前或至迟在结构工程施工前应完成二等水准点的复测工作。 1.5高程复测应采用几何水准测量。 1.6高程控制网布网要求应按表1.6 规定执行。 表 1.6 控制网布网要求 1.8测量仪器的配置应符合下列规定。 水准仪标称精度应不低于DS1并应配相应的因瓦尺。 L 1.9当复测的水准基点间高差不符值二等超过6 时应再次测量确认;当核实复测精度符合相应等级要求后,应将复测成果报设计单位认定。满足精度要求时,应采用设计成果。 2.高程控制网复测 2.1二等水准基点的复测和加密测量可采用几何水准同时进行。 2.2高程控制网复测宜优先使用满足精度要求的电子水准仪。若采用补偿式自动安平水准仪时,其补偿误差△α不应超过0.2″,并应符合《国家一、二等水准测量规范》(GB/T 12897-2006)、《新建铁路工程测量规范》的相关规定。二等水准测量的主要技术标准应符

合表2.2-1 的规定。水准测量作业的主要技术要求应符合表 5.2-2 的规定。观测的读数限差应符合表5.2-3 规定。 表 2.2-1 水准测量主要技术标准 注:L 为往返测段、附合或环线的水准路线长度,单位为km。 表 2.2-2 水准测量作业的主要技术要求 2.3二等水准测量应进行测段往返观测。测站观测宜采用下列观测顺序: 往测:奇数站采用“后-前-前-后”,偶数站采用“前-后-后-前”。 返测:奇数站采用“前-后-后-前”,偶数站采用“后-前-前-后”。 由往测转向返测时,两根标尺应互换位置。 2.4二等水准测量观测读数和记录的数字取位: 表2.4.1 二等水准测量读数取位 仪器读数取位(mm) DS05 0.05 DS1 0.1 数字水准仪0.01 表 5.4.2 二等水准测量计算取位

新建铁路川藏线拉萨至林芝段隧道施工控制测量工程施工设计方案

新建铁路川藏线拉萨至林芝段隧道施工 控制测量施工方案 1、编制说明 1.1、概述 新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标段第四项目经理部起点位于林芝地区朗镇巴热村,经堆巴村、沿S306省道前行,于林芝地区朗镇路村终止。线路穿越雅鲁藏布峡谷地带,三跨雅鲁藏布江,线路全长6.69正线公里。 1.2、工程概况 新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标段第四项目经理部管段内共设计两座隧道,分别为则弄隧道、朗镇二号隧道。 则弄隧道全长865m,进口里程D4K256+150,出口里程D2K257+015,单线隧道,隧道最大埋深138m,位于朗县与山南县之间。设计纵坡为5.0‰/420m、-7‰/445m的单面下坡,轨面高程3150.613~3149.598m。本隧道曲线段位于R=1600m右偏曲线上。 朗镇二号隧道全长2652m,进口里程DK260+236,出口里程DK262+888,单线隧道,隧道最大埋深305m,位于朗县与山南县之间。设计纵坡为-3.8‰/284m、-9.5‰/2368m 的单面下坡,轨面高程3148.232~3124.884m。本隧道进口端228.597m位于R=1600的左偏曲线上、洞身段2048.798m位于R=1600m的右偏曲线上,出口端112.246位于R=1600m 的左偏曲线上。 1.3、编制依据 2、隧道控制测量总体思路 为保证隧道的准确贯通,本着先总体后碎步的原则,首先在隧道沿线建立精密控制网,覆盖全隧道,使隧道的洞内控制测量或中线测量总体受控。为便于隧道施工测量和满足洞外导线点精度要求,项目部除设计院布设的CPI和CPII控制点外分别在每座隧洞口单独布设三~四个加密控制点,当控制点经过公司精测组GPS复测并经过精密平差后的数据满足隧道洞口控制要求时取用。在洞外GPS控制网的基础上,根据洞口施工情况,在洞口设置2个洞口投点作为洞外、洞内的联系测量,洞口投点和洞外GPS控制网点组成小三角形或大地四边形进行边角测量,并达到相应等级边角网的精度要求,以

高铁隧道安全控制要点

高铁隧道安全控制要点 一、基本规定 (一)一般规定 1、隧道洞口应设专人值班,建立隧道进出人员动态管理制度。 2、隧道施工应建立有线通信联络系统,长、特长及高风险隧道施工还应建立可视监控系统,并定期维护,保证洞内外信息及时传达。 3、隧道施工中,应在一侧设置宽度不小于0.7m的安全通道,用警示牌、安全标识等明示其位置,并设置必要的应急照明,安全通道上严禁放置任何障碍物。 4、隧道内施工应制定防火责任制,并配备消防器材。 (二) 隧道施工机械 5、施工机械作业场所应有必要的照明。 6、混凝土拌合设备、运输设备、混凝土喷射机、混凝土输送泵、通风机、抽水机等施工机械设备应有备用设备,并始终处于良好状态。 7、严禁汽油机械进洞。洞内使用柴油机械应安装废气净化装置或掺入柴油净化添加剂。 二、洞口工程 (三) 一般规定 8、洞口石质边、仰坡的开挖应采用预留光爆层法或预裂爆破法,严禁采用深眼大爆破或集中药包爆破开挖; 9、洞口邻近有建(构)筑物时,开挖爆破应采用控制爆破技术,并监测振动速度,其值应符合现行国家标准《爆破安全规程》的有关规定。

(四)洞口开挖及防护 10、洞口土石方开挖必须按设计要求进行边、仰坡放线,自上而下分层开挖,分层支护。严禁掏底开挖或上下重叠开挖 11、洞口开挖的土石方应避免因弃碴堵塞造成排水不畅、过大土压力引起山坡坍塌。 12、处于陡峭、高边坡的洞口应增设安全棚、安全栅栏或安全网,危险段应采取加固措施。 13、当采用大管棚、抗滑桩、注浆、地表锚杆等措施进行洞口地层加固时,应符合下列规定: ①管棚施工时应遵守钢管吊装和使用时的起吊安全规程,严格按钻机操作程序进行作业; ②抗滑桩施工采用打桩机作业时,应采取措施加固和稳定重型机械;采用人工挖孔作业时,应设置人员上下升降设备、通风设备并采取防护措施,防止坠物伤人; ③注浆作业时,应加强对注浆软管和接头的完好性和可靠性检查,施工人员应有完善的保护用具,堵管处理应采取先减压再处理的措施; ④地表锚杆作业时应采取措施防止卡钻,注浆人员要佩戴防护用具; ⑤施工脚手架和作业平台应搭设牢固,设扶手栏杆,并应有安全检算。(五)明洞 14、明洞开挖前,应采取洞顶及四周的防水、排水措施,防止地面水冲刷导致边、仰坡落石和坍方。 15、明洞土石方开挖应符合下列规定: ①根据地形、地质条件,边仰坡稳定程度和采用的施工方法,确定全段或分段开挖及边仰坡的坡度,开挖时应按自上而下的顺序进行;

完整高铁CP3控制网测量作业指导书

CPⅢ控制网测量 作业指导书 学院: 班级: 姓名: 学号:

新建合肥至福州铁路(闽赣段) CPⅢ控制网测量作业指导书 1.1CPⅢ控制网测量的准备工作 1.1.1线下工程沉降和变形评估 无砟轨道对线下基础工程的工后沉降要求非常严格,CPⅢ控制网测量应在线下工程沉降和变形满足规范要求且通过沉降评估(以沉降评估单位出具的线下工程沉降评估报告为准)后开展。 1.1.2CPⅡ控制网加密 为了高效、准确地建立CPⅢ轨道控制网,一般情况下都需要加密CPⅡ控制网。CPⅡ加密的主要目地是为了方便轨道控制网CPⅢ的观测,以及弥补被损毁的和无法利用的CPⅡ点。在路基、桥梁地段CPⅡ加密可采用GPS 测量在原精密平面控制网基础上按同精度内插方式加密;隧道地段应根据隧道长度布设相应精度要求的洞内CPⅡ控制网。 1.1.3精测网全面复测 按《高速铁路工程测量规范》要求, CPⅢ建网前应对精测网(CPI、CPⅡ及二等高程控制网)进行复测,并采用复测合格的精测网(CPI、CPⅡ及二等高程控制网)成果进行CPⅢ轨道控制网测设。 (1)采用GPS复测CPⅠ、CPⅡ控制点时,复测与原测成果较差应满足表1.2-1、表1.2-2的规定。 表1.2.-1 CPI、CPⅡ控制点复测坐标较差限差要求单位:mm

、Y坐标分量较差。注:表中坐标较差限差指X 计算注:表中相邻点间坐标差之差的相对精度按式1.2.3??222Z?????XY d ijijij s?1.2.3 式s s–Xi)复–(Xj –Xi)原式中:△Xij=(Xj Yj –Yi)原Yj △Yij=(–Yi)复–()复△Zij=(Zj –Zi –(Zj –Zi)原 相邻点间的二维平面距离或三维空间距离;s---);与j间二维坐标差之差(m△Xij,△Yij—相邻点i方向坐标差之差,当只统计二维坐标差之差的相对精间Zi与jZij△—相邻点)。度时该值为零(mⅡ控制点时,满足相应等级规定后,应进行水CP2()采用导线复测的规定:平角、边长和平面点位较差的分析比较,较差应符合表1.2-3Ⅱ控制点精度要求导线复测CP 表1.2-3 6L。(3)水准点间的复测高差与原测高差之较差限差为±2技术依据(1)《高速铁路工程测量规范》(TB10601-2009); (2)《客运专线铁路无碴轨道铺设条件评估技术指南》(铁建设[2006]158号); (3)《关于进一步规范铁路工程测量控制网管理工作的通知》(铁号);[2009]20建设 (4)《关于进一步加强客运专线建设质量管理的指导意见》(铁建设[2008] 246号); (5)铁道部其他相关规定。

高铁隧道施工技术交底

新建宁杭铁路客运专线 (十二)隧道底座板施工作业指导书 单位:中水四局 编制: 审核: 批准: 2010年9月发布

目次 1.适用范围 (1) 2.作业准备 (1) 2.1内业准备 (1) 2.2外业准备 (1) 3.技术要求 (1) 4.施工工艺流程 (2) 5. 施工要求 (3) 5.1施工方法 (3) 5.2冬季施工措施 (6) 6.劳动力配置 (6) 7.材料要求 (7) 8.设备机具配置 (7) 9.质量控制及检验 (7) 9.1质量控制 (7) 9.2质量检验 (8) 10.安全及环保要求 (8) 10.1安全要求 (8) 10.2环保要求 (8)

隧道底座板施工作业指导书 1.适用范围 适用于宁杭客运专线土建工程二标段隧道底座板施工。 2.作业准备 2.1内业准备 ⑴技术依据 a中水四局宁杭客专CRTSⅡ板式无砟轨道实施性施工组织设计,《客运专线铁路无砟轨道底座板暂行技术条件》(科技基[2008]74号)及《客运专线无砟轨道铁路工程施工质量验收暂行标准》(铁建设[2007]85号); b关于隧道底座板施工要求的通知、其它设计图纸和设计资料; c国家、铁道部现行客运专线设计、验收标准及相关的质量、安全规范等。 ⑵作业指导书编制后,在正式开工前,组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施、应急预案。对施工人员进行岗前技术培训,考核合格后持证上岗。 2.2外业准备 2.2.1配合比设计 隧道内底座板材料采用C40混凝土,施工前按照设计混凝土强度要求进行室内试验,确定施工配合比,并报实验监理审批,审批通过后方投入使用。 2.2.2机械设备准备 施工前配备好施工所需的运输设备机具,所需设备机具详见表8-1设备机具配置表。 2.2.3施工前准备 正式施工前需要完成:第一次沉降评估通过验收、CPⅢ建网完成并通过评估验收、隧道找平层砼顶面凿毛并且通过验收。 3.技术要求

运营高速铁路精密测量控制网管理办法

运营高速铁路精密测量控制网管理办法 第一章总则 第一条为规范高速铁路运营期精密测量控制网(以下简称精测网)的维护管理工作,保证线路维护测量基准的准确可靠,特制定本办法。 第二条本办法适用于200公里/小时及以上运营高速铁路。2開公里/小时以下仅运行动车组列车的铁路可参照本办法执行。 第三条2公里/小时及以上铁路应建立勘察设计、工程施工、运营维护“三网合一"的精测网。 第四条运营期间精测网复测应严格执行《铁路技术管理规程(高速铁路部分)》《高速铁路工程测量规范》《铁路工程测量规范》《新建时速2公里客货共线有砟轨道铁路轨道控制网测设补充规定》《高速铁路工务安全规则(试行)》《高速铁路无砟轨道线路维修规则(试行)》《高速铁路有砟轨道线路维修规则(试行)》等相关规定。 第二章职责分工 第五条铁路局依据中国铁路总公司相关规定以及与合资铁路公司签订的委托运输管理协议负责或由合资铁路公司负责组织精测网的日常维护管理和运营期复测。作为产权单位的合资铁路公司或铁路局,应保证精测网复测、维护管

理等费用的及时投入,以满足设备维修的需要。其中精测网复测费用应在委托运营维护费用之外单独计列。 第六条铁路公司、铁路局应做好建设期与运营期精测网管理工作的衔接,保持精测网测量成果的连续性。 第七条在新建铁路开通运营前,建设单位应组织设计单位、施工单位、精测网评估单位及设备接管单位进行精测网控制点和成果资料的移交。 第八条在运营期,铁路公司、铁路局应组织制订精测网复测计划和技术方案,组织精测网复测技术方案的审查和实施以及复测成果的验收。 第九条铁路公司与铁路局应及时相互通报精测网复测情况,并提交复测成果。 第十条铁路局受铁路公司委托负责运营期精测网的维护管理工作。 第三章竣工复测成果移交 第十一条轨道精调前,建设单位应组织设计单位、施工单位和监理单位对cp狙网进行复测。静态验收前,建设单位应组织对精测网进行复测,对复测资料进行评审验收,形成统一、完整的精测网复测成果,并将精测网完整成果移交给设备管理单位。 第十二条精测网成果资料移交主要包括以下内容: (一)精测网使用的国家平面及高程控制点成果表和点

高速铁路隧道技术发展现状存在问题及其展望

读书报告 高速铁路隧道技术 发展现状存在问题及其展望

目录 一、我国遂道及地下工程的发展现状 (1) 1.1 交通隧道 (1) 1.2 水利水电隧洞 (2) 1.3 地下工程 (2) 二、我国隧道及地下工程的主要开挖方法及新技术 (2) 三、当前国内铁路隧道施工主要存在技术问题 (3) 3.1 爆破精细控制技术 (3) 3.2 改进开挖技术 (3) 3.3 机制砂喷混凝土湿喷工艺 (4) 3.4 仰拱与掌子面进度的协调性 (4) 3.5 隧道沟槽施工工艺 (4) 3.6 通风及空气净化技术 (5) 四、贵广铁路建设实例 (6) 五、我国隧道及地下工程的发展前景 (7) 5.1 隧道发展前景 (7) 六、高速铁路隧道的研究几个热点问题 (8) 6.1 高速铁路隧道的空气动力学效应 (8) 6.2 高速铁路隧道的瞬变压力 (9) 6.3 高速铁路隧道的微压波 (9)

高速铁路隧道技术发展现状,存在问题及其展望 自1978年我国改革开放以来,我国在交通、水利水电、市政等基础设施领域取得了令人瞩目的成就,特别是近十年来,更取得了突飞猛进的发展,同时在设计和施工技术水平上也有了很大提高。但是由于我国东西高差大、地势复杂,隧道工程是铁路工程中不可缺少的重要项目,例如最近刚开通的兰新高铁,隧道比例达到60%以上。我国大力发展高速铁路,列车运行速度的提高势必造成列车振动荷载进一步加大,从而对隧道结构的动力稳定性提了更高的要求。伴随着铁路的出现和发展,铁路隧道也逐渐发展起来,但受制于技术条件的限制,在很长的时间内,铁路隧道的规模都很有限,直到20 世纪,随着人类科技水平和技术装备的进步,才开始出现了一些大型隧道,世界铁路隧道的世界记录也不断被更新。我国高速铁路已进入实质性的建设阶段,全国各铁路干线列车提速正在进行之中。 一、我国遂道及地下工程的发展现状 1.1 交通隧道 交通隧道主要包括铁路隧道、公路隧道及城市地铁工程,铁路隧道目前在数量、长度、设计及施工技术上在我国处于领先地位,截至1997年,在我国的铁路线上已建成并正式交付运营的隧道大约5200座,总长度2457.89km,平均占铁路网总长度的4.7‰。目前我国已建成铁路中隧道占线路长度在30%以上的就有襄渝线34.3%,成昆线31.6%,在建铁路中隧道占线路长度比例最大的达到50.42%(西康线)。目前已建成的最长隧道是西康线的秦岭单线隧道,长18.4km,其它较长的还有衡广铁路复线上的大瑶山双线隧道,长14.295km,于1987年建成。南昆线上的米花岭隧道,长9.383km。地铁工程目前仅有京、津、沪、穗四市约80km正在运营,而在建工程则很多,目前除上述四城市仍在继续扩建地铁外,南京、重庆、青岛、沈阳、深圳、成都等约20个大中城市进行了地铁和轻轨交通系统规划,部分项目正在全面施工。我国公路隧道在80年代前,因公路等级较低,同时限于设计、施工及短期投资大等多种原因,很少设计长大隧道,且数量(总长度)上也不多,但改革开放以后,为了实现截弯、降坡、提速、提高运营安全及实现长期运营收益提高等,相继修建了一批长大公路隧道,如辽宁的八盘岭双线公路隧道(长1600m),吉林的小盘岭公路、,速公路建设的大规模展开和设计、施工总体水平的提高,公路隧道工程在总量、单体长度上有了突飞猛进的发展,隧道单体长度记录不断被刷新。目前已提高到4km长度以上的水平,如川藏公路上的二郎山隧道全长4160m,目前我国海拔最高,2000年4月18日峻工通车的重庆铁山坪路隧道双线全长5424m,是目前我国最长的大跨度公路隧道,北京至八达岭高速公路上的潭峪沟公路隧道主隧道全长3455m,单向三车道,是目前国内最宽的公路隧道。

相关主题
文本预览
相关文档 最新文档