当前位置:文档之家› (整理)8.1.2三相和两相短路电流的计算.

(整理)8.1.2三相和两相短路电流的计算.

(整理)8.1.2三相和两相短路电流的计算.
(整理)8.1.2三相和两相短路电流的计算.

8.1.2.2 三相和两相短路电流的计算

在220/380网络中,一般以三相短路电流为最大。一台变压器供电的低压网络三相短路电流计算电路见图8?1?1。

图8?1?1 低压网络三相短路电流计算电路

(a )系统图;(b )等效电路;(c )用短路阻抗表示的等效电路图 低压网络三相起始短路电流周期分量有效值按下式计算

22

22230

3

/05.13/k

k

k

k

n k n X R X

R U Z cU I +

=

+==

'' kA (8-1-19)

L m T s k R R R R R +++= L m T s k X X X X X +++=

式中 n U ——网路标称电压(线电压),V ,220/380V 网络为380V ;

c ——电压系数,计算三相短路电流时取1.05;

k Z 、k R 、k X ——短路电路总阻抗、总电阻、总电抗,mΩ;

s R 、s X ——变压器高压侧系统的电阻、电抗(归算到400V 侧),mΩ;

T R 、T X ——变压器的电阻、电抗,mΩ;

m R 、m X ——变压器低压侧母线段的电阻、电抗,mΩ;

L R 、L X ——配电线路的电阻、电抗,mΩ;

I ''、k I ——三相短路电流的初始值、稳态值。

只要222

2/s s T T X R X R ++≥2,变压器低压侧短路时的短路电流周期分量不衰减,即I I k ''=。

短路全电流k i 包括有周期分量z i 和非周期分量f i 。短路电流非周期分量的起始值I i f ''=20,短路冲击电流ch i ,即为短路全电流最大瞬时值,它出现在短路发生后的半周期(0.01s )内的瞬间,其值可按下式计算

I K i ch ch ''=2 kA

(8?1?20)

短路全电流最大有效值ch I 按下式计算

2)1(21-+''=ch ch K I I kA

(8?1?21)

式中 ch K ——短路电流冲击系数,f

ch T e

K 01

.01+=; f T ——短路电流非周期分量衰减时间常数,s ,当电网频率为50Hz 时,∑

=

R X T f 314; ∑X ——短路电路总电抗(假定短路电路没有电阻的条件下求得),Ω;

∑R ——短路电路总电阻(假定短路电路没有电抗的条件下求得),Ω。

如果电路只有电抗,则∞=f T ,2=ch K ,如果电路只有电阻,则0=f T ,1=ch K ;可见2≥ch K ≥1。

电动机反馈对短路冲击电流的影响,仅当短路点附近所接用电动机额定电流之和大于短路电流的1%(I I M r ''>∑?01.0)时,才予以考虑。异步电动机起动电流倍数可取为6~7,异步电动机的短路电流冲击系数可取1.3。由异步电动机馈送的短路冲击电流的计算式(8?1?22)。 由异步电动机提供的短路冲击电流M ch I .按下式计算

rM qM M ch M ch I K K I ..29.0= kA

(8?1?22)

计入异步电动机影响后的短路冲击电流ch i 和短路全电流最大有效值ch I ,按下列两式计算

M ch s ch ch i i i ..+= kA

(8?1?23)

])1()1[(2)(..2M M ch s s ch M s

ch I K I K I I I ''-+''-+''+''= (8?1?24)

以上式中 s ch i .——由系统送到短路点去的短路冲击电流,kA ;

s

I ''——由系统送到短路点去的超瞬变短路电流,kA ; M

I ''——由短路点附近的异步电动机送到短路点去的超瞬变短路电流,kA ,其值rM qM M

I K I 9.0='',如果有多台异步电动机,则rM qM M I K I '=''9.0; qM K ——异步电动机的起动电流倍数,一般可取平均值6,亦可由产品样本查得,如果有多台异步电动机,则应以等效电动机起动电流倍数qM

K '代之其值rM

rM qM qM P P K K ∑∑=')(;

rM P ——异步电动机的额定功率,kW ;

rM I ——异步电动机的额定电流,kA ,可由产品样本查得,如果有多台异步电动机,则应以

各台电动机额定电流的总和rM I ∑代之;

s ch K .——由系统馈送的短路电流冲击系数;

M ch K .——由异步电动机馈送的短路电流冲击系数,一般可取1.4~1.7,准确资料可查图8?1?

2。

图8?1?2 异步电动机额定容量rM P 与冲击系数M ch K .的关系

f T ''-反馈电流周期分量衰减时间常数

低压网络两相短路电流2k

I ''与三相短路电流3k I ''的关系也和高压系统一样,即32866.0k k I I ''=''。 两相短路稳态电流2k I 与三相短路稳态电流3k I 比值关系也与高压系统一样,在远离发电机短路时,32866.0k k I I =;在发电机出口处短路时,325.1k k I I =。 8.1.2.3 单相短路(包括单相接地故障)电流的计算

(1)单相接地故障电流的计算:TN 接地系统的低压网络单相接地故障电流1k

I ''可用下述公式计算

2)0()2()1(2)0()2()1()0()2()1(1333

/0.133/???

?

??+++???? ??++?=++=''X X X R R R U Z Z Z cU I n n k

p

p

p

p

p

n Z X R X R U ?????220

220

3

/2

2

2

2

=

+

=

+

= kA (8?1?25)

??

?

????+++=++=

+++=++=????????L p m p T

p s p p L p m p T p s p p X X X X X X X R R R R R R R R R ??????????3

3

)

0()2()1()

0()2()1(

(8?1?26)

L m T s R R R R R ????+++=)1()1()1()1()1(

L m T s R R R R R ????+++=)2()2()2()2()2( L m T s R R R R R ????+++=)0()0()0()0()0(

以上式中 n U ——220/380V 网路标称线电压,即380V ,3/3803/=n U ,取220V ;

C ——电压系数,计算单相接地故障电流时取1;

)1(R 、)2(R 、)0(R ——短路电路正序、负序、零序电阻,mΩ; )1(X 、)2(X 、)0(X ——短路电路正序、负序、零序电抗,mΩ;

)1(Z 、)2(Z 、)0(Z ——短路电路正序、负序、零序阻抗,mΩ;

p R ?、p X ?、p Z ?——短路电路的相线—保护线回路(以下简称相保,保护线包括PE 线和PEN

线)电阻、相保电抗、相保阻抗,mΩ。

(2)相线与中性线之间短路的单相短路电流1k

I ''的计算:TN 和TT 接地系统的低压网络相线与中性线之间短路的单相短路电流1k

I ''的计算,与上述单相接地故障电流计算一样,仅将配电线路的相保电阻L p Z .?、相保电抗L p X .?改用相线—中性线回路的电阻、电抗。 8.1.2.4 低压网络电路元件阻抗的计算

在计算三相短路电流时,元件阻抗指的是元件的相阻抗,即相正序阻抗。因为已经假定系统是对称的,发生三相短路时只有正序分量存在,所以不需要特别提出序阻抗的概念。 在计算单相短路(包括单相接地故障)电流时,则必须提出序阻抗和相保阻抗的概念。在低压网络中发生不对称短路时,由于短路点离发电机较远,因此可以认为所有组件的负序阻抗等于正序阻抗,即等于相阻抗。

TN 接地系统低压网络的零序阻抗等于相线的零序阻抗与三倍保护线(即PE 、PEN 线)的零序阻抗之和,即

?

?

?

??

+=+=+=??????)0()0()0()0()0()0()0()0()0(333X X X R R R Z Z Z (8?1?27)

TN 接地系统低压网络的相保阻抗与各序阻抗的关系可从式(8?1?26)求得

?

???

???

??

+=++=+=++=++=3233233)0()1(0)2()1()0()1()0()2()1()

0()2()1(X X X X X X R R R R R R Z Z Z Z p p p ???

(8?1?28)

(1)高压侧系统阻抗:在计算220/380网络短路电流时,变压器高压侧系统阻抗需要计入。

若已知高压侧系统短路容量为s

S '',则归算到变压器低压侧的高压系统阻抗可按下式计算 32

10)(?''=s

n s S cU Z m Ω

(8?1?29)

如果不知道其电阻s R 和电抗s X 的确切数值,可以认为s s X R 1.0=,s s Z X 995.0=。 以上式中 n U ——变压器低压侧标称电压,0.38kV;

c ——电压系数,计算三相短路电流时取1.05;

s

S ''——变压器高压侧系统短路容量,MV A ; s R 、s X 、s Z ——归算到变压器低压侧的高压系统电阻、电抗、阻抗,mΩ。

至于零序阻抗,Dny 和Yyn0连接的配电变压器,当低压侧发生单相短路时,由于低压侧绕组零序电流不能在高压侧流通,高压侧对于零序电流相当于开路状态,故在计算单相接地短路时视无此阻抗。表8?1?2列出了10(6)/0.4kV 配电变压器高压侧系统短路容量与高压侧系统阻抗、相保阻抗(归算到400V )的数值关系。

表8?1?2 10(6)/0.4kV 变压器高压侧系统短路容量与高压侧阻抗、相保阻抗(归算到400V )的数值关系

注 ① s

s s S S U Z ''=

?''=160

1032ρm Ω ② s s Z X 995.0=,s s X R 1.0=。

③对于Dny11或Yyn0连接变压器,零序电流不能在高压侧流通,故不计入高压侧的零序阻抗s R ?)0(,s X ?)0(,即:

3232)(31

)1()0()2()1(s s s s s ps R R R R R R =

=++=?????m Ω,

3

232)(31

)1()0()2()1(s s s s s ps

X X X X X X ==++=????? m Ω (2)10(6)/0.4kV 三相双绕组配电变压器的阻抗:配电变压器的正序阻抗可按(式8?1?30~式8?1?33)有关公式计算,变压器的负序阻抗等于正序阻抗。Yyn0连接的变压器的零序阻抗比正序阻抗大得多,其值由制造厂通过测试提供;Dyn11连接变压器的零序阻抗如没有测试数据时,可取其值等于正序阻抗值,即相阻抗

32

23

210103--??=??=rT

r r T S PU I P R (8?1?30)

2

2T

T T R Z X -= (8?1?31) r

r k T S U u Z 2100%?

= (8?1?32)

当电阻值允许忽略不计时

r

r k T S U u X 2

100%?

= (8?1?33)

式中 rT S ——变压器的额定容量,MV A (对于三绕组变压器,是指最大容量绕组的额定容量);

P ?——变压器短路损耗,kW ;

%k u ——变压器阻抗电压百分值;

r U ——额定电压(指线电压),kV ;

r I ——额定电流,kA 。

(3)低压配电线路的阻抗:线路的零序阻抗和相保阻抗的计算方法。

1)线路零序阻抗的计算:各种形式的低压配电线路的零序阻抗Z (0)均可由式(8?1?27)变化为

2)0()0(2)0()0(),0()0()0(]3[]3[3p p p X X R R Z Z Z ?????+++=+=??? (8?1?34)

式中 ??)0(Z ——相线的零序阻抗2)0(2)0()0(p p X R Z ???+=? ; p Z ?)0( ——保护线的零序阻抗,2)0(2)0()0(p p X R Z ???+=? ;

??)0(R 、??)0(X ——相线的零序电阻和电抗; p R ?)0(、p X ?)0(——保护线的零序电阻和电抗。

相线、保护线的零序电阻和零序电抗的计算方法与正、负序电阻和电抗的计算方法相同,但在计算相线零序电抗??)0(X 和保护线零序电抗p X ?)0(时,线路电抗计算公式中的几何均距j D 改用0D 代替,其计算公式如下

p L p L p L D D D D 3210=

(8?1?35)

式中 p L D 1、p L D 2、p L D 3——相线L 1、L 2、L 3中心至保护线PE 或PEN 线中心的距离,mm 。

2)线路相保阻抗的计算公式:单相接地短路电路中任一组件(配电变压器、线路等)的相保阻抗p Z ?计算公式为

???

?

?

?

?

????

+++=+++=++=+=+++=++=+=p p p p p p p

p p X X X X X X X X X X X X R R R R R R R R R R X R Z )0()0()2()1()0()0()2()1()0()2()1()0()0()2()1()0()2()1(22][31

]3[31

][31]3[31

][31????????? (8?1?36)

式中 p R ?——元件的相保电阻,][31

)0()2()1(R R R R p ++=?;

p X ?——元件的相保电抗,][31

)0()2()1(X X X R p ++=?;

)1(R 、)1(X ——元件的正序电阻和正序电抗; )2(R 、)2(X ——元件的负序电阻和负序电抗;

)0(R 、)0(X ——元件的零序电阻和零序电抗,p R R R )0()0()0(3+=?;p X X X )0()0()0(3+=?; ?R 、?)0(R 、?)0(X ——元件相线的电阻、相线的零序电阻和相线的零序电抗; p R 、p R )0(、p X )0(——元件保护线的电阻、保护线的零序电阻和保护线的零序电阻。

(4)导线阻抗的具体计算方法: 1)导线电阻计算: a )导线直流电阻

A

L C R j

θθρ= Ω (8?1?37)

)]20(1[20-+=θαρρθ Ω·cm (8?1?38)

上两式中 L ——线路长度,m ;

A ——导线截面,mm 2;

j C ——绞入系数,单股导线为1,多股导线为1.02;

20ρ——导线温度为20℃时的电阻率,铝线芯(包括铝电线、铝电缆、硬铝母线)为0.0282Ω·μm (或0.028×10?4Ω·cm ),铜线芯(包括铜电线、铜电缆、硬铜母线)为0.0172Ω·μm (即0.0172×10?4Ω·cm );

θρ——导线温度为θ℃时的电阻率,Ω·μm (或×10?4Ω·cm ); α——电阻温度系数,铝和铜都取0.004;

θ——导线实际工作温度,℃。

b )导线交流电阻

θR K K R j if j 1= Ω

(8?1?39)

)

2(2

δδ-=r r K if

(8?1?40)

f

μρδθ

5030

=cm (8?1?41)

上三式中 θR ——导线温度为θ℃时的直流电阻值,Ω;

if K ——集肤效应系数,电线的if K 可用式(8?1?40)计算(当频率为50Hz 、芯线截面不超过

240mm 2时,if K 均为1),平线的if K 见表8?1?3;

j K 1——邻近效应系数,电线j K 1可从图8?1?3曲线求取,母线的j K 1取1.03;

θρ——导线温度为θ℃时的电阻率,Ω·cm ,其值见表8?1?4;

r ——线芯半径,cm ;

δ——电流透入深度,

cm ,因集肤效应使电流密度沿导线横截面的径向按指数函数规律分布,工程上把电流可等效地看作仅在导线表面δ厚度中均匀分布,不同频率时的电流渗入深度δ值见表8?1?5;

μ——相对导磁率,对于有色金属导线为1;

f ——频率,Hz 。

表8?1?3 母线的集肤效应系数K jf

图8?1?3 实习圆导体和圆管导体的邻近效应系数曲线 (a )实心圆导体;(b )圆管导体

f —频率,Hz ;100R —长100m 的电线、电缆在运行温度时的电阻,Ω

表8?1?4 导线温度为θ℃时的电阻率θρ值 Ω·cm

表8?1?5 不同频率时的电流透入深度δ值

c )导线实际工作温度。线路通过电流后,导线产生温升,可按《工业与民用配电设计手册》(第二版)P424页中电压损失计算公式中的线路电阻R ',就是对应这一温升工作温度下的电阻值,它与通过电流大小(即负荷率)有密切关系。由于供电对象不同,各种线路中的负荷率也各不相同,因此导线实际工作温度往往不相同,在合理计算线路电压损失时,应首先求得导线的实际工作温度。

导线温升近似地与负荷率的平方成正比。因此,电线、电缆的实际工作温度可按下式估算

αααθθθθθθ+?=+-=22)(P C p n K K

(8?1?42)

式中 θ——电线、电缆线芯的实际工作温度,℃;

n θ——电线、电线线芯允许长期工作温度,℃,其值如表8?1?6;

αθ——敷设处的环境温度,℃,我国幅员辽阔,环境温度差异较大,为实用和编制表格的方便,本书中,室内采用35℃,室外采用40℃;

C θ?——导线允许温升,℃。

电线、电缆在不同负荷率p K 时的实际工作温度θ推荐值见表8?1?7。 表8?1?6 电线、电缆线芯允许长期工作温度

表8?1?7 电线、电缆在不同负荷率p K 时的实际工作温度θ推荐值 2)导线电抗计算:配电工程中,架空线的各相导线一般不换位,不简化计算,假设各相电抗相等。另外,线路容抗常可忽略不计,因此,导线电抗值实际上是感抗值。 电线、母线和电缆的感抗按下式计算

L f X '='π2 (8?1?43)

25.04425.04ln 10210ln ln 2105.0ln 2----?=????

? ??+=????? ??+='re D e r D r D L j j j z

j j D D r

D lg

106.4778.0lg

106.444--?=?= (8?1?44)

当50=f Hz 时,式(8?1?43)可简化为

z

j D D X lg 1445.0=' (8?1?45)

图8?1?4 母线排列图 (a )母线平放;(b )母线竖放

图8?1?5 架空线路导线排列图

(a )三线制导线三角形排列;(b )三线制导线水平排列; (c )四线制导线水平排列之一;(d )四线制导线水平排列之二 以上三式中 X '——线路每相单相长度的感抗,Ωkm ;

f ——频率,Hz ;

L '——电线、母线或电缆每相单位长度的电感量,H/km ;

j D ——几何均距,cm ,对于架空线为3CA BC AB D D D ,见图8?1?5,穿管电线及圆形线芯的电

缆为δ2+d ,扇形线芯的电缆为δ2+h ;

r ——电线或圆形线芯电缆主线芯的直径,cm ;

d ——电线或圆形线芯电缆主线芯的直径,cm ;

z D ——线芯自几何均距或等效半径,cm ,其值见表8?1?8;

δ——穿管电线或电缆主线芯的绝缘厚度,cm ;

h ——扇形线芯电缆主线芯的压紧高度,cm 。

铠装电缆和电缆穿钢管,由于钢带(丝)或钢管的影响,相当于导体间距增加15%~30%,使感抗约增加1%,因数值差异不大,本书编制时忽略不计。

1kV 及以下的四芯电缆感抗略大于三芯电缆,但对计算电压损失影响很小,故本节电压损失

计算表均用三芯电缆数据。

表8?1?8 线芯自几何均距

D值

z

短路电流计算方法

供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(Ω) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

(完整版)短路电流的计算方法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

短路电流计算的基本概念三相短路冲击电流有效值峰值

短路电流计算的一些基本概念 发送到手机 | 收藏 全屏阅读模式字体:小 | 大 1.主要参数 S d:三相短路容量 (MVA)简称短路容量校核开关分断容量。 I d:三相短路电流周期分量有效值(kA)简称短路电流校核开关分断电流和热稳定。 I c:三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定。 i c:三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x:电抗(Ω) 其中系统短路容量S d和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(S jz)和基准电压(U jz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值。

(1)基准 基准容量S jz =100 MVA 基准电压 U jz规定为8级:230, 115, 37, , , ,, kV 有了以上两项,各级电压的基准电流即可计算出。 例: U jz=37、、、(KV) 因为S=*U*I 所以 I jz=、、、144(KA) (2)标么值计算 容量标么值S* =S/S jz. 例如:当10kV母线上短路容量为200 MVA时,其标么值容量S* = 200/100=2.

电压标么值U*= U/U jz; 电流标么值I* =I/I jz 3.无限大容量系统三相短路电流计算公式 短路电流标么值: I*d = 1/x* (总电抗标么值的倒数). 短路电流有效值: I d= I jz I*d=I jz/ x*(KA) 冲击电流有效值: I c = I *d√〔1+2 (K c-1)2〕(KA)其中K c冲击系数,取所以 I c = 冲击电流峰值: i c=×I*d K c= I d (KA) 当1000kVA及以下变压器二次侧短路时,冲击系数K c ,取 这时:冲击电流有效值I c =*I d(KA)

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

单相三相交流电路计算公式归纳

《单相、三相交流电路》功率计算公式 1 / 8

三相电源一般都是对称的,多用三相四线制 三相负载包括:星型负载和三角形负载 不对称时:各相电压、电流单独计算,对称时:只需计算一相。 千瓦电流值:220v阻性: 1000w/220v=4.5A 220v感性:1000w/(220*0.8)=5.5A 380v阻性:1000w/3/220v=1.5A 380v感性:I线=1000w/(380*1.7*0.8)=1.9A 三相四线制中的零线截面通常选为相线截面的1/2左右。在单相线路中,零线与相线截面相同。 U相220v×√3=U线380v U相380v×√3=U线660v 220v×3=660v (三角:线电压=相电压=380v) 相电流:(负载上的电流),用Iab、Ibc、Iac表示。相电压:任一火线对零线的电压U A、U B、U C 线电流:(火线上的电流),用I A、I B、I C表示。线电压:任意两火线间的电压U AB、U BC、U CA 星形:I线(IA、IB、IC)=I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=√3×U相(UA、UB、UC=220V), P相=U相×I相, P总=3P相=√3×U线×I相=√3×U线×I线; 三角:I线(IA、IB、IC)=√3×I相(Iab、Ibc、Iac),U线=380V(UAB、UBC、UCA)=U相(UA、UB、UC), 2 / 8

P相=U相×I相,P总=3P相=√3×I线×U相=√3×I线×U线。 单相电有功功率:P= U相I相cosφ 1千瓦=4.5-5.5A 三相电有功功率: P总=3U相I相cosφ=3x220xI相cosφ P总=√3U线I线cosφ=1.732x380xI线cosφ三相电1千瓦线电流:IA、IB、IC:=P总/√3U线cosφ=1000kw/(380x√3x0.8)=2A 铜线的安全截流量为5-8A/平方毫米,铝线的安全截流量为3-5A/平方毫米。 在单相电路中,每1平方毫米的铜导线可以承受1KW功率负载; 三相平衡电路,每1平方毫米的铜导线可以承受2-2.5KW的功率。 相电压:三根火线中任意相线与零线之间的电压叫相电压Ua.Ub,Uc 线电压:三相电路中A、B、C三相引出线相互之间的电压,又称线电压。 不论星形接线还是三角形接线,三个线电压分别是UAB、UBC和UCA, 3 / 8

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

短路电流的定义、分类、计算方法、口诀、危害

短路电流 科技名词定义 中文名称:短路电流 英文名称:short-circuit current 定义:在电路中,由于短路而在电气元件上产生的不同于正常运行值的电流。 应用学科:电力(一级学科);电力系统(二级学科) 本内容由全国科学技术名词审定委员会审定公布 短路电流 short-circuit current 电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接(即短路)时流过的电流。其值可远远大于额定电流,并取决于短路点距电源的电气距离。例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍。大容量电力系统中,短路电流可达数万安。这会对电力系统的正常运行造成严重影响和后果。 目录

短路电流分类 三相系统中发生的短路有 4 种基本类型:三相短路,两相短路,单相对地短路和两相对地短路。其中,除三相短路时,三相回路依旧对称,因而又称对称短路外,其余三类均属不对称短路。在中性点接地的电力网络中,以一相对地的短路故障最多,约占全部故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。 发生短路时,电力系统从正常的稳定状态过渡到短路的稳定状态,一般需3~5秒。在这一暂态过程中,短路电流的变化很复杂。它有多种分量,其计算需采用电子计算机。在短路后约半个周波(0.01秒)时将出现短路电流的最大瞬时值,称为冲击电流。它会产生很大的电动力,其大小可用来校验电工设备在发生短路 短路电流相关示意图 时机械应力的动稳定性。短路电流的分析、计算是电力系统分析的重要内容之一。它为电力系统的规划设计和运行中选择电工设备、整定继电保护、分析事故提供了有效手段。 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动 力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正 确地选择电器设备、设计继电保护和选用限制短路电流的元件. 计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.

单相短路电流计算

1、替代定理 在任意具有唯一解的电路中,某支路的电流为i k ,电压为u k ,那么该支路可以用独立电压源u k ,或者独立电流源i k 来等效替代,如下图所示。替代后的电路和原电路具有相同的解。 图 2、叠加定理 由全部独立电源在线性电阻电路中产生的任一电压或电流,等于每一个独立 电源单独作用所产生的相应电压或电流的代数和。 注意点:(1)只适用于线性电路;(2)一个电源作用,其余电源为零,如电 压源为零即电压为零——>短路,电流源为零即电流为零——>开路;(3)各回路电压和电流可以叠加,但功率不能叠加。 3、三相系统及相量图的应用 、 交流变量 正常的电力系统为三相系统,每相的电压和电流分量均随着时间作正弦变 化,三相间相互角偏差为120°,比如以A 相为基准,A 相超前B ,B 相超前C 各120°,就构成正序网络,如下式所示: )120sin()360240sin()240sin(); 120sin(); sin( ++=+-+=-+=-+=+=?ω?ω?ω?ω?ωt U t U t U u t U u t U u m m m c m b m a 以A 相为例,因为三角函数sin 是以360°(或2π)为周期变化,所以随 着时间t 的流逝,当?ω+t 值每增长360°(或2π)时,电压ua 就经过了一个

周期的循环,如下图所示: 图 如上图,t代表时间,?代表t=0时刻的角度(例如上图中ua当t=0时位于?),ω表示角速度即每秒变化多少度。例如电网的频率为50Hz,原点,即代表0 = 每秒变化50个周期,即变化50*360°或者50*2π。此处360°和2π仅是单位制的不同,分别为角度制和弧度制,都是代表一个圆周;值得注意的是用360°来分析问题更加形象,而2π为国际单位制中的标准单位,计算时更通用。 向量的应用 用三角函数分析问题涉及较为繁琐的三角函数计算,图的正弦波形图可表示出不同周期分量的峰值和相差角度,但使用范围有限。为此,利用交流分量随时间做周期变化,且变化和圆周关系密切的特点,引入向量如下,方便交流分量的加减乘除计算: :

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

三相电流计算公式1

三相电流计算公式 相电流计算公式 阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功= 1.732*线电压U*线电流I*功率因数COSΦ(星形接法) = 3*相电压U*相电流I... 相电流的计算公式: 额定电流计算公式发布者:admin 发布时间:2009-7-17 阅读:89次电力变压器变压器额定电流 I1N/I2N,单位为A、正常运行时所能承担的电流,在三相变压器中均代表线电流。信息来自:输配电设备网 I1N... 相电机功率计算公式里面的电流电压指的到底是什么? 流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压对于电动机而言一个绕组的电压就线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流当电机星接. 相四线电流计算公式 流相量计算公式: IN*=IA*+IB*+IC* =IA∠0+IB∠-120+IC∠120 =IA+IB(cos-120+jsin-120)+IC(cos120+jsin120) C)+j0.866... 相电电流计算公式 比较复杂。首先,电流分为相电流和线电流。其次,三相短路有多种接法,最常见的是星接(Y)和角接(D)。Y接时,相电,D接时,线电流等于相电流的1.732倍。所以,只要知道了接法,可以先求出相电流,再求出线电流。而相电流... 三相电电流计算公式。 的额定电流都是指线电流,额定电压都是指线电压。若已知电压U、负载视在功率S(三相电输出视在功率)和功率因可以先求出负载的有功功率P,然后在求电流I。其具体求法如下: 1、负载的有功功率P为:P=S×cosφ 2、线电流.

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络 X c X T X L X T X d ” C V fa(1) G + + +

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

短路电流计算计算方法.docx

短路电流计算 > 计算方法 短路电流计算 > 计算方法短路电流计算方法一、高压短 路电流计算(标幺值法) 1、基准值 选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为: 为了便于计算通常选为线路各级平均电压;基准容量 通常选为 100MVA 。由基准值确定的标幺值分别如下: 式中各量右上标的“ * “用来表示标幺值右,下标的“ d”表示在基准值下的标幺值。 2、元件的标幺值计算 (1)电源系统电抗标幺值 —电源母线的短路容量 (2)变压器的电抗标幺值 由于变压器绕组电阻比电抗小得多,高压短路计算时 忽略变压器的绕组电阻,以变压器的阻抗电压百分数(% )

作为变压器的额定电抗,故变压器的电抗标幺值为: —变压器的额定容量,MVA (3)限流电抗器的电抗标幺值 % —电抗器的额定百分电抗—电抗器额定电压, kV —电抗器的额定电流, A (4)输电线路的电抗标幺值 已知线路电抗,当=时 —输电线路单位长度电抗值,Ω/km 3、短路电流计算 计算短路电流周期分量标幺值为 —计算回路的总标幺电抗值 —电源电压标幺值,在=时, =1 = 短路电流周期分量实际值为 = 对于电阻较小,电抗较大(<1/3 )的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值

=1.52 常用基准值 (=100MVA) 电网额定电压(kV ) 3.0 6.0 10.0 35.0 60.0 110 基准电压( kV ) 3.15 6.3 10.5 37 63 115 基准电流( kA ) 18.3 9.16

5.5 1.56 0.92 0.502 二、低压短路电流计算(有名值法) 1. 三相短路电流 2.两相短路电流 3.三相短路电流和两相短路电流之间的换算关系 4.总电阻和总电抗 5.系统电抗 6.高压电缆的阻抗 7.变压器的阻抗

三相电流计算公式演示教学

三相电流计算公式

精品文档 三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电流) 0.75是功率因数,这里功率因数取的是0.75 ,如果功率因数取0.8或者0.9,计算电流还小。电机不是特别先进的都是按0.75计算。按10kW计算: I=10kW/(1.732*380*0.75) =10kW/493.62 =20.3 A 三相电机必须是三相电源,10KW 电动机工作时,三根电源线上的工作电流都是20.3 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电留。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在: S2=P2+Q2 S=√(P2+Q2) 视在功率S=1.732UI 有功功率 P=1.732UIcosΦ无功功率Q=1.732UIsinΦ功率因数cosΦ=P/S 根号3,没有软件写不上,用1.732代替 系统图 Pe:额定功率 Pj:计算有功功率 Sj:计算视在功率 Ij:计算电流 Kx:同时系数 cosφ:功率因数 Pj=Kx*Pe Sj=Pj/cosφ单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, 收集于网络,如有侵权请联系管理员删除

三相功率计算公式

三相功率计算公式 P=1.732×U×I×COSφ (功率因数COSφ一般为0.7~0.85之间,取平均值0.78计算) 三相有功功率 P=1.732*U*I*cosφ 三相无功功率 P=1.732*U*I*sinφ 对称负载,φ:相电压与相电流之间的相位差 cosφ为功率因数,纯电阻可以看作是1,电容、电抗可以看作是0 有功功率的计算式:P=√3IUcosΦ (W或kw) 无功功率的公式: Q=√3IUsinΦ (var或kvar) 视在功率的公式:S=√3IU (VA或kVA) ⑴有功功率 三相交流电路的功率与单相电路一样,分为有功功率、无功功率和视在功率。不论负载怎样连接,三相有功功率等于各相有功功率之和,即: 当三相负载三角形连接时: 当对称负载为星形连接时因

UL=根号3*Up,IL= Ip 所以P== ULILcosφ 当对称负载为三角形连接时因 UL=Up,IL=根号3*Ip 所以P== ULILcosφ 对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率的计算公式相同,因此,三相总功率的计算公式如下。 P=根号3*Ip ULILcosφ ⑵三相无功功率: Q=根号3*Ip ULILsinφ (3)三相视在功率 S=根号3*Ip ULIL 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B 相C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 电流和相电流与钳式电流表测量无关,与电机定子绕组接线方式有关。 当电机星接时:线电流=根3相电流;线电压=相电压。 当电机角接时:线电流=相电流;线电压=根3相电压。 所以无论接线方式如何,都得乘以根3。 电机功率=电压×电流×根3×功率因数

短路电流计算的方法

短路电流计算的方法 一、 网络的等值变换与化简 为计算不同短路点的短路电流值,需将等值网络分别化简为以短路点为衷心的辐射性等值网络,并求出个电源与短路点之间的转移电抗md X 。 1、 网络等值变换 在工程计算中,常用等值变换法进行化简,其原则是网络变换前后,应使未变换部分的电话和电流分布保持不变,常用的如星三角变换(查相关手册)。 2、 并联电源支路的合并(图) 112212121n n z n n n E y E y E y E y y y X y y y +++?=?+++???=?+++? 二、 三相短路电流周期分量的计算 1、 求计算电抗js X 计算电抗js X 是将各电源与短路点之间的转移阻抗md X 归算到以各供电电源(等值发电机)容量为基准值的电抗标幺值。 ..e m js m md j S X X S = 2、 无限大容量电源的短路电流计算 由无限大容量电源供给的短路电流,或者计算电抗3js X ≥时的短路电流,可以认为周期分量不衰减。短路电流标幺值: ** ''*1z X I X ∑= 或 *1z js X X = 其有名值:*''0.2z z j I I I I I I ∞====(kA ) ;j S I =式中:

*X ∑:无穷大容量电源到短路点之间的总阻抗(标幺值) ; ''I :0秒的短路电流(kA ) ; I ∞:稳态的短路电流(kA ) ; 3、 有限容量电源的电路电流计算 通常采用使用运算曲线法,查表,注意折算电抗。 4、 短路点短路电流周期分量 将2、3中所求得的所有短路电流相加。 三、 三相短路电流非周期分量的计算 1、 单支路的短路电流费周期分量计算 按下述公式计算: 起始值:''0fz i = t 秒值:''0a a t T T fzt fz i i e e ω--== 其中:a X T R ∑ ∑= (衰减时间常数) 2、 多支路的短路电流非周期分量计算 复杂网络中个独立支路的衰减时间常数相差较大时,可采用多支路叠加法。衰减时间常数相近的分支可以归并简化,复杂的常仅近似化简为3~4个独立分支的等值网络,多数情况下化简为两个等值网络:系统支路(15a T ≤)和发电机支路(1580a T ≤≤)。对n 支路的系统: 起始值:''''''012)fz n i I I I =+++ t 秒值:12''''''12)a a an t t t T T T fzt n i I e I e I e ωωω---=+++ 3、 等效衰减时间常数 查表 四、 冲击电流和全电流计算 1、冲击电流 三相短路发生后的半个周期(0.01s ),短路电流瞬时值达到最大,称

电力系统三相短路电流的计算

银川能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:张将________________________ 学号:1310240006__________________

目录 摘要 ............................................................................... 错误!未定义书签。课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算...................................... 错误!未定义书签。第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

两相接地短路电流的计算

目录 1?前言........................................................................... ?仁1.1短路电流的危害 ............................................................... 1.. 1.2短路电流的限制措施 .......................................................... 1. 1.3短路计算的作用 .............................................................. 2.. 2.数学模型 (3) 2.1对称分量法在不对称短路计算中的应用 (3) 2.2电力系统各序网络的制订 ....................................................... 9. 2.3两相接地短路的数学分析 (10) 2.4变压器的零序等值电路及其参数 (10) 3两相接地短路运行算例............................................................ 1.4 4. 结果分析....................................................................... 1.8. 5. 心得体会 (19) 6. 参考文献....................................................................... 20.

相关主题
文本预览
相关文档 最新文档