当前位置:文档之家› 分子筛改性-4

分子筛改性-4

分子筛改性-4
分子筛改性-4

沸石分子筛的改性方法

1 沸石分子筛的概念

分子筛是结由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子筛分子尺寸大小的孔道和空腔体系。然而随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅、铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、CO、Zn、Be和Cu等取代,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件[2]。

图3 NaY沸石草酸脱铝的机理

3.4 沸石分子筛的卤素化合物脱铝

3.4.1 用C12和HCI对沸石分子筛脱铝

Stabenow等人[13]于1976年首次发表了用含氯化合物制备脱铝沸石分子筛的专利。他们在高温下将氯气和氯化氢用于硅铝比大于五的沸石分子筛的脱铝研究。该专利报道的脱铝的实验步骤为:在高于400℃的温度下,将Cl2或HCI或者氯气和二氧化碳的混合物与高度脱水的沸石分子筛进行反应。

随后国内外学者也对此做了大量系统的研究,而且Stabenow[14]又提出了一种用Cl2或HCI等含氯化合物处理沸石分子筛,在气相中使沸石分子筛脱铝的方法。

3.4.2 用氯氧化物对沸石分子筛脱铝

Fejes等人[15]报道了一种将光气(COCl2)应用于天然沸石和人工合成分子筛的新型脱铝方法,同时对脱铝后沸石分子筛的组成、结构和吸附性能所产生的变化进行了研究,采用红外光谱、X射线光谱、N2吸脱附以及元素分析等多种技术对脱铝后的沸石分子筛进行了表征。在丝光沸石样品的红外谱图中检测到930cm-1处出现了一个新的红外吸收峰。该实验结果与丝光沸石分子筛脱铝的情况是一致的。当脱铝温度为600℃时,沸石分子筛样品的吸附容量达到最高,这是由于杂质的去除使沸石分子筛保持了近乎完美的结晶度。

Fejes等人[16]广泛地研究了在400~600℃条件下,用氯化物(光气,氯化亚硝基)萃取脱铝沸石分子筛(丝光沸石)的情况。光气与氢型丝光沸石反应后,通过红外光谱对此时的样品进行表征,实验检测到了挥发性反应产物HCI和二氧化碳,他们发现该过程发生了三个主要的反应:

{AlO4/2}-M++COCl2A {AlO4/2}·C+OCl+MCl

{AlO4/2}·C+OCl {.......}+AlOCl+CO2

AlOCl+COCl2AlCl3+CO2

其中M表示Na或H,{......}表示骨架中移去一个Al和两个O后产生的晶格空缺。如果这个反应过程光气不断输入,由于AlC13在该反应温度下是易挥发的,因此,它将会从样品中扩散出去。

3.4.3 用其它含氯化合物对沸石分子筛脱铝

Fejes等人[17]报道了卤素化合物(包括金属卤化物,卤氧化物,酸卤化物等)在气相中可以与沸石分子筛相互作用,并在高温下引起分子筛脱铝。此外,外来离子进入沸石分子筛骨架并与骨架结合在理论上并非不可能。该文献对沸石分子筛脱铝以及制备含有金属的催化剂进行了讨论,同时研究了用CCl4和CHCl3处理氢型丝光沸石分子筛(HMOR)

以对其改性。

Hannus等人[18]采用红外光谱和核磁共振的方法研究了NaY分子筛化学吸附CC14后的反应的机理。作者对四氯化碳和经过碱金属离子交换后的沸石分子筛的反应进行了研究,并通过原位红外光谱和多核核磁共振光谱对其进行了表征。实验证明了光气是该反应的活性中间体。该脱铝过程涉及到了CCl4与钠型分子筛(NaY)中Al发生反应从而导致分子筛脱铝,该过程的反应式如下:

(AlO2)-Na++CCl4 AlCl3+NaCl

3.4.4 用F2对沸石分子筛脱铝

Lok等人[19]报道了在室温下,用F2和空气的混合气直接处理沸石分子筛,也可以使沸石分子筛骨架脱铝。在一定的温度和压力下,将用空气稀释后的氟气(0~20%)通入沸石分子筛样品中,对沸石分子筛进行结构和表面改性。分子筛经氟气处理后,其脱铝的程度和结构的稳定性都发生了变化。根据处理条件的不同,例如氟气浓度和处理时间,沸石分子筛的表面特性(亲水性和疏水性)和酸性会有不同程度的变化。用该方法对分子筛脱铝,可以得到脱铝程度高、结晶度好的沸石样品。但是该方法的不足之处是:非骨架铝残留在孔道中,并且所使用的气体腐蚀性强,不易操作。

3.5 沸石分子筛的再铝化

分子筛补铝过程导致沸石骨架中铝的相对含量增大有两种途径:1)沸石骨架中的硅脱落溶解至溶液中,通过减少沸石骨架的硅含量,间接提高了铝的相对含量,即“溶硅”;

2)偏铝酸钠母液中的铝物种或者沸石本身具有的非骨架铝插入沸石骨架中,使得沸石结构中的总锚的含量增大,即“补铝”。而两类铝物种插入骨架的位置又有两种可能,一是插入沸石骨架的缺陷位(包括固有的和焙烧等后续处理步骤产生的缺陷位):二是取代沸石中一部分的硅原子,这一步骤

实际也包含着骨架溶硅的过程。在实际过程中,两种途径一般会相伴相生,最终达到降低骨架硅铝比的目的。对于不同的补铝方法,其机理也有所不同。

以A1C13和HCl处理的分子筛补铝遵循表面反应机理,按补铝的位置分为晶格缺陷位补铝和非骨架位补铝两种机理。Wu[20]等认为以AlCl3和HCl处理分子筛时的补铝机理为晶格缺陷位补铝,并发现进入ZSM-5骨架中的Al在A1C13蒸气温度达923K时,达到饱和值,且该值与从分子筛脱落的Si量无关。因此,推测Al原子是插入表面羟基窝形成的晶格缺陷位来达到补铝作用的。Chang[21]在低温下(<623K)也得到类似的机理。用AlCl3蒸气处理分子筛时,需要对处理后的分子筛以盐酸进行洗涤,否则,将影响Al 原子插入的效果。补铝过程如下:

Si O H

H

H H

O Si

O

Si

O Si 缺陷位

Al

O

O

O

O

Si

Si

Si

Si

Al

O

O

Si

O

Si

Si

Si

骨架铝位

也有认为AlCl3蒸气补铝遵循非骨架补铝机理。在温度不高于923K的条件下,AlCl3可以与非骨架的表面羟基反应,从而产生六面体的非骨架铝。其过程如下:

①表面反应

n Si-OH+AlCl3 (SiO)nAlCl3-n+nHCl(n=l-3)

②HCI洗涤

(SiO)nAlCl3-n+nHCl n SiOH+A1C13(n=1-3)

③表面水解

(SiO)nAlCl3-n+(3-n)H2O (SiO)nAl(OH)3-n+(3-n)HCl(n=1-2) 在高于1233K温度下对分子筛(HZSM-5)进行脱水后,再用A1C13处理,补铝机理为A1C13与分子筛表面非连接的Si-O-Si物种反应,而非表面羟基反应,其过程与表面羟基反应类似。A1C13补铝具有以下特点:①从分子筛骨架上脱落的Si量远大于进入骨架中的Al量:②骨架铝增加的量在AlCl3分压及反应时间达一定值后保持不变。

Yang等[22]以NaAlO2溶液研究了弱碱条件下以NaAlO2溶液对Beta及Y沸石补铝的过程,认为分子筛中的非骨架铝及溶液中的Al物种均插入分子筛羟基窝形成的晶格缺陷位。补铝过程及特点与A1C13处理的分子筛补铝类似。以NaOH和KOH等碱性溶液处理,非骨架Al在与KOH接触时,可形成可溶性的四面体阴离子,同时,在碱性介质中,分子筛也有部分溶解,但分子筛中Si(0A1)的配位比其它四种配位更易溶解,这样,四面体Al的阴离子进入分子筛骨架,取代Si(0Al)位。在Al取代Si(0A1)位

Al(H2O)63- + 4OH-Al

OH

OH OH)-+ 6H2O Al-

O

O

O

O Si

Si

Si

Si

(OH

过程中,Si(1A1)、Si(2A1)、Si(3A1)、Si(4A1)位均可以形成,因此,将引起分子筛中各

Si(nAl)配位数的变化,从而改变了分子筛中Si与A1的分布。该过程的主要特点是进入分子筛骨架中的Al量与Si(0Al)位的脱落数基本一致。

还有研究是通过对B沸石的有机柠檬酸处理,初步认为柠檬酸在具有对分子筛脱铝作用的同时,也具有补铝作用。脱铝后进入溶液中的Al(OH)2+物种,可与溶液中[H4C6O6OH]3-形成配位数不同的阴离子,其中Al(OH)2+阳离子在H+存在下可水解为Al(OH)4阴离子,并同晶取代分子筛中的Si(0A1)位。

另一方面具有弱酸性的A1H4C6O6OH又类似于A1C13,可以插入分子筛表面缺陷位起到补铝的作用。可见,柠檬酸补铝兼顾了NaOH或KOH及A1C13两种补铝机理。

3.6 金属对沸石分子筛的改性

3.6.1 碱金属、碱土金属对沸石分子筛的改性

潘慧等[23]首次提出在FER上引入适量碱金属及碱土金属有利于C2H2选择催化还原NO x。研究发现少量Na(交换度为11.8%)在FER分子筛中有利于促进目标反应,而大量Na存在于该分子筛中则抑制了NO、的选择催化还原消除。结合NO x-TPD,FTIR表征手段,提出活性含N物种在催化剂表面的生成是C2H2-SCR的关键步骤。少量Na的加入促进了分子筛上活性硝酸根(双齿硝酸根和桥式硝酸根)的吸附。过量Na在分子筛上不能进一步促进活性硝酸根生成,而是有利于生成惰性NaNO3。此外,由于大量的质子被Na取代,NO氧化为NO2这一反应步骤被显著抑制,从而明显降低了活性含N物种(NO+,双齿硝酸根和桥式硝酸根)的生成速率。因此,大量Na在FER分子筛中反而不利于C2H2-SCR反应。此外还发现,NO+也是主要的活性含N物种,该物种主要生成于HFER分子筛上。大量Na的加入显著抑制了该含N物质的生成,这也是FER中大量Na不利于反应的原因之一。少量Na在FER分子筛中的加入不仅促进了目的反应,还明显抑制了C2H2的非选择性氧化。

3.6.2 稀土金属对沸石分子筛的改性

于青[24]考察了Y改性对HZSM-5催化剂上C2H2-SCR反应的影响。从XRD、UV、NH3-TPD的表征结果中发现:在Y/HZSM-5催化剂上,大部分钻物种是高度分散的,并以Y3+的形式存在,少部分是以Y2Z3晶相形式存在。进一步研究发现高度分散的钻物种增加了HZSM-5分子筛表面可以稳定存在的且对还原剂有较高活性的双齿硝酸盐物种(1585cm-1)的含量;同时在Y/HZSM-5表面出现了另一个新的活性含氮物种-硝酸钇(1609cm-1)。由此认为高度分散的忆物种可有效增加能够稳定存在于催化剂表面的高活性的硝酸盐物种的含量,从而可显著地促进催化剂上目标反应进行。

3.6.3 贵金属对沸石分子筛的改性

Hall[25]报道了在Co/MFI催化剂中添加Pd可以提高催化剂的抗水性能,研究者分析

认为,催化剂中添加的Pd的主要作用是:促进NO向NO2的转化以及NO在催化剂表面上的吸附。

Lee等[26]研究了Pd离子交换Co-FER分子筛催化剂在H2O存在下,以CH4为还原剂催化还原NO的反应。在干燥的条件下,Co-FER催化剂在催化还原NO的反应中表现出较高的活性,但是,在10%H2O存在的条件下,特别是在低于450℃时,催化剂明显地失活。而Pd的添加明显地增强了Co-FER的抗H2O性,他们认为Pd的作用是氧化NO为NO2,NO的TPD证实了NO2是CH4-SCR的活性中间物,同时Pd也加强了NO 在催化剂表面的吸附。

4 结论

沸石分子筛结构的多样性,特别是结构和性质的可调变性大大地扩展了沸石分子筛的应用范围。沸石分子筛在应用上的巨大成功,除了结构的特殊性及种类的多样化外,与它们结构和性能的可修饰性有密切的关系。沸石分子筛的改性研究与它的合成和应用开发一样相当大地推动了沸石化学的发展,可以说没有改性技术的发展,就没有沸石分子筛今天的广泛应用。

综合前面的各种改性方法水蒸气处理脱铝具有够加强铝物种和硅物种的迁移性能等特点。此外,在对沸石分子筛水蒸气处理脱铝的过程中,处理温度对脱铝沸石的性质有很大的影响。

此外,沸石在酸处理脱铝后的特性与所选用的酸的种类以及所用的酸的浓度等因素有很大关系。因此,根据不同反应对沸石性质的需求,需选择不同的酸以及适宜的处理条件对沸石进行酸处理脱铝改性。但是,从目前的研究来看,氢氟酸只是针对ZSM-5等少数分子筛做了改性研究,所以,氢氟酸对分子筛的结构等影响还有待进一步研究。

参考文献

[1]干福熹.无机非金属材料的发展[J].硅酸盐通报,1995年04期.

[2]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2004.

[3]张铨昌.沸石吸附性能及其在环境保护中的应用,材料导报,1994,3:38-41.

[4]De Mallmann A.Barthomeuf D.Change in benzene adsorption with acidobasicity

of(Cs,Na)x zeolites studies by i.r.spectroscopy,Zeolite,1988,8(4):292-301.

[5]关春梅.分子筛工作周期的改进[J].中氮肥.2004,10(3):4l-42.

[6]孙大明.离子交换13X分子筛的吸附性能及结构分析[J].真空与低温,199l,10(4):

6-10.

[7]田一光,李广钧,孙剑飞等.La3+、Co2+、Cu2+、Zn2+与X沸石的微波加热离子交

换[J].化工研究与应用.1997.9(4):360-364.

[8]张信,朱华元等.无(或少)非骨架铝的超稳Y型分子筛[J].石油炼制与化工,1997,

25(5):21-24.

[9]黄耀,朱崇业等.不同超稳Y沸石的酸性质及催化性能[J].分子催化,1993,7(5):

347-354.

[10]李继霞,李自运,项寿鹤,于海斌.氟处理对ZSM-5分子筛催化剂结构及醚化反

应活性的影响[J].燃料化学学报,2008,36(l):4.

[11]谢鹏,张盈珍,郑禄彬.Y型沸石用HCI+NH4F(F+H)脱铝[J].催化学报,1993,

14.407-410.

[12]刘辉,刘兴云,李宣文,徐筱杰.NaY沸石的酸脱铝[J].石油化,1998,27.880-885.

[13]Stabenow J,Marosi L,Sehwarzmann M(1976) Ger Patent 2510740[P],BASF AG.

[14]Stabenow,Joaehim,Dipl.-Phys.verfahren zur erhohung des SiO2/A12O3

molverhaltnissesim kristallgerust von zeolithen[P].DE 2510740Al.1980.

[15]Fejes P,Hannus I,Kiriesi I.Dealumination of zeolites with phosgene[J].Zeolites,

1984,4(1):73-76.

[16]Fejes P,Kiriesi I,Hannus I,Kiss A,Sehobel Gy[J].React Kin Catal Lett (1980)14:

481.

[17]P.Fejes,I.Kiriesi,I.Hannus,A.Kiss and Gy.Sehobel.[J].React.Kinet.Catal.Lett.,

14(1980)46.

[18]I.Hannus,I.I.Ivanova,Gy.Tasi,I.Kiriesia and J.B.Nagy[J].Colloids and

Surfaees A:Physieoehemieal and Engineering Aspeets,101(2-3),1995,199-206.[19]Lok B M,Izod T P J.Modifieation of moleeular sievesI-direct fluorination[J].Zeolites,

1982,2(1):66-67.

[20]Peng W U,Komatsu T,Yash ima T,J Phys Chem[J],1995,99,10923.

[21]Chang C D,Chu C T 2W,M iale J N,etc.,J Am Chem Soc[J],1984,106,8143.

[22]Chun Yang,Qinghua Xu,Aluminated zeolites β and their prooerties Part 1-Alumination

of Zeolite β,J Chem.Soc.,Faraday.Trans.,1997,Vol.93,1675-1680.[23]潘慧.FER分子筛中碱金属和碱土金属对C2H2-SCR的影响作用[D]:(硕士学位论

文).大连:大连理工大学,2008.

[24]于青.ZSM-5型分子筛上乙炔还原NO的机理探讨及Y/HZSM-5上的NO还原究

研[D]:(硕士学位论文).大连:大连理工大学,2007.

[25]Hall W K,Lombardo E A,d’Itri J L,et al.The Possible Involvement of CH3NO2 in

the Meehanism of SCR Reaetion[J].Prepr Am Chem Soe Div Pet Chem.1997,42:841-844.

[26]Lee T J,Nam I-S,HamS-W et al.Effeet of Pd on the water tolerance of Co-ferrierite

Ceatalyst for NO reduetion by CH4[J].Appl.Catal.B.2003,41(1-2):115-127.

MBS树脂-PVC抗冲改性剂生产方法

MBS树脂-PVC抗冲改性剂生产方法MBS树脂是在粒子设计概念下合成的一种新型高分子材料,由甲基丙烯酸甲酯(M)、丁二烯(B) 及苯乙烯(S)采用乳液接枝聚合法制备而成。在亚微观形态上具有典型的核-壳结构,核心是1个直径为10~100 nm的橡胶相球状核,外部是苯乙烯和甲基丙烯酸甲酯组成的壳层。由于甲基丙烯酸甲酯与聚氯乙烯(pvc)的溶解参数相近,在PVC树脂和橡胶粒子间起到界面粘接剂的作用,在与PVC加工混炼过程中形成均相,而橡胶相则以粒子状态分布于PVC连续介质中,呈现海岛结构,这种特殊结构赋予了制品优异的抗冲击性能。当PVC中加入5%~ 10%的MBS树脂时,可使制品的冲击强度提高4~ 15倍,同时,还可改善制品的耐寒性和加工流动性,且能够保持PVC树脂原有的光学性能,因此,MBS 树脂作为PVC树脂的抗冲改性剂具有广泛的应用前景。 1 MBS树脂的生产方法 MBS又称为透明ABS,由于两者的生产方法相似,早期许多生产厂家使用相同的工艺路线,甚至在同一条生产线上生产这两种产品。随着技术的发展,工艺过程日趋完善,各生产厂家的生产工艺略有差异,但基本原理是一样的,即丁二烯和苯乙烯作为单体在水和乳化剂中进行乳化,在引发剂的引发作用下进行聚合,生产丁苯胶乳(SBR胶乳),再加入苯乙烯和甲基丙烯酸甲酯进行乳液接枝聚合,得到MBS 树脂接枝胶乳(MBS树脂胶乳),最后经过凝聚、脱水和干燥处理后得到MBS粉料。在MBS树脂的整个生产工艺过程中,SBR胶乳的合成技术、MBS胶乳的合成技术以及MBS胶乳的凝聚技术是生产的三大关键技术。 1.1丁苯胶乳的制备[1-2] 丁苯胶乳的合成,一般采用乳液聚合法。为了满足抗冲击性和透明性的要求,必须控制SBR胶乳的粒径、粒径分布及交联度,同时,折光指数必须与PVC相匹配。从理论上讲,橡胶相玻璃温度越低,增韧效果越好,常选择在-40℃以下。大多数厂家在丁苯胶乳制备中,丁二烯质量分数选择大于70%,但也有厂家选用纯丁二烯胶乳。从透明性考虑,

分子筛改性-3

沸石分子筛的改性方法 摘要:沸石分子筛被广泛应用于催化反应过程中,特别是在石油炼制和石油化工中得到了普遍应用。不同的催化反应,往往需要不同种类和功能的沸石分子筛催化剂。本论文主要介绍目前国内外对沸石分子筛的主要改性方法:沸石分子筛的脱铝改性、再铝化以及金属改性。 关键字:沸石分子筛;改性;脱铝 1 沸石分子筛的概念 沸石分子筛是一种具有立方晶格的硅铝酸盐化合物。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用[1]。 分子筛是结由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子筛分子尺寸大小的孔道和空腔体系。然而随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅、铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、CO、Zn、Be和Cu等取代,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件[2]。 2 沸石分子筛的结构及性能 2.1沸石分子筛的结构特点 沸石结构可以分为三个部分[3]:铝硅酸盐格架;格架中相互连结的孔隙(孔道和空穴):在孔道或空穴中的阳离子和水分子。在一般情况下,沸石的中心大空穴和孔道都充满水分子,这些水分子围绕着可交换阳离子形成水化球,通常在350℃或400℃下加热数小时或更长时间,沸石将失去水。这时,有效直径小到足以通过孔道的分子将易于被沸石吸附在脱水孔道和中心空穴中;而直径过大无法进入孔道的分子将被排斥,这就是大家所熟知的“分子筛”性质。 沸石的骨架中的每一个氧原子都为相邻的两个四面体所共用。构成沸石骨架的最基本的结构是硅氧(SiO4)四面体和铝氧(AlO4)四面体。几个硅(铝)氧四面体通过氧桥相互联结在一起,可以形成四元环、五元环、六元环、八元环、十二元环、十八元环等。而各种不同的多元环通过氧桥相互联结,又可形成具有三维空间的笼。由于铝原子是三价的,

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

SBA-15分子筛

SBA-15分子筛改性方法进展 摘要:介孔分子筛SBA-15在分离、催化及纳米组装等方面具有很大的应用价值,可是由于存在化学反应活性不高等内在的缺点,大大限制了它的实际应用范围。为实现介孔分子筛SBA-15的潜在应用价值,依靠化学改性来提高它的化学反应活性。按照SBA-15负载组分的不同,SBA-15改性方法可分为:金属改性方法,酸改性方法,氧化物改性方法及其他改性方法。 关键词:SBA-15分子筛改性方法 Abstract:Mesoporous molecular sieve SBA-15 in separation, catalysis and nano-assembly has great application value.However, because of its shortcomings,for example its chemical reactivity , its practical application is limited.To realise the potential application of SBA-15,we can increase its chemical reactivity through chemical modification . The modifided methods include modified method of metal,acid modification,Oxide modification and other methods. Keywords: Mesoporous molecular sieve SBA-15 modification SBA-15具有较大的孔径(最大可达30 nm),较厚的孔壁(壁厚可达6.4 nm),因而具有较好的(水)热稳定性,在催化、分离、生物及纳米材料等领域都有广阔的应用前景,但由于它是纯氧化硅介孔材料,没有催化活性,需要负载活性组分。借助SBA-15优良的物理化学性质和结构特点,通过负载活性组分对其进行修饰改性,使其具有催化活性。 SBA-15的改性原理:介孔氧化硅材料SBA-15表面含有3种硅羟基:孤立的、孪式的和氢键的羟基。只有那些自由的硅羟基(孤立的硅羟基—SiOH和孪式的硅羟基=SiOH)具有高的化学反应活性,氢键的硅羟基则没有化学活性,但氢键硅羟基受热可以转变成自由硅羟基。具有化学活性的硅羟基是介孔材料表面化学改性的基础,通过表面硅羟基与活性组分相互作用,把催化活性位引入孔道或骨架。对介孔分子筛SBA-15进行改性的方法大体可分为直接合成法和后合成法两大类。直接合成法是指在分子筛合成的同时完成改性过程,后合成法是指在分子筛合成之后再对其进行改性。 按照SBA-15负载组分的不同,可分为金属改性的SBA-15系列催化剂,酸改性的SBA-15系列催化剂,氧化物改性的等SBA-15系列催化剂。 一、金属改性的SBA-15系列催化剂 1、SBA-15负载贵金属系列催化剂 如银建中等「1」利用超临界流体沉积法合成Ag/SBA-15纳米复合材料。超临界流体沉积法(Supercritical Fluid Deposition,SCFD)是近年来发展的一种制 的溶剂特性,备纳米复合材料方法.它克服了其它方法的缺点,充分利用超临界CO 2 零表面张力、高扩散性,将前驱物溶解并运输到基材或多孔材料的孔道内部,经过简单的泄压、还原处理,即得到担载金属的纳米复合材料。银建中等以超临界二氧化碳为溶剂,以乙醇为共溶剂,AgNO3为前驱物, SBA-15为载体,在50℃、23~

金属材料表面改性涂层的新进展(专业课)试题及答案

1、工艺参数对合金元素吸收率的影响重要程度由大到小排列正确的是()。 A、工件电压>气压>源极电压>极间距 B、工件电压>极间距>源极电压>气压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 2、激光熔覆陶瓷涂层不包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 3、在1995年,()生产的Hastelloy C-2000镍基耐蚀合金为苑极,进行Ni-Cr-Mo-Cu多元共渗工艺研究。 A、美国 B、日本 C、中国 D、英国 4、下列对良好熔覆层的客观要求描述不正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹 5、下列哪项不是熔覆技术的应用()。 A、耐磨涂层 B、抗老化涂层 C、抗氧化涂层 D、耐蚀涂层 6、下列是结合力的定量测试方法的是 A、喷砂法 B、弯折法 C、锉刀法 D、张力法 7、工艺参数对合金元素的影响重要程度由小到大排列正确的是()。 A、工件电压>气压>源极电压>极间距

B、工件电压>气压>极间距>源极电压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 1、激光熔覆尚待研究和解决的问题是()。 A、大功率激光器及适于自动化工业生产的光路转换系统 B、快速凝固理论的建立与复合涂层界面精细结构的深入研究 C、工艺过程的稳定性与反馈控制 D、涂层质量的监测与缺陷控制 2、下列哪项是熔覆技术的应用()。 A、耐磨涂层 B、耐蚀涂层 C、抗氧化涂层 D、抗老化涂层 3、下列对冲刷腐蚀描述正确的是()。 A、简称冲蚀,是材料在应力和化学介质协同作用下材料的过早失效现象 B、在石油、化工。水电等过程中广泛存在 C、暴露在运动流体中的多有类型的设备如料浆泵的过流部件、弯头、三通和换热器管,都会遭受到冲蚀的破坏 D、在含固相颗粒的双相流中,破坏更为严重,它大大缩短设备的寿命 4、激光熔覆陶瓷涂层包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 5、下列为结合力的测试方法的是()。 A、喷砂法 B、弯折法 C、锉刀法 D、划格法 6、下列对良好熔覆层的客观要求描述正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹

分子筛

分子筛 分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由SiO和AIO四面体组成和框架结构。 在分子筛晶格中存在金属阳离子(如Na,K,Ca等),以平衡四面体中多余的负电荷。 一、分子筛的类型按其晶体结构主要分为:A型,X型,Y型等。 A型主要成分是硅铝酸盐,孔径为4A(1A=10 -10米),称为4A (又称纳A型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。 X型硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为9—10A的分子筛晶体,称为13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为10X(又称钙X型)分子筛。 Y型 Y型分子筛具有X型分子筛烃似的晶体结构,但化学组成不同(硅铝比较大)通常用于催化领域。 二、分子筛的主要特性 1、物理特性:比热:约0.95KJ/KgXK(0.23Kcal/KgX℃导 热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃水吸附 热:约3780KJ/Kg(915Kcal/Kg) 2、热稳定性和化学稳定性: 分子筛能承受600—700℃的短暂高温,但再生温度一般在

400℃以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 三、分子筛的特性 分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积,所以具有许多优异的特点。 (1)按分子的大小和形状不同的选择吸附作用,即只吸附那些小于分子筛孔径的分子。 (2)对于小的极性分子和不饱和分子,具有选择吸附性能,极性越大,不饱和度越高,其选择吸附性越强。 (3)具有强烈的吸水性。哪怕在较高的温度、较大的空速和含水量较低的情况下,仍有相当高的吸水容量。 3.1、基本特性: a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 c)分子筛内部空腔和通道形成非常高的内表面积。其内表面可高于分子筛颗粒的外表面积的10000-100000倍。 1、根据分子大小和形状的不同选择吸附——分子筛效应分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔

离子注入对金属材料改性

离子注入材料表面改性的研究方法 【摘要】本文论述了离子注入材料表面改性的特点和发展应用,阐述了离子注入材料表面改性的机理。大量研究表明,离子注入通过改变材料表面和界面的物理化学特性及微观结构,能够显著提高材料的抗磨损,抗疲劳,抗腐蚀,抗氧化特性。离子注入不仅可以提高材料表面性能,延长材料使用寿命,还可以节约贵金属资源,具有很好的经济效益和应用前景。 【关键词】离子注入技术;材料表面改性;研究方法 1.前言 20世纪70年代,离子注入应用于材料表面改性并逐渐发展成一种新颖有效的材料表面改性方法。它是把工作(金属,合金,陶瓷等)放在离子注入机的真空靶室中,通过加高电压,把所需元素的离子注入到工件表层的一种工艺。材料经离子注入后,在其零点几微米的表层中增加注入元素和辐照损伤,从而使材料的物理化学性能发生显著变化。 大量实验证实,离子注入能使金属和合金的摩擦因素,耐磨性,抗氧化性,抗腐蚀性,耐疲劳性以及某些材料的超导性能,催化性能,光学性能等发生显著变化,能够大大提高材料的性能和使用寿命。离子注入在工业中应用能取得很好的效益,除延长工件的使用寿命外,还由于离子注入仅用较少量的合金元素,就可以得到较高的表面合金浓度,因而可以节约贵重金属[1]。 2.离子注入特点 与通常的冶金方法不同,离子注入是用高能量的离子注入来获得表面合金层的,因而有其特点: (1)离子注入是一个非热平衡过程,注入离子的能量很高,可以高出热平衡能量的2-3个数量级。因此,原则上周期表中的任何元素都可以注入任何基体材料。 (2)注入元素的种类,能量,剂量均可选择,用这种方法形成的表面合金,不受扩散和溶解度的经典热力学参数的限制,即可得到用其他方法难以获得的新合金相。 (3)离子注入层相对基体材料没有明显的界面,因此表面不存在粘附破裂或

分子筛改性-2

沸石分子筛的改性方法 1 沸石分子筛的概念 沸石分子筛是一种具有立方晶格的硅铝酸盐化合物。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用[1]。 分子筛是结由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子筛分子尺寸大小的孔道和空腔体系。然而随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅、铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、CO、Zn、Be和Cu等取代,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件[2]。 3.3 沸石分子筛的络合剂脱铝 由于沸石耐酸性能较弱,当直接用无机酸处理使其脱铝时,其晶体结构易遭破坏。而采用络合剂(如EDTA、柠檬酸)脱铝或者采用无机酸和配合剂共同作用脱铝[11]则能够减弱对晶体结构的破坏程度。 刘辉等人[12]研究了NaY沸石在硫酸钱缓冲体系中分别用草酸、柠檬酸、酒石酸、磺基水杨酸和硫酸直接进行脱铝。在各自合适的条件下,当一次脱铝15%左右时,沸石能保持较高的结晶度。其中,当用草酸和酒石酸直接脱铝时,沸石保持的结晶度最高,可以达到95%以上,当用柠檬酸脱铝时,沸石的结晶度也能保持在90%。草酸的电离平衡和络合平衡在硫酸钱溶液中能构成很好的缓冲体系,并且,他们提出了用草酸对NaY 沸石进行脱铝的机理(图3)。

分子筛改性

分子筛改性- 沸石分子筛的改性方法 2沸石分子筛的结构及性能 2.1沸石分子筛的结构特点 沸石结构可以分为三个部分[3]:铝硅酸盐格架;格架中相互连结的孔隙(孔道和空穴):在孔道或空穴中的阳离子和水分子。在一般情况下,沸石的中心大空穴和孔道都充满水分子,这些水分子围绕着可交换阳离子形成水化球,通常在350℃或400℃下加热数小时或更长时间,沸石将失去水。这时,有效直径小到足以通过孔道的分子将易于被沸石吸附在脱水孔道和中心空穴中;而直径过大无法进入孔道的分子将被排斥,这就是大家所熟知的“分子筛”性质。 沸石的骨架中的每一个氧原子都为相邻的两个四面体所共用。构成沸石骨架的最基本的结构是硅氧(SiO4)四面体和铝氧(AlO4)四面体。几个硅(铝)氧四面体通过氧桥相互联结在一起,可以形成四元环、五元环、六元环、八元环、十二元环、十八元环等。而各种不同的多元环通过氧桥相互联结,又可形成具有三维空间的笼。由于铝原子是三价的,所以铝氧四面体中有一个氧原子的价电子没有得到中和,这样就使整个铝氧四面体带有一个负电荷,为了保持电中性,这个负电荷由处在骨架外的单价或多价阳离子来补偿。

沸石中的阳离子可被其它阳离子交换,并保持骨架结构不发生变化。由于阳离子的大小不同,以及在晶穴中位置的改变,可以影响沸石的孔径发生变化。另外,由于沸石中不同阳离子所产生的局部静电场不同,水合阳离子的离解度也不同,因而对吸附质分子的极化能的影响也不同,从而影响了沸石筛分分子的作用和吸附、催化性能,所以沸石的离子交换作用是沸石能够改性的原因之一。沸石中的阳离子位置可以发生改变,也可以被其它阳离子交换,并保持骨架结构不发生变化,这一点对沸石的应用是非常重要的。 沸石分子筛的结构特点归纳为以下几点: 1沸石分子筛具有高度有序的晶体结构和大量均匀的微孔,其孔径与一般物质的分子大小属同一数量级,空旷的骨架结构,使得晶穴体积约为总体积的40%~50%。 2分子筛具有很大的表面积,其表面积主要存在于晶穴内部,外表面积仅占总表面积的1%左右。 3明确的孔结构,对客体分子表现择形性。择形性是由反应物、产物或过渡态分子的扩散差别引起的,这方面已有大量的研究。沸石分子筛的这一性质可以通过孔道尺寸的剪裁来改变[4]。 4沸石呈现离子型电导性,这是由于阳离子可以通过孔道移动。阳离子携带电流的能力取决于离子的淌度、电荷大小和其在结构中的位置。 5沸石的酸碱稳定性各不相同,

QPQ金属材料表面改性处理技术简介

QPQ金属材料表面改性处理技术简介 QPQ处理技术是一种可以同时大幅度提高金属表面的耐磨性、抗蚀性,而工件几乎不变形的新的金属表面强化改性技术。该技术由德国迪高沙公司开发。由于该工艺可以使金属表面的耐磨、耐蚀性及耐疲劳性能大幅度提高,已被广泛用于汽车、摩托车、机车、工程、纺织、轻工机械、仪表,工模具、办公设备等各种行业。该技术具有以下优点: 一、性能优良 1.良好的耐磨性、耐疲劳性能: 经QPQ处理的45钢,40Cr钢(退火状态)的耐磨性达到淬火及高频淬火的16倍以上,达到20钢渗碳淬火的9倍以上,为镀硬铬和离子氧化的2倍多(见附表一)。在大量生产条件下提高工模具寿命1-4倍。 2.极好的抗蚀性: 普通炭钢经QPQ处理后具有极高的抗蚀性,例如45钢经QPQ处理后在大气中和盐雾中的抗蚀性比1Cr18Ni 9Ti不锈钢高5倍;比镀硬铬高70倍以上;比发黑高280倍以上(见附表二)。 3.极小的变形: QPQ处理可以认为是变形最小的硬化方法,处理后工件的尺寸和形状变化极小,可以用来解决很多常规处理方法无法解决的热处理变形问题。 4.可以替代多道工序: 该工艺一次处理可以替代淬火——回火——发黑三道工序或渗碳——淬火——回火——镀硬铬四道工序,可以大大降低生产成本,并且大幅度节能。 二、应用范围广: 1.使用材料: 适用于各种工具钢、冷热模具钢、结构钢、不锈耐热钢、纯铁、铸铁及粉末冶金件。 2.可替代工艺: 可以大量替代渗碳淬火、高频淬火、易变形的淬火;替代离子氮化;替代发黑、磷化、硫化、镀硬铬、镀装饰铬。普通结构钢经QPQ处理,在很多情况下可以大量替代不锈钢。 3.已经成熟应用的产品: 工具:高速钢钻头、铣刀、铰刀、丝锥、滚刀、插齿刀、拉刀等,加工不锈钢、耐热钢效果尤为显著。 模具:各种冷拉模、挤压模、冲模、压铸模。对大量通用的橡胶模、塑料模、玻璃模等各种模具,由于模具承受压力不大,可以选用退火态调质的中炭钢作QPQ处理替代T12或9SiCr类钢制淬火模具。 机床件:机床摩擦片、导轨、电器铁芯等。 汽车摩托车件:曲轴、凸轮轴、气门、气簧、扭转盘、刹车控制系统、座位滑动器、保险杠、齿轮、连杆、链轮、缸套、门锁、挡风玻璃摇臂风扇电机、离和器摩擦片等…… 纺织机:络筒机件、弹力丝机热轨、罗拉、钢令圈等。 齿轮:多种大小规格齿轮。 办公设备及家用电器件:各种耐磨性、轴类件。 电力设施件:露天放置的电力设施中的耐磨蚀件。 中山市小榄镇生产力促进中心为了提高小榄镇五金产业的生产技术水平,现定于在本月23日与中山成工材料科技有限公司联合举行一次QPQ金属材料表面改性处理技术展示会,届时欢迎各五金企业参加,详情请与本中心联系。 表一:滑动磨损试验

Ce元素改性对分子筛性能的影响

2013年5月 贵 金 属 May 2013 第34卷第2期 Precious Metals V ol. 34, No. 2 收稿日期:2012-05-16 修回日期:2013-03-05 基金项目:云南省科技计划项目(2009CD103、2010ZC257)资助。 第一作者:蔺广森,男,硕士,助理工程师,研究方向:分子筛材料改性。E-mail :281793779@https://www.doczj.com/doc/8f16838293.html, Ce 元素改性对分子筛性能的影响 蔺广森1,戴 红2,常仕英1,赵云昆1,王亚明1,杨冬霞1 (1. 昆明贵研催化剂有限责任公司,昆明 650106;2. 昆明学院,昆明 650214) 摘 要:通过离子交换法以分子筛为原料进行稀土元素Ce 的改性,并负载贵金属Pd 制备出整体式 催化剂材料,利用对比实验考察了改性分子筛的孔结构、储氧量、低温碳氢吸附活性、台架储氧能 力和催化活性。采用低温氮吸附(BET)、程序升温还原(TPR)、台架性能测试(AFR)和台架储氧能力 (OSC)进行了表征。结果表明,改性分子筛在比表面积、孔容上有所下降,但是提高了催化剂低温 碳氢的吸附活性、台架储氧能力、储氧量和催化活性。 关键词:物理化学;分子筛;改性;稀土;催化;离子交换 中图分类号:O643.3 文献标识码:A 文章编号:1004-0676(2013)02-0030-05 The Influence of the Modification with Ce on the Performance of Molecular Sieve LIN Guangsen 1, DAI Hong 2, CHANG Shiying 1, ZHAO Yunkun 1, W ANG Yaming 1, YANG Dongxia 1 (1. Kunming Sino-Platinum Metals Catalyst Co. Ltd., Kunming 650106, China; 2. Kunming University, Kunming 650214, China) Abstract: Molecular sieve was modified by ion exchange process with Ce and monolithic catalyst loading Pd was prepared with the sieve. Investigations of pore structure, oxygen storage capacity, low temperature hydrocarbon adsorption activity, bench oxygen storage capacity and catalytic activity of modified molecular sieve were carried out. The experimental results of BET, TPR, AFR and OSC indicated that the surface area and pore volume were decreased but the low temperature HC adsorption, oxygen storage capacity and catalytic activity were improved. Key words: physical chemistry; molecular sieve; modification; rare earth metals; catalysis; ion exchange 近年来,机动车尾气排放对全球环境的污染越 来越严重,已经成为各大城市主要的大气污染源。 并且矿物燃料是不可再生资源,随着机动车的发展,这些不可再生资源的消耗终究会成为能源方面的危 机,另外全球将近50%的CO 、HC 和NO x 排放来自于 机动车[1],不仅破坏了人类赖以生存的坏境,更严 重危害到了人类的健康。因此,解决机动车尾气的 排放和处理目前的能源危机成为了我们共同面对的 当务之急。一方面,全球加大了机动车尾气中有害物质的排放控制,例如1970年美国的《清洁空气法》[2],欧洲1990年10月的欧1标准到2005年的欧四标准[3]。另一方面,开发新型的可持续能源,例如新型天然气汽车、太阳能汽车的出现。但是新型可持续能源的开发和利用需要很长的周期,基于越来越严格的排放法规,现阶段只能从尾气排放的后处理技术入手,开发出新型高效的尾气催化剂材料。 机动车尾气中HC 化合物对于大气的污染和人类的健康有很大的危害。目前多种催化剂对于HC 污染物的低温处理存在缺陷。分子筛本身由于高的比表面积、稳定性、多孔性以及酸性对尾气中的污染物质有较好的吸附和分离作用[4],尤其对于低温HC 处理表现出了良好的效果,成为了汽车尾气后处理技术中的新型材料,但是分子筛的抗水热、储氧 和粘结性较差。研究表明[5]氧化铈由于它独特的储 放氧能力,在加入催化剂材料中可以很好的提高催化剂的活性,稳定性以及选择性[6]。本文以此为出

分子筛改性

分子筛的改性主要方法有:加入模板剂(控制含量),老化时间(温度)、搅拌速度、晶化时间(温度)以及碱度控制,吸附一些金属离子等 硅烷化改性ZSM-5分子筛用于催化脱蜡催化剂 改性方法:利用分子模拟技术,筛选分子大小合适的硅烷模板化含物A对ZSM-5分子筛进行表面修饰,并对改性分子筛性质进行了表征 改性结果:在改性温度50℃,硅烷化合物A质量分数为5%的条件下,可制备选择性良好的改的ZSM一5分子筛。将其用于制备新型催化脱蜡催化剂,在压力为6.5 MPa,氢气/原料油(体积比)为500,空速为1.0 h-1的条件下,与未改性者相比,前者柴油收率提高了2.7个百分点,凝点降低了2℃。改性后的分子筛对正己烷的吸附选择性增加,对环己烷的吸附含量减小。 刘丽芝,郭洪臣.硅烷化改性ZSM-5分子筛用于催化脱蜡催化剂;[J]石化技术与应用,2009,27(3),242-245 直链烷烃对Ti-HMS分子筛合成的影响 改性方法:以十二胺为模板剂,正硅酸乙酯为硅源,钛酸四丁酯为钛源,直链烷烃正己烷或正辛烷为有机添加剂,在室温下合成出具有较大孔径的Ti-HMS分子筛。 结果:研究了烷烃对Ti-HMS分子筛的扩孔作用及对分子筛结晶度和催化性能的影响,结果表明,加入的烷烃越多,分子筛的孔径越大;烷烃链长越长,对Ti-HMS的扩孔作用越显著, 将加入烷烃所得的Ti-HMS用于模拟燃料中),4,6-二甲基二苯并噻吩的氧化脱除反应,结果发现,Ti-HMS的催化氧化活性有所提高,对4,6-二甲基二苯并噻吩的脱除速率增大 孙德伟,李钢,金长子,赵丽霞,王祥生;直链烷烃对Ti-HMS分子筛合成的影响;[J]催化学报,2007,28(5),479-483 小晶粒SAPO-11分子筛的合成、表征与异构化性能研究 改性方法:通过调整反应物凝胶的老化条件和原料配比,制备了亚微米级晶粒尺寸的SAPO-11 分子筛。以二正丙胺和二异丙胺的混合物为模板剂 单胺法:选用二正丙胺(DPA)和二异丙胺(DIPA)两种有机模板剂,将两种有机胺分别进行合成。双胺法:是以DPA和DIPA为混合模板剂合成SPAQl 1分子筛的方法 结果:以小晶粒SAPO-11分子筛为载体的催化剂与以常规SAPO-11 为载体的催化剂相比,不仅正十六烷异构化反应的转化率有大幅度提高,而且异构化的选择性也得到的明显改善,表现出了良好的长链烷烃异构化性能。 张胜振,陈胜利,董鹏,袁桂梅,小晶粒SAPO-11分子筛的合成、表征与异构化性能研究,中国石油大学(北京)重质油国家重点实验室 小晶粒ZSM-35分子筛的合成 改性方法:原料中加入适量的十二烷基苯磺酸钠和聚乙二醇400,可使ZSM-35分子筛的粒度减小;较短的晶化时间和较高的合成釜转速有利于合成小晶粒ZSM-35分子 结果:小晶粒ZSM-35具有较高的骨架异构烯烃选择性和较少的副反应产物。 谢素娟,李玉宁,刘盛林,王清遐,徐龙伢,小晶粒ZSM-35分子筛的合成,[J].石油学报,2006,10,64-67 新型复合分子筛的制备及其吸附脱硫性能研究 改性方法:用碱处理沸石ZSM-5的浆液作为硅铝源.合成了一系列新型微孔-介孔复合分子

医用金属材料表面处理

医用钛合金材料表面改性 摘要:金属材料是生物医学材料中应用最早的。由金属具有较高的强度和韧性,适用于修复或换人体的硬组织,早在一百多年前人们就已用贵金属镶牙。随着抗腐蚀性强的不锈钢、弹性模量与骨组织接近铜铁合金,以及记忆合金材料、复合材料等新型生物医学金属材料的不断出现,其应用范围也在扩大。 关键词:钛合金材料,表面涂层处理,表面改性 (一)医用金属与合金表面涂层处理 金属及其合金在生物体内的生物活性、磨损、腐蚀问题尚未解决,需对其表面进行改性。表面改性不仅要抑制有害金属离子的溶出,而且要促进组织的再生和加强材料与组织结合。 生物钛合金材料的表面改性技术主要可以分为: (1)物理化学方法(2)形态学方法(3)生物化学方法。 1 物理化学方法——改善金属生物材料表面性能的主要方法 (1)热喷涂 热喷涂是利用一种热源的火焰将粉末状的金属或非金属喷涂材料加热熔融并软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的液滴以一定的速度喷向经过预处理干净的基体表面,依靠喷涂材料的物理变化和化学反应,与基体形成结合层的工艺方法。可分为电弧喷涂、等离子喷涂、火焰喷涂、爆炸喷涂等。 (2)脉冲激光融敷 是在低输出功率、高扫描速速的脉冲激光照射下,将涂敷材料融敷在基体表面的方法。 (3)离子溅射 离子溅射以高速离子轰击靶材,使涂敷材料粉粒溅射并沉积在金属基体 (4)喷砂法 用喷砂机将涂敷材料粉末直接高速喷出镶入基体表面。 (5)电化学法 电化学法是用电化学的方法,通过调节电解液的浓度、PH值、反应温度,电场强度,电流等来控制反应的制备方法。 (6)离子注入法 离子注入改性是将所需的元素在离子气化室中进行气化,通过高频放

分子筛使用规范

分子筛本身是对极性分子具有吸附能力的。前提是该分子直径比分子筛孔径小。 常用的分子筛有3A,4A,5A,13X,10X等。 分子筛的主要特性 1、物理特性: 比热:约0.95KJ/KgXK(0.23Kcal/KgX℃导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃水吸附热:约3780KJ/Kg(915Kcal/Kg) 2、热稳定性和化学稳定性: 分子筛能承受600—700℃ 的短暂高温,但再生温度一般在400℃ 以下。分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。 3、分子筛的特性 分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积,所以具有许多优异的特点。(1)按分子的大小和形状不同的选择吸附作用,即只吸附那些小于分子筛孔径的分子。(2)对于小的极性分子和不饱和分子,具有选择吸附性能,极性越大,不饱和度越高,其选择吸附性越强。(3)具有强烈的吸水性。哪

怕在较高的温度、较大的空速和含水量较低的情况下, 仍有相当高的吸水容量。 3.1、基本特性: a)分子筛对水或各种气,液态化合物可逆吸附及脱附。 b)金属阳离子易被交换。 c)分子筛内部空腔和通道形成非常高的内表面积。其 内表面可高于分子筛颗粒的外表面积的 10000-100000倍。 1、根据分子大小和形状的不同选择吸附——分子筛效 应 分子筛晶体具有蜂窝状的结构,晶体内的晶穴和孔道相互沟通,并且孔径大小均匀,固定(分子筛空腔直径一般在6—15埃之间),与通常分子的大小相当,只有那些直径比较小的分子才能通过沸石孔道被分子筛吸附,而构型庞大的分子由于不能进入沸石孔道,则不被分子筛吸附。而硅胶,活性氧化铝和活性碳没有均匀的孔径,孔径分布范围十分宽广,所以没有筛分性能。 2、根据分子极性,不饱和度和极化率的选择吸附 分子筛对于极性分子和不饱和分子有很高的亲和力;在非极性分子中,对于极化率在的分子有较高的选择吸附优势。此外,沸点越低的分子,越不易被分子筛所 吸附。

金属材料的先进制备技术

金属材料的先进制备技术 金属材料热处理表面强化技术研究 l引言 随着工业现代化工业的快速发展,对各种机械设备零件的表面性能要求越来越高。一些在特殊条件下工作的零部件,往往因其表面局部磨损而使整个零件报废。因此如何提高和改善零件的表面质量和性能,以延长工件的使用寿命是一个十分重要的问题l’,2]。世界各国对金属材料表面和近表面区组织的改性处理技术进行了深入的研究,通过机械、物理、化学等方法来改变材料表面的形貌、化学成分、相组成、微观结构、缺陷状态或应力状态,即采用各类表面改性技术,使材料表面具有较本体更高的强度,和更加优良的耐蚀、耐磨、耐高温和抗疲劳等性能,从而充分发挥金属材料的潜力,提高其表面耐磨性,达到延长使用寿命、拓宽其应用领域的目的13,4]。金属表面改性技术在冶金、机械、电子、建筑、轻工、仪表等各个工业部门乃至农业和人们日常生活中都有着广泛的用途,其种类繁多,除常用的喷丸强化、表面热处理等传统技术外,激光、电子和离子等高能束表面处理技术也取得了快速的发展[5],大量的研究成果己经在工业生产中得到广泛的应用。进入21世纪后,随着人们环保意识的不断提高,对环境无污染的“绿色”表面强化技术越来越受到人们的青睐。近年来,俄国文献le.姆及道了一种新的表面强化技术,鉴于这种技术的文献报道较少,其作用机制还未见相关报道,而且该项技术尚未有规范的称谓,为此,我们暂且称其为热一声处理技术,与传统的表面改性技术相比,它高效、低耗、无污染,并且工艺上易于实现,具有较好的应用前景。 1.2表面改性技术概述 磨损、腐蚀和断裂是机械零部件、工程构件的三大主要破坏形式,它们所引起的经济损失十分巨大。其中由于磨损、腐蚀导致的机件失效而造成经济损失的,占有相当大的比重。在美国国家材料政策委员会向美国国会提出一份报告指出:由于摩擦磨损引起的损失,使美国经济每年支付1000亿美元的巨额资金,这项

材料表面改性习题整理答案

第六章热喷涂、喷焊与堆焊技术 1.什么是热喷涂?根据所使用的热源不同,可以将热喷涂工艺分为哪两大类?热喷涂:采用各种热源将涂层材料加热熔化或半熔化,高速气体将其雾化,并在高速气流的带动下雾化粒子撞击基材表面,冷凝后形成具有某种功能的涂层。喷焊是用热源将涂层材料重熔,涂层内颗粒之间、涂层与基体之间形成无孔隙的冶金结合。 堆焊技术是将具有一定使用性能的材料(线材或焊条)借助一定的热源手段熔覆在基材表面,使基体表面具有耐磨、耐蚀、耐热等特殊性能或使零件恢复原有形状尺寸的工艺方法。 2.热喷涂技术的特点是什么?局限性是什么? 热喷涂的技术特点:可在各种基材上制备各种涂层;基材温度低(30~200℃),热影响区浅,变形小;涂层厚度范围宽(0.5~5mm);喷涂效率高,成本低; 操作灵活,可在不同尺寸和形状的工件上喷涂; 局限性:加热效率低,喷涂材料利用率低,涂层与基体结合强度低。 3.热喷涂涂层的结构是什么?如何改善涂层结构? 涂层是由无数变形粒子相互交错呈波浪式一层一层堆叠而成的层状结构。涂层中伴有氧化物等夹杂、未熔化的球形颗粒,并存在部分孔隙,孔隙率0.025%-50%。 改善涂层结构的方法(1)选用高温热源(如激光热源、等离子弧)、超音速喷涂、以及保护气氛或低压下喷涂,都可以减少涂层中的氧化物夹杂和气孔,改善涂层的结构和性能。(2)喷涂层的结构还可以通过重熔处理来改善,涂层中的氧化物夹杂和孔隙会在重熔中消除,涂层的层状结构会变成均质结构,与基体的结合强度也会提高。 4.对热喷涂材料有什么要求? (1)热稳定性好,在高温焰流中不升华,不分解。 (2)较宽的液相区,使熔滴在较长时间内保持液相。 (3)与基材有相近的热膨胀系数,以防止因膨胀系数相差过大产生较大的热应力。 (4)喷涂材料在熔融状态下应和基材有较好的润湿性,以保证涂层与基材之间有良好的结合性能。 (5)粉末固态流动性好,保证送粉的均匀性。 5.热喷涂涂层与基体的结合机理是什么? 一般认为在涂层与基体之间机械结合起主要作用,即熔融态的粒子撞击到基材表面凹凸不平处,铺展成扁平状的液态薄层,这些覆盖并紧贴基体表面的液态薄片,在冷却凝固时收缩咬住凸出点而形成机械结合。同时,其它几种结合机理(扩散、冶金、物理结合)也在不同程度地起作用,其程度受粉末的成分、表面状态、温度、热物理性能等因素的影响。 6.热喷涂的工艺流程。

金属材料论文

金属材料论文 学院:材料与化工学院 专业:高分子材料与工程 学号:120318109 姓名:卢寒

金属材料论文 目录 一:金属材料的性质 二:铁碳合金 三:金属的工艺性能 四:金属材料的改性方法 五:金属材料的发展趋势 六:参考文献

金属材料性质 1、 许多机械零件和工程构件,是承受交变载荷工作的。在交变载荷的作用下,虽然应力水平低于材料的屈服极限,但经过长时间的应力反复循环作用以后,也会发生突然脆性断裂,这种现 机械零件 象叫做金属材料的疲劳 塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破 塑性变形 坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限、抗弯

强度极限、抗压强度极限等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标。 铁碳合金 以铁和碳为组元的二元合金。铁基材料中应用最多的一类——碳钢和铸铁,就是一种工业铁碳合金材料。钢铁材料适用范围广阔的原因,首先在于可用的成分跨度大,从近于无碳的工业纯铁到含碳4%左右的铸铁,在此范围内合金的相结构和微观组织都发生很大的变化;另外,还在于可采用各种热加工工艺,尤其金属热处理技术,大幅度地改变某一成分合金的组织和性能。 铁碳合金中合金相的形成,与纯铁的晶体结构及碳在合金中的存在形式有关。纯铁有三种同素异构状态:912℃以下为体心立方晶体结构:称α-Fe;912~1394℃为面心立方晶体结构,称γ-Fe;1394~1538℃(熔点),又呈体心立方,称δ-Fe。在液态,在低于7%碳范围,碳和铁可完全互溶;在固态,碳在铁中的溶解是有限的,并且溶解度取决于铁(溶剂)的晶体结构。与铁的三种同素异构物相对应,碳在铁中形成的固溶体有三种:α固溶体(铁素体)、γ固溶体(奥氏体)和δ固溶体(8铁素体)。这些固溶体中,铁原子的空间分布与α-Fe、γ-Fe和δ-Fe 一致,碳原子的尺寸远比铁原子为小,在固溶体中它处于点阵的间隙位置,造成点阵畸变。碳在γ-Fe中的溶解度最大,但不超过2.11%;碳在α-Fe中的溶解度不超过0.0218%;而在δ6-Fe中不超过0.09%。当铁碳合金的碳含量超过在铁中的溶解度时,多余的碳可以以铁的碳化物形式或以单质状态(石墨)存在于合金中,可形成一系列碳化物,其中Fe3C(渗碳体,6.69%C)是亚稳相,它是具有复杂结构的间隙化合物。石墨是铁碳合金的稳定平衡相,具有简单六方结构。Fe3C有可能分解成铁和石墨稳定相,但该过程在室温下是极其缓慢的。 工业上获得广泛应用的碳钢和铸铁就是铁碳合金,含碳低于2.11%的铁碳合金称为钢,含碳高于2.11%的合金称为铸铁。在碳钢和铸铁中除碳之外,还含有硅、锰、硫、磷、氮、氢、氧等一些杂质,这些杂质是在冶炼过程中由生铁、脱氧剂和燃料等带入的。这些杂质对钢铁性能产生影响。 碳钢一般按含碳量、用途、质量和冶炼方法分类。按含碳量可分为:低碳钢(C<0.25%),中碳钢(0.25%0.6%);按钢的用途可分为碳素结构钢和碳素工具钢两大类;按钢的质量可分为:普通碳素钢(S≤0.055%,P≤0.45%),优质碳素钢(S、P≤0.04%)和高级优质碳素钢(s≤0.030%,P≤0.035%)三大类;按冶炼方法可分为沸腾钢和镇静钢、半镇静钢。 根据碳在铸铁中存在的形式不同铸铁可分为: 白口铸铁 【中文名称】白口铸铁【英文名称】 white cast iron 【定义】碳以游离碳化物形式析出的铸铁,断口呈白色。常见的白口铸铁按基体有:贝氏体白口铸铁、马氏体白口铸铁;白口铸铁常用于耐磨 :绝大部分碳以渗碳体形式存在于铸铁中;灰口铸铁:绝大部分碳以片状石墨形式存在;可锻铸铁:由白口铸铁经石墨化退火制成,其中碳以团絮状石墨形式存在;球墨铸铁:在浇注前经球化处理,碳以球状或团状石墨存在 金属的工艺性能

相关主题
文本预览
相关文档 最新文档