当前位置:文档之家› 解析几何大题部分-高考数学解题方法归纳总结专题训练

解析几何大题部分-高考数学解题方法归纳总结专题训练

解析几何大题部分-高考数学解题方法归纳总结专题训练
解析几何大题部分-高考数学解题方法归纳总结专题训练

专题16 解析几何大题部分

【训练目标】

1、 理解斜率、倾斜角的概念,会利用多种方法计算斜率,掌握斜率与倾斜角之间的变化关系;

2、 掌握直线方程的5种形式,熟练两直线的位置关系的充要条件,并且能够熟练使用点到直线的距离,两

点间的距离,两平行间的距离公式;

3、 识记圆的标准方程和一般方程,掌握两个方程的求法;

4、 掌握直线与圆的位置关系的判断,圆与圆的位置关系判断;

5、 掌握圆的切线求法,弦长求法,切线长的求法。

6、 掌握椭圆,双曲线,抛物线的定义及简单几何性质;

7、 掌握椭圆,双曲线的离心率求法;

8、 掌握直线与圆锥曲线的位置关系;

9、 掌握圆锥曲线中的定值问题,定点问题,最值与范围问题求法; 【温馨小提示】

本专题在高考中属于压轴题,文科相对简单,只需掌握常见的方法,有一定的计算能力即可;对于理科生来讲,思维难度加大,计算量加大,因此在复习时应该多总结,对于常见的一些小结论加以识记,并采用一些诸如特殊值法,特殊点法加以验证求解。 【名校试题荟萃】 1、已知圆

和圆

.

(1)若直线l 过点)0,4(A 且被圆1C 截得的弦长为32,求直线l 的方程;

(2)设平面上的点P 满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标。 【答案】 (1)0y

=或

(2)313(,)22-或51(,)22-

【解析】

(1)设直线l 的方程为:(4)y k x =-,即

由垂径定理,得:圆心1C 到直线l 的距离

点到直线距离公式,得:

求直线l 的方程为:0

y =或,即

y =或;

故有:,

化简得:

关于k 的方程有无穷多解,有:

,或

解之得:点P 坐标为313(,)22-或51(,)22

-。

2、已知椭圆与抛物线

共交点2F ,抛物线上的点M 到y 轴的距离等于

21MF -,且椭圆与抛物线的交点Q 满足5

2

QF =

. (1)求抛物线的方程和椭圆的方程;

(2)过抛物线上的点P 做抛物线的切线y kx m =+交椭圆于A ,B 两点,设线段AB 的中点为00(,)C x y ,求0x 的取值范围.

【答案】

(1)24

y x

=,

22

1 98

x y

+=

(2)(

1,0) -

(2

)显然0

k≠,0

m≠,由

24

y kx m

y x

=+

?

?

=

?

,消去x,得,

由题意知,得1

km=,

由22

1

98

y kx m

x y

=+

?

?

?

+=

?

?

,消去y,得,

其中,化简得,

1

k

m

=,得,解得2

09

m

<<.

11

(,)

A x y,

22

B(,)

x y,则.

由2

2

11

9

k

m

=>,得

1

x>-.∴

x的取值范围是(1,0)

-.

3、已知椭圆C:1

2

2

2

2

=

+

b

y

a

x)0

(>

>b

a的离心率

2

1

=

e,点)0,

(b

A,点F

B、分别为椭圆的上顶点和左

焦点,且.

(1)求椭圆C的方程;

(2)若过定点)2,0(M 的直线l 与椭圆C 交于H G ,两点(G 在H M ,之间)设直线l 的斜率0>k ,在x 轴上是否存在点)0,(m P ,使得以PH PG ,为邻边的平行四边形为菱形?如果存在,求出m 的取值范围?如果不存在,请说明理由. 【答案】

(1)1342

2=+y x (2)

(Ⅱ)设直线l 的方程为,

设,则,

, ,

由于菱形对角线垂直,则

解得

即,,(当且仅当

k k

43

=时,等号成立). 所以存在满足条件的实数m ,m 的取值范围为

.

4、已知椭圆.

(1)若椭圆C的离心率为1

2

,求n的值;

(2)若过点(2,0)

N 任作一条直线l与椭圆C交于不同的两点,A B,在x轴上是否存在点M,使得

,若存在,求出点M的坐标;若不存在,请说明理由.

【答案】

(1)3

2

(2)(-1,0)

5、在平面直角坐标系xOy中,椭圆C:的短轴长为22,离心率6

(1)求椭圆C的方程;

(2)已知A为椭圆C的上顶点,点M为x轴正半轴上一点,过点A作AM的垂线AN与椭圆C交于另一点

N,若,求点M的坐标.

【答案】

(1) (2)

【解析】

(1)因为椭圆C 的短轴长为22,离心率为

63

, 所以222222

63b c a a b c ?=?

?=???=+?

解得622a b c ?=??

=??=??,所以椭圆C 的方程为221

62

x y +=.

在直角AMN △中,由60AMN ∠=?,得

所以

,解得6

m =

,所以点M 的坐标为6,0?? ? ???

. 6、已知点F 是椭圆x 2

1+a 2+y 2

=1(a>0)的右焦点,点M (m ,0)

,N (0,n )分别是x 轴,y 轴上的动点,且满足MN →·NF →=0.若点P 满足OM →=2ON →+PO →

(O 为坐标原点). (1)求点P 的轨迹C 的方程;

(2)设过点F 任作一直线与点P 的轨迹交于A ,B 两点,直线OA ,OB 与直线x =-a 分别交于点S ,T ,试判断以线段ST 为直径的圆是否经过点F ?请说明理由. 【答案】

(1)y 2

=4ax (2)经过 【解析】

(1) ∵椭圆x 2

1+a 2+y 2

=1(a>0)右焦点F 的坐标为(a ,0)

, ∴NF →=(a ,-n ).∵MN →=(-m ,n ), ∴由MN →·NF →=0,得n 2

+am =0.

设点P 的坐标为(x ,y ),由OM →=2ON →+PO →

,有(m ,0)=2(0,n )+(-x ,-y ), ?????m =-x ,n =y

2

.代入n 2+am =0,得y 2=4ax.即点P 的轨迹C 的方程为y 2

=4ax.

解法二:①当AB ⊥x 时,A (a ,2a ),B (a ,-2a ),则l OA :y =2x ,l OB :y =-2x.

由?????y =2x ,x =-a ,得点S 的坐标为S (-a ,-2a ),则FS →=(-2a ,-2a ). 由?

????y =-2x ,x =-a ,得点T 的坐标为T (-a ,2a ),则FT →=(-2a ,2a ). ∴FS →·FT →

=(-2a )×(-2a )+(-2a )×2a =0.

②当AB 不垂直x 轴时,设直线AB 的方程为y =k (x -a )(k ≠0),A ? ????y 214a ,y 1,B ? ??

??y 2

24a ,y 2, 同解法一,得FS →·FT →=4a 2

+16a 4

y 1y 2

.

由?

????y =k (x -a ),y 2=4ax ,得ky 2-4ay -4ka 2=0,∴y 1y 2=-4a 2.

则FS →·FT →=4a 2+16a 4

(-4a 2

)=4a 2-4a 2

=0. 因此,以线段ST 为直径的圆经过点F.

7、如图,已知抛物线C :y 2

=x 和⊙M :(x -4)2

+y 2

=1,过抛物线C 上一点H (x 0,y 0) (y 0≥1)作两条直线与⊙M 分别相切于A 、B 两点,分别交抛物线于E 、F 两点. (1)当∠AHB 的角平分线垂直x 轴时,求直线EF 的斜率; (2)若直线AB 在y 轴上的截距为t ,求t 的最小值.

【答案】

(1)-1

4

(2)-11

法二:∵当∠AHB 的角平分线垂直x 轴时,点H (4,2),

∴∠AHB =60°,可得k HA =3,k HB =-3,∴直线HA 的方程为y =3x -43+2,

联立方程组???y =3x -43+2,y 2=x ,

得3y 2-y -43+2=0,

∵y E +2=

33,∴y E =3-63,x E =13-433

. 同理可得y F =-3-63,x F =13+433,∴k EF =-1

4.

(2)法一:

设点H (m 2

,m )(m ≥1),HM 2

=m 4

-7m 2

+16,HA 2

=m 4

-7m 2

+15.

以H 为圆心,HA 为半径的圆方程为:(x -m 2)2+(y -m )2=m 4-7m 2

+15,① ⊙M 方程:(x -4)2

+y 2

=1.②

①-②得:直线AB 的方程为(2x -m 2

-4)(4-m 2

)-(2y -m )m =m 4

-7m 2

+14. 当x =0时,直线AB 在y 轴上的截距t =4m -15

m

(m ≥1),

∵t 关于m 的函数在[1,+∞)单调递增,∴t min =-11. 法二:设A (x 1,y 1),B (x 2,y 2),∵k MA =

y 1

x 1-4,∴k HA =4-x 1

y 1

, 可得,直线HA 的方程为(4-x 1)x -y 1y +4x 1-15=0, 同理,直线HB 的方程为(4-x 2)x -y 2y +4x 2-15=0,

∴(4-x 1)y 2

0-y 1y 0+4x 1-15=0,(4-x 2)y 2

0-y 2y 0+4x 2-15=0, ∴直线AB 的方程为(4-y 2

0)x -y 0y +4y 2

0-15=0, 令x =0,可得t =4y 0-15

y 0

(y 0≥1),

∵t 关于y 0的函数在[1,+∞)单调递增,∴t min =-11. 8、已知椭圆

的一个焦点(6,0)F ,点()2,1M 在椭圆C 上.

(1)求椭圆C 的方程;

(2)直线l 平行于直线OM (O 坐标原点),且与椭圆C 交于A ,B 两个不同的点,若AOB ∠为钝角,求直线l 在y 轴上的截距m 的取值范围. 【答案】

(1)22

182

x y += (2)

(2)由直线l平行于OM得直线l的斜率为,又l在y轴上的截距m,

故l的方程为

1

2

y x m =+

由得,又线与椭圆C

交于A ,B两个不同的点,

设()

11

A x y

,,()

22

B x y

,,则,.

所以,于是22

m

-<<.

AOB

∠为钝角等价于0

OA OB

?<

u u u v u u u v

,且0

m≠,则

即22

m<,又0

m≠,所以m的取值范围为.

9、椭圆C:

22

22

1

x y

a b

+=(0

a b

>>)的离心率为

1

2

,其左焦点到点()

2,1

P的距离为10.不过原点O的直线l与椭圆C相交于A、B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;

(2)求ABP

?的面积取最大时直线l的方程.

【答案】

(1)

22

1

43

x y

+=

(2)

(2)易得直线OP 的方程12y x =

,设()11,A x y ,()22,B x y ,AB 中点()00,R x y ,其中001

2

y x =,因为 ,A B 在椭圆上,所以2211143x y +=,22

22

143

x y +=,相减得

,即

,

故,

,其中

且0m ≠.

令,则

,

令()0f m '=得17m =-,(因4和17+不满足且0m ≠,舍去)

时,()0f m '>,当

时,()0f m '<,所以,当17m =-时,ABP

S ?取得最大值,此时直线l 的方程为.

10、已知抛物线

的焦点为F ,抛物线C 上存在一点E ()2,t 到焦点F 的距离等于3.

(1)求抛物线C 的方程;

(2)已知点P 在抛物线C 上且异于原点,点Q 为直线1x =-上的点,且FP FQ ⊥.求直线PQ 与抛物线

C 的交点个数,并说明理由.

【答案】(1)2

4y x = (2)1个 【解析】

(1)抛物线的准线方程为2

p

x =-, 所以点E ()2t ,到焦点的距离为232

p

+=.解得2p =.

所以抛物线C 的方程为2

4y x =.

故直线PQ 的斜率

故直线PQ 的方程为

,即.①

又抛物线C 的方程2

4y x =,② 联立消去x 得

,故0y y =,且20

4

y x =.

故直线PQ 与抛物线C 只有一个交点.

11、已知圆1C 与y 轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l 上. (1)求圆1C 的方程; (2)圆1C 与圆2C :

相交于M 、N 两点,求两圆的公共弦MN 的长.

【答案】(1)(x ﹣4)2+(y ﹣3)2=16 (2)27 【解析】

(1)经过点(2,1)与点(﹣2,﹣3)的直线方程为,

即y=x ﹣1.

由题意可得,圆心在直线y=3上, 联立

,解得圆心坐标为(4,3),

故圆C 1的半径为4.

则圆C 1的方程为(x ﹣4)2

+(y ﹣3)2

=16;

12、已知圆C 的半径为2,圆心在x 轴的正半轴上,直线与圆C 相切.

(1)求圆C 的方程;

(2)过点Q (0,-3)的直线l 与圆C 交于不同的两点A

11,)x y (、B 22(,)x y ,当时,求△AOB

的面积. 【答案】(1) (2)

37

2

【解析】 (1)设圆心为,

因为圆C 与

相切,

所以,

解得(舍去),

所以圆C 的方程为

,

, ①,

将①代入并整理得

,

解得k = 1或k =-5(舍去), 所以直线l 的方程为

圆心C 到l 的距离,

13、已知B A ,是椭圆C :

上两点,点M 的坐标为()0,1.

(1)当B A ,两点关于x 轴对称,且MAB ?为等边三角形时,求AB 的长; (2)当B A ,两点不关于x 轴对称时,证明:MAB ?不可能为等边三角形.

【答案】(1)

9

3

14 (2)见解析

⑵根据题意可知,直线AB 斜率存在.

设直线AB :y =kx +m ,A (x 1,y 1),B (x 2,y 2),AB 中点为N (x 0,y 0),联立

,消去y 得(2+3k 2)x 2+6kmx +3m 2

-9=0,

由△>0得2m 2

-9k 2

-6<0,① 所以x 1+x 2=-2326k km +,y 1+y 2=k (x 1+x 2)+2m =

2324k m +, 所以N (-2

323k km

+,2

322k

m

+),又M (1, 0),

假设△MAB 为等边三角形,则有MN ⊥AB ,所以k MN ×k =-1,即

×k =-1,

化简得3k 2

+2+km =0,② 由②得m =-k k 232+,代入①得22

22)23(k k +-3(3k 2

+2)<0, 化简得3k 2

+4<0,矛盾,所以原假设不成立, 故△MAB 不可能为等边三角形. 14、已知圆

,点A 为圆1C 上的一个动点,AN x ⊥轴于点N ,且动点M 满足,设动点M 的轨迹为曲线C .

(1)求动点M 的轨迹曲线C 的方程;

(2)若直线l 与曲线C 相交于不同的两点P 、Q 且满足以PQ 为直径的圆过坐标原点O , 求线段PQ 长度的取值范围. 【答案】 (1)

(2)

(2)当直线l 的斜率不存在时,因以PQ 为直径的圆过坐标原点O ,故可设直线OP 为x y =,联立

2

2

,1,84

y x x y =???+=??解得 同理求得

所以

3

6

4=

PQ ; 当直线l 的斜率存在时,设其方程为

m kx y +

=,设

联立,可得

由求根公式得

(*) ∵以PQ 为直径的圆过坐标原点O ,即

化简可得,

将(*)代入可得,即 即,

又将代入,可得

∴当且仅当

2

2

41k

k =,即22±=k 时等号成立.又由,,

综上,得.

15、如图,椭圆经过点A (0,-1),且离心率为

2

(1)求椭圆E 的方程;

(2)若经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的亮点P,Q (均异于点A ), 证明:直线AP 与AQ 的斜率之和为定值。

【答案】(1) (2)见解析

由已知,设则

从而直线的斜率之和为

16、如图,抛物线2

4E y x :的焦点为F ,准线l 与x 轴的交点为A ,点C 在抛物线E 上,以C 为圆心,CO 为半径作圆,设圆C 与准线l 交于不同的两点M ,N.

(1)若点C 的纵坐标为2,求MN ; (2)若

,求圆C 的半径.

【答案】(1)2 (2)

33

由x=-1,得.设,则

由,得

124

y y=,所以

2

014 2

y

+=,

解得

6

y=±,此时0

>

V.

所以圆心C的坐标为

3

(,6)

2

3

(,6)

2

-,从而2

33

4

CO=,33

2

CO=

,即圆C的半径为33

2

. 17、已知顶点是坐标原点的抛物线Γ的焦点F在y轴正半轴上,圆心在直线

1

2

y x

=上的圆E与x轴相切,且,E F关于点()

1,0

M-对称.

(1)求E和Γ的标准方程;

(2)过点M的直线l与E交于,A B,与Γ交于,C D,求证:.

【答案】(1)(2)见解析

所以Γ的标准方程为24

x y

=.因为E与x轴相切,故半径1

r a

==,所以E的标准方程为

所以.所以,即.

解析几何专题训练理科用

解析几何专项训练 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1 ,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22,则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值围是 2215,3a a <≠ . 10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线

C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗?证明你的结论.

3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?= ,求BDK ?的面积。. 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值.

高考数学专题训练解析几何

解析几何(4) 23.(本大题满分18分,第1小题满分4分,第二小题满分6分,第3小题满分8分) 已知平面上的线段l 及点P ,任取l 上一点Q ,线段PQ 长度的最小值称为点P 到线段 l 的距离,记作(,)d P l (1)求点(1,1)P 到线段:30(35)l x y x --=≤≤的距离(,)d P l ; (2)设l 是长为2的线段,求点的集合{(,)1}D P d P l =≤所表示的图形面积; (3)写出到两条线段12,l l 距离相等的点的集合12{(,)(,)}P d P l d P l Ω==,其中 12,l AB l CD ==,,,,A B C D 是下列三组点中的一组. 对于下列三种情形,只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种情形,则按照序号较小的解答计分. ①(1,3),(1,0),(1,3),(1,0)A B C D --. ②(1,3),(1,0),(1,3),(1,2)A B C D ---. ③(0,1),(0,0),(0,0),(2,0)A B C D . 23、解:⑴ 设(,3)Q x x -是线段:30(35)l x y x --=≤≤上一点,则 ||5) PQ x ==≤≤,当 3 x =时 , min (,)||d P l PQ == ⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系, 则(1,0),(1,0)A B -,点集D 由如下曲线围成 12:1(||1),:1(||1) l y x l y x =≤=-≤, 222212:(1)1(1),:(1)1(1)C x y x C x y x ++=≤--+=≥ 其面积为4S π=+。 ⑶① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω== ② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---。 2{(,)|0,0}{(,)|4,20}{(,)|10,1}x y x y x y y x y x y x y x Ω==≥=-≤<++=> ③ 选择(0,1),(0,0),(0,0),(2,0)A B C D 。

最新高三数学解析几何大题专项训练

解析几何大题专项训练 1 由于解析几何大题重点考察直线与圆锥曲线的几何性质和交叉知识的综合 2 应用,涉及的内容丰富,易于纵横联系,对于考察学生的数学素质,综合解答 3 问题的能力和继续学习能力有着重要的作用。同时,解析几何大题又是学生的 4 一大难点,经常是入题容易,出来难。因此加大解析几何大题的专题训练很有 5 必要。 6 例1、山东07年(21)(本小题满分13分)已知椭圆C 的中心在坐标原点, 7 焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. 8 (I)求椭圆C 的标准方程; 9 (II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以10 AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 11 12 13 例2、湖北(本小题满分12分) 14 在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)15 相交于A B ,两点. 16 (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值; 17 (II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长18 恒为定值?若存在,求出l 的方程;若不存在,说明理由. 19

20 21 22 例3、(本小题满分13分)如图,设抛物线214C y mx =:(0)m >的准线与x 轴 23 交于1F ,焦点为2F ;以12F F 、为焦点,离心率12 e =的椭圆2C 与抛物线1C 在x 轴 24 上方的一个交点为P . 25 (Ⅰ)当1m =时,求椭圆的方程及其右准线的方程; 26 (Ⅱ)在(Ⅰ)的条件下,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于 27 12A A 、,如果 28 以线段12A A 为直径作圆,试判断点P 与圆的位置关系,并说明理由; 29 (Ⅲ)是否存在实数m ,使得△12PF F 的边长是连续的自然数,若存在,30 求出这样的实数m ;若不存在,31 请说明理由. 32 33 34 例4、(小题满分14分) 35

解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (2) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (3) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在抛物 线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求的。对于 一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。

一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次项,所以直线设为 或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1(使用斜率转化一定不要忘了单独讨论斜率不存在的情况!)几何:相似三角形(依据相似列比例式)、等腰直角三角形(构造全等)有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单,三思而后行。三、代数运算转化完条件只需要算数了。很多题目都要将直线与圆锥曲线联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都需要联立。 (1)求弦长解析几何中有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 (2)求面积 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为AB与x轴交于D,则(d是点O到AB的距离;第三个公式教材没 有,解要用的话需要把下面的推导过程抄一下,理解一下。)。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷)抛物线(含解析)

专题09 解析几何 第二十四讲 抛物线 2019年 1.(2019全国II 文9)若抛物线y 2 =2px (p >0)的焦点是椭圆 22 13x y p p +=的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019浙江21)如图,已知点(10)F ,为抛物线2 2(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S . (1)求p 的值及抛物线的准线方程; (2)求 1 2 S S 的最小值及此时点G 的坐标. 3.(2019全国III 文21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条 切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 2015-2018年 一、选择题 1.(2017新课标Ⅱ)过抛物线C :2 4y x =的焦点F ,3的直线交C 于点M (M

在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为 A B . C . D .2.(2016年全国II 卷)设F 为抛物线C :y 2=4x 的焦点,曲线y = k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = A . 12 B .1 C .3 2 D .2 3.(2015陕西)已知抛物线2 2y px =(0p >)的准线经过点(1,1)-,则该抛物线的焦点坐 标为 A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 4.(2015四川)设直线l 与抛物线2 4y x =相交于,A B 两点,与圆2 2 2 (5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 A .()13, B .()14, C .()23, D .()24, 二、填空题 5.(2018北京)已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线2 4y ax =截得的线段长为 4,则抛物线的焦点坐标为_________. 6.(2015陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则p = 三、解答题 7.(2018全国卷Ⅱ)设抛物线2 4=:C y x 的焦点为F ,过F 且斜率为(0)>k k 的直线l 与 C 交于A ,B 两点,||8=AB . (1)求l 的方程; (2)求过点A ,B 且与C 的准线相切的圆的方程. 8.(2018浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :2 4y x =上存在 不同的两点A ,B 满足PA ,PB 的中点均在C 上.

相关主题
文本预览
相关文档 最新文档