当前位置:文档之家› 两相接地短路电流的计算

两相接地短路电流的计算

两相接地短路电流的计算
两相接地短路电流的计算

目录

1?前言........................................................................... ?仁1.1短路电流的危害 ............................................................... 1..

1.2短路电流的限制措施 .......................................................... 1.

1.3短路计算的作用 ..............................................................

2..

2.数学模型 (3)

2.1对称分量法在不对称短路计算中的应用 (3)

2.2电力系统各序网络的制订 ....................................................... 9.

2.3两相接地短路的数学分析 (10)

2.4变压器的零序等值电路及其参数 (10)

3两相接地短路运行算例............................................................ 1.4

4. 结果分析....................................................................... 1.8.

5. 心得体会 (19)

6. 参考文献....................................................................... 20.

/ 、八—

1?前言

电能作为我们日常生活中运用最多的一种能源,不仅有无气体无噪音污染,便于大范围的传送和方便变换,易于控制,损耗小,效率高等特点。

电力系统在运行中相与相之间或相与地(或中性线)之间发生非正常连接(短路)时流过的电流称为短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地

的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离,例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10?15倍,在大容量的电力系统中,短路电流可高达数万安培。

1.1短路电流的危害

短路电流将引起下列严重后果:短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围人员。巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列,这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。

1.2短路电流的限制措施

为保证系统安全可靠地运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。主要措施如下:一是做好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。

二是正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失

三是在变电站安装避雷针,在变压器附近和线路上安装避雷器,减少雷击损害。四是保证架

空线路施工质量,加强线路维护,始终保持线路弧垂一致并符合规定。五是带电安装和检修电气设备,注意力要集中,防止误接线,误操作,在带电部位距离较近的部位工作,要采取防止短路的措施。

六是加强管理,防止小动物进入配电室,爬上电气设备。

七是及时清除导电粉尘,防止导电粉尘进入电气设备。

八是在电缆埋设处设置标记,有人在附近挖掘施工,要派专人看护,并向施工人员说明电缆敷设位置,以防电缆被破坏引发短路。

九是电力系统的运行、维护人员应认真学习规程,严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸、带电合接地刀闸。线路施工,维护人员工作完毕,应立即拆除接地线。要经常对线路、设备进行巡视检查,及时发现缺陷,迅速进行检修。

1.3短路计算的作用

通过短路计算,我们可以

(1) 校验电气设备的机械稳定性和热稳定性;

(2) 校验开关的遮断容量;

(3) 确定继电保护及安全自动装置的定值;

(4) 为系统设计及选择电气主接线提供依据;

(5) 进行故障分析;

(6) 确定输电线路对相邻通信线的电磁干扰。

2?数学模型

在电力系统的运行和分析中,网络元件常用恒定参数代表,因此电力网络是一个线 性网络。该线性网络可用代数方程组来描述。

节点:电力网络中一些需要研究的点,如母线、发电机出口等;

支路:支路为网络中的某一元件,如发电机、变压器、线路等。支路号用其首端节 点号乘

100加上末节点号的组合数字来表示,若支路首末节点号为 i 、j ,则该支路号为

i x 100+ j 。用此方法可以处理99个节点的网络;

节点方程:一般地,对于有n 个独立节点的网络,可以列与n 个节点方程:

Y 11 V 1 丫21 V 1 Y 12V 2 … 丫22 V 2 … +Y 1n V n +Y 2n V n

I 1 I 2

Y k1 V 1 Y k2 V 2

… +Y kn V n

I k

用矩阵表示就是:

Y V 1

矩阵Y 称为节点导纳矩阵。

它的对角线元素Y

ii 称为节点i 的自导纳,其值等于接于

节点i 的所有支路导纳之和。非对角线元素 Y j 称为节点i 、j 间的互导纳,它等于直接联 接于节点

i 、j 间的支路导纳的负值。若节点i 、j 间不存在直接支路,则有Y j 0。由此 可知节点导纳矩阵是一

个稀疏的对称矩阵,其对角线元素一般不为零,但在非对角线元 素中则存在不少零元素;矩阵的阶数与节点数相等。

这样,如何计算短路电流就转化为如何建立和求解该线性方程组,网络的化简也就 转化为节点导纳矩阵的化简。

2.1对称分量法在不对称短路计算中的应用

对称分量法是分析不对称故障的常用方法,根据不对称分量法,一组不对称的三相 量可以分解为正序、负序和零序三相对称的三相量。在不同序别的对称分量作用下,电 力系统的各元件可能呈现不同的特性,因此我们首先来介绍发电机、变压器、输电线路 和符合的各序参数,特别是电网元件的零序参数及其等值电路。

一、不对称三相量的分解

在三相电路中,对于任意一组不对称的三相相量(电流或电压)

,可以分解为三组

三相对称的相量,当选择a 相作为基准相时,三相相量与其对称分量之间的关系(如电 流)为

相电流的正序、负序和零序分量,并且有

式中,预算子a

& a(1) 1 a

2

a &

& a (2)

1 -1

2 a a &

3

&

&

a(0)

1 1

1 (2-1)

e J240,且有 1+a+a =0,a 3 =1;

I a(1)、 I a(2)、 I a(0) 分别为a

j120 2

e , a

I&

'b(l)

a &⑴,&⑴ a &

(i )

|& lb ⑵ a

&(2),&(2)

a 2

&(

2)

|&

'b(Q)

& &

c(0)

a(0)

我们看到,正序分量的相序与正常对称情况下的相序相同,而负序分量的相序则与 正序相反,零序分量则三相同相位。

将一组不对称的三相量分解为三组对称分量,这种分解是一种坐标变换,如同派克 变换一样。把式(2-1)写成

I 120 Sl abc ( 2-3)

矩阵S 称为分量变换矩阵。当已知三相不对称的相量时,可由上式求得各序对称分量 已知各序对称分量时,也可以用反变换求出三相不对称的相量,即

I abc S 1

I 120

(2-4)

式中

1 1 1

S 1

2

a a 1

(2-5)

a a 2 1

展开式(2-4) 并计及式(2-2)有

& &⑴&⑵

& a 2&⑴

aI

&(2)

&⑴ &⑵ &(0) (2-6)

& a&(i )a 2

&(2)

&(°)&⑴

&⑵&(。)

电压的三相相量与其对称分量之间的关系也与电流的一样。

二、序阻抗的概念

我们以一个静止的三相电路元件为例来说明序阻抗的概念。如图

2.2所示,各相自

阻抗分别为 Z aa ,Z bb ,Z ee ;相间互阻抗为 Z ab =Z ba , Z bc =Z cb ,Z ca =Z ca 。当元件通过三相不对称 的电流时,元件各相的电压降为

(2-2)

由上式可以作出三相量的三组对称分量如图

2.1所

示。

J a(1)

屮2) ‘

.I a(2)

/

■ ■

I c (1^r

(a )

I b(1)

(b )

\ I c(2)

图2.1三相量的对称分量

(c )

(a ) 正序分量;(b )负序分量(c )零序分量

Z aa V b Z ba \& Z ca Z

ab

Z

bb

Z

cb

Z

ac

Z

bc

Z

cc

&

&

&

(2-7)

或写成

V abc ZI a bc(2-8)应用式(2-3)、(2-4)将三相量变换成对称分量,可得

1

V 120 SZS I 120 Z sc|l20 (2-9)式中,Z sc SZS 1称为序阻抗矩阵。

当元件结构参数完全对称,即Z aa=Z bb=Z cc=Z s, Z ab=Z bc=Z ca=Z m时

Z s Z m 0 0Z(1)00

Z sc 0Z s Z m 00Z(2)0(2-10)

00 Z s 2 Z m00Z(0)

为一对角线矩阵。将式(2-9)展开,得

V&(1) Z⑴&⑴

V&(2) Z(2) &⑵(2-11)

V&(0)Z(0) &(0)

式(2-11)表明,在三相参数对称的线性电路中,各序对称分量具有独特性。也就是说,当电路通以某序对称分量的电流时,只产生同一序对称分量的电压降。反之,当电路施加某序对称分量的电压时,电路中也只产生同一序对称分量的电流。这样,我们就可以对正序、负序和零序分量分别进行计算。

bo

eO

图2.2静止三相电路元件

如果三相参数不对称,则矩阵Z sc的非对角元素将不全为零,因而各序对称分量将不具有独立性。也就是说,通以正序电流所产生的电压降中,不仅包含正序分量,还可能有负序或零序分量。这时,就不能按序进行独立计算。

根据以上的分析,所谓元件的序阻抗,是指元件三相参数对称时,元件两端某一序的电压降与通过该元件同一序电流的比值,即

Ob

Z ⑴V&(1)/ &⑴

Z(2)唱2)/ &(2)(2-

12)

Z(0)V&(0)/ &(O)

Z(i)、Z(2)和Z(O)分别称为该元件的正序阻抗,负序阻抗和零序阻抗。电力系统每个元件的正、负、零序阻抗可能相同,也可能不同,视元件的结构而定。

三、对称分量法在不对称短路计算中的应用

现以图2.3所示简单电力系统为例来说明应用对称分量法计算不对称短路的一般原理。

图2.3简单电力系统的单相短路

一台发电机接于空载输电线路,发电机中性点经阻抗Z n接地。在线路某处f点发生单相(例如a相)短路,使故障点出现了不对称的情况。a相对地阻抗为零(不计电弧

等电阻),a相对地电压V fa 0,而b、c两相的电压V fb 0,V fc 0[见图2.4]。此时,故障点以外的系统其余部分的参数(指阻抗)仍然是对称的。

现在原短路点认为地接入一组三相不对称的电势源,电势源的各相电势与上述各相

不对称电压大小相等、方向相反,如图2.4 (b)所示。这种情况与发生不对称故障是等效的,也就是说,网络中发生的不对称故障,可以用在故障点接入一组不对称的电势源来代替。这组不对称电势源可以分解成正序、负序和零序三组对称分量,如图 2.4

(c)

所示。根据叠加原理,图2.4(c)所示的状态,可以当作是(d)、(e)、(f)三个图所示状态的叠加。

图2.4(d)的电路称为正序网络,其中只有正序电势在作用(包括发电机的电势和故障点的正序分量电势),网络中只有正序电流,各元件呈现的阻抗就是正序阻抗。图2.4(e)及(f)的电路分别称为负序网络和零序网络。因为发电机只产生正序电势,所以,在负序和零序网络中,只有故障点的负序和零序分量电势在作用,网络中也只有同一序的电流,元件也只呈现同一序的阻抗。

根据这三个电路图,可以分别列出各序网络的电压方程式。因为每一序都是三相对称的,只

相关主题
文本预览
相关文档 最新文档