当前位置:文档之家› 第5章气体动理论

第5章气体动理论

第5章气体动理论
第5章气体动理论

第五章思考题及其解答

5-1 什么是热运动?其基本特征是什么?说明微粒做布朗运动的原因。 答:系统中物质分子运动的剧烈程度随系统温度的升高而加剧,因此,将大量分子的无规则运动叫做分子的热运动。分子热运动的基本特征是分子的永不停息地运动和频繁地相互碰撞。

由于气体分子的热运动,即从微观角度看,气体分子的无规则运动和对微粒的频繁碰撞,是微粒产生布朗运动的原因。

5-2 何谓理想气体?从微观结构来看,它与实际气体有何区别?

答: 所谓理想气体就是指比较稀薄的气体,即平均间距很大的分子集合。具体地讲,理想气体(1)分子本身线度与分子之间的平均距离相比可以忽略不计,分子看作质点;(2)除碰撞的瞬间外,分子与分子、分子与器壁间无相互作用力;(3)分子之间,分子与器壁之间的碰撞是完全弹性的。

而实际气体分子之间有相互作用力,在短程斥力的作用下,实际气体分子不能当着质点来处理,应考虑到其本身体积的大小。实际气体的状态方程和实际气体的等温线和理想气体相比较也有较大的差别。

5-3 若给出一个矩形容器,设内部充有同一种气体,每一个分子的质量为m ,分子数密度为n ,由此可以导出理想气体的压强公式。若容器是一个球形的,压强公式的形式仍然是不变的。请证明之。

答:在球形容器内,分子运动的轨迹如本图中带箭头实线所示。设分子i 的速率为i v ,分子与器壁的碰撞为完全弹性碰撞,分子碰撞器壁只改变分子运动方向,不改变速度的大小,并且,“入射角”等于“反射角”。

对分子i 来说,在每次和器壁的碰撞中,分子对器壁作用的法向冲量为

2cos i mv θ。

该分子每秒钟内与器壁的碰撞次数为2cos i v R θ,所以,该分子每秒内作用在器壁上的作用力为

2

2cos 2cos i i i v mv

mv R R

θθ?=

对于总数为N 的全部分子(分子是全同的,

每一个分子的质量均为m 。)来说,球形内壁每秒内所受到的总作用力等于

2

1

N i i m F v R ==∑

由于球形内壁的总面积为24R π,气体的体积为34

3

R π。所以,按照压强的定

义得

思考题5-3用图

211

2

3114433

3

N

N

i i i i m v v F N R p m nmv S R N R ππ=====???=∑∑ 证毕。

5-4 对汽车轮胎打气,使之达到所需要的压强。在冬天与夏天,打入轮胎内的空气质量是否相同?为什么?

答:不相同,在冬天打入轮胎内的空气质量要大一些。因为夏天气温高,空气分子的平均平动能较大;冬天气温低,空气分子的平均平动能较小。根据理想气体的压强公式

k 3

2

εn p =

可知,当压强相同时,在冬天打入轮胎内的空气密度(即质量)要大一些。

5-5如何理解分子平均平动动能kT 2

3

k =ε?对于某一个分子,能否根据此

式计算它的动能?

答:kT 2

3

k =ε为大量分子的平均平动动能的统计平均值,对于一个给定的

分子,它的平动动能可能在0与∞之间的任何上一个值,故无法直接用kT

2

3

k =ε计算它的平均平动动能。

5-6 根据理想气体的温度公式,当0=T K 时,ε=0。

由此可推断,0=T K(即-273℃)时,分子将停止运动。对此推论,你有何看法?请评判之。

答:这种看法是错误的。因为理想气体的温度公式只适用于理想气体,而在-273℃时,已经不存在理想气体了,温度公式也就不成立了,如此的推论自然也就是错误的。事实上,即使达到-273℃,分子也还在作微小的振动,运动仍不会停止。

5-7 如盛有气体的容器相对于某坐标系从静止开始运动,容器内的分子速度相对于这坐标系也将增大,则气体的温度会不会因此升高呢?

答:容器内气体的温度是大量分子无规则热运动的平均效果,是表征容器内气体平衡状态的宏观参量。若因容器的运动而破坏了容器内气体的平衡状态,则无温度可言。在容器一般运动的情况下(比如直线运动),由于气体分子的频繁碰撞,总能维持平衡状态,所有分子的热运动叠加了一个整体定向运动的速度,这并未增加或减少分子问的碰撞机会。因此,容器内气体的温度不会变化(通过取相对容器静止的参考系,可证明这一结论)。

但当容器突然停止运动时,大量分子定向运动的动能将通过与器壁以及分子问的碰撞而转换为热运动的能量,会使容器内气体的温度有所升高。

5-8 麦克斯韦速率分布是指气体在平衡态下的统计分布。一般而言,速率分

布函数还可以有其他形式。但是,无论何种形式,它们的意义是相同的。设)(v f 为速率分布函数,请思考下列各式所代表的意义:

(1) ()d f v v ; (2)()d Nf v v ; (3)2

1

()d v v f v v ?; (4)2

1

()d v v Nf v v ?。

答:(1)()d f v v 表示速率分布在v v v d ~+区间内的分子数占总分子数的百分比。

(2)()d Nf v v 表示速率分布在v v v d ~+区间内的气体分子数。

(3)2

1()d v v f v v ? 表示速率分布在21~v v 区间内的分子数占总分子数的百分

比。

(4)2

1()d v v Nf v v ? 表示速率分布在21~v v 区间内的气体分子数。

5-9 何谓速度空间?速度空间中的一个点代表什么?速度空间中的一个微分体积元z y x υυυd d d 代表什么?

答:速度空间是以x υ,y υ,z υ作为直角坐标系三个坐标轴来描述的空间,是一种假想的空间,利用它可以描述粒子的速度大小和方向。从速度空间的原点向速度空间中的某一点画出一个矢量,该矢量的大小和方向就是所对应的速度矢量。速度空间中的微分元z y x υυυd d d 表示速度矢量的取值范围在x υ~x d υυ+x ,

y υ~y y υυd +,z υ~z d υυ+z 内的所有速度矢量的整体,而x υ,y υ,z υ是该立

方体微分元z y x υυυd d d 中最靠近原点的那一点的坐标。

5-10 空气中含有氮分子和氧分子。试问哪种分子的平均速率较大?这个结论是否对空气中的任意一个氮分子及氧分子都适用?

答:由于氮分子质量小于氧分子,在温度相同的情况下,氮分子的平均速率大于氧分子的平均速率。但是对于任意一个分子来说,其速度的大小与方向瞬息万变,是个随机变量,无法进行比较。

5-11 气体分子的平均速率、最概然速率和均方根速率的物理意义有什么区别?最概然速率是否是速率分布中最大速率的值?在数值上,这三个速率哪个最大?那个最小?

答:由平均速率可以了解气体分子平均的运动快慢,由方均根速率可知分子平均平动动能的大小,而最概然速率则表明速率在此速率附近的分子数占总分子数的比率最大。显然,最概然速率不是速率分布中最大速率的值。

在数值上,此三个速率大小关系是

2p v v v <

<

5-12 两瓶不同种类的理想气体,它们的温度和压强相同,但体积不同。试问:(1)单位体积内的分子数是否相同?(2)单位体积内的气体质量是否相同?(3)单位体积内的气体分子总平动动能是否相同?(4)单位体积气体的内能是否相同?

答:(1)根据nkT p =,T 和p 相同,则n 相同;

(2)n 相同,但是两种不同气体,每个分子质量不同,所以单位体积内气体质量不同;

(3)n 相同,根据kT 2

3

k =ε,T 相同,则k ε相同,所以单位体积内气体分

子总平动动能相同;

(4)因为每种气体的自由度未知,所以无法判断内能是否相同。

5-13 若盛有某种理想气体的容器漏气,使气体的压强和分子数密度各减为原来的一半,气体的内能和分子平均动能是否改变?为什么?

答: 根据理想气体的温度公式

kT 2

3k =ε

由于温度不变,气体分子平均动能没有改变。但由于分子数密度减少了,容器中的气体质量减小,根据理想气体的内能公式

RT i

M E 2

μ=

可知,气体的内能减少。

5-14 1mol 的水蒸汽(H 2O )分解成同温度的氧气和氢气,内能增加了百分之几?(提示:将水蒸汽视为理想气体,不计振动自由度,水蒸汽的自由度为6)

答:由水分解成同温度的氧气和氢气的化学方程式为

222O 21

H O H +→

根据理想气体的内能公式RT i

E 2

=

,分别计算H 2O 、H 2、O 2的内能为 2H O 6

32E RT RT =

= 2H 5

2E RT =

2O 5

2

E RT =

根据化学方程式可知水分解后的内能E 2为

222H O 151515

22224

E E E RT RT RT =+=+?=

水分解前的内能为

21H O 6

32

E E RT RT ===

分解前后内能增量为

21153

344

E E E RT RT RT ?=-=-=

于是,内能增加的百分比为

131425%34

RT

E E RT ?===

5-15 在气体的迁移现象中本质上是那些量在迁移?分子热运动和分子碰

撞在迁移现象中起什么作用?

答:在气体的迁移现象中本质上是气体的动量、能量或质量从一部分向另一部分的定向迁移。动量、能量或质量的定向迁移是通过分子热运动和分子碰撞实现的。

第五章练习题及其习题解答

5-1 每秒有1023个氧分子以500m·s -1的速度沿与器壁法线成45o角的方向撞在面积为4102-?m 2的器壁上,问这群分子作用在器壁上的压强为多大?

解:每个分子对器壁碰撞时,对器壁的作用冲量为

02cos45f t mv ?= 每秒内全部N 个分子对器壁的作用冲量,即冲力为

02cos 45F N mv =?

根据压强定义式得

S

mv N S F p o

cos452?==

4

23o

32310

210026cos455001032210--????????=. 410881?=.(Pa )

5-2 目前,真空设备内部的压强可达101001.1-?Pa ,在此压强下温度为27℃时1m 3体积中有多少个气体分子?

解:由 nkT p =得

)m (1044.2300

1038.11001.13-1023

10

?=???==--kT p n

5-3 一个容器内储有氧气,其压强为51001.1?Pa ,温度为27℃,计算:(1)气体分子数密度;(2)氧气的密度;(3)分子平均平动动能;(4)分子间的平均距离(设分子均匀等距排列)。

解:由题意知 Pa 1001.15?=p 、K 300=T (1) 分子数密度可由下式求出:

)(m 1044.2300

1038.11001.13

2523

5--?=???==kT p n (2) 设氧气分子的密度为ρ,每个分子的质量为m ,则 nm =ρ

设分子的摩尔质量为μ,1mol 气体所含的分子数为A N (阿伏伽德罗常数), 则m N A =μ,A N m μ=,将其带入上式得

)m kg (30110

023.610321044.23

23

325--?=????==.N n μρA (3) 分子平均平动动能可由温度公式求出 (J)10216300103812

3

232123k --?=???==..kT ε

(4) 由分子数密度可知每一个分子所占据的空间为

n

V 1=

此空间为正方体,相邻的两个分子的间距即为

()

()m 1045.31044.211932533-?=?===n V d

5-4 2100.2-?kg 的氢气装在3100.4-?m 3的容器内,当容器内的压强为5109.3?Pa 时,氢气分子的平均平动动能为多大?已知氢气的摩尔质量-13mol kg 102??=-μ。

解:由理想气体状态方程RT M

pV μ

=

解出 pV μ

T MR

=

将其带入理想气体的温度公式可得

MR

pV k kT μ

ε2323k ==

31

810210210410931038123233523

...??????????=----

(J)1089322-?=.

5-5 某些恒星的温度可达到8100.1?K ,这是发生聚变反应(也称热核反应)

所需的温度。在此温度下的恒星可视为由质子组成。试求(1)质子的平均动能;(2)质子的方均根速率。(提示:大量质子可视为由质点组成的理想气体,质子的摩尔质量-13mol kg 101??=-μ)。

) 解:(1)将质子视为理想气体,由理想气体的温度公式得质子的平均动能为

15823k 1007.21011038.12

3

23--?=????==kT ε(J)

(2)质子的方均根速率可由下式求出

61.5810(m/s)=

==?

5-6 在容积为1 m 3的密闭容器内,有900g 水和1.6kg 的氧气。计算温度为500℃时容器中的压强。

解:在500℃时,水变为水蒸汽,容器内的压强为

121212()p p p n kT n kT n n kT =+=+=+

带入已知条件可得

7731038.11002.610326.110

189

.0232333???????? ???+?=---p ()Pa 1042.65?=

5-7 若使氢分子和氧分子的方均根速率等于它们在地球表面上的逃逸速率(3102.11? m·s -1),各需要多高的温度?若等于它们在月球表面上的逃逸速率(3104.2? m·s -1),各需要多高的温度?

解:已知氢气的摩尔质量为131mol kg 102--??=μ,氧气的摩尔质量为132mol kg 1032--??=μ,由

μ

RT

m kT v 332=

=

μR

v T 32=

当132s m 102.11-??=v 时,由上式可解出氢气分子所需要的温度为

(K)1001.131

8310210211343

62121?=????==-..μR v T

氧气分子所需要的温度为

(K)1061131

83103210211353

62222?=????==-...μR v T

当132s m 104.2-??=v 时,可解出氢气分子所需要的温度为

(K)1062.431

83102104.2323

62121?=????='='-.μR v T 氧气分子所需要的温度为

(K)1039.731

831032104.2333

62222?=????=

'='-.μR v T

5-8 CO 2气体的范德瓦耳斯常量22mol m Pa 37.0-??=a ,135mol m 103.4--??=b 。0℃时其摩尔体积为13-4mol m 106.0-??,计算其压强。如果将其当作理想气体,压强又为多少?

解:(1)由范德瓦耳斯方程

RT b V V

a

p =-+))((2

解得

2V

a b V RT p --=

带入已知数据得

Pa

1006.3)100.6(37

.0103.4100.627331.8624542

?=?-

?-??=--=

---V a

b V RT p (2)若将气体当作理想气体,由R T pV =可得

Pa 1078.310

0.627331.86

4?=??==

-V RT p

5-9 质量为14102.6-?g 的粒子悬浮在27℃的液体中,观测到它的方均根速率

为1.40 cm ·s -1 。(1)计算阿伏伽德罗常量;(2)设粒子遵守麦克斯韦速率分布,计算该粒子的平均速率。

解:(1)将在液体中的粒子运动看作理想气体的运动,则由理想气体的温度公式可得

T N R kT v m A

2323212== 由此解得

)(mol 1015.631232

-?==

v m RT N A

(2)设粒子遵守麦克斯韦速率分布,由麦克斯韦速率分布规律可求出粒子

的平均速率为

123

1423s m 103.110

102.614.33001038.188-----??=??????==m kT v π

5-10 由麦克斯韦速率分布计算速率倒数的平均值???

??v 1。

解: 由麦克斯韦速率分布函数可得

kT

m v v e

kT

m v v v f v v kT

mv 22

d )2(41d )(1)1(222

3

002ππ

ππ=

==-∞∞??

5-11 20个质点速率如下:2个具有速率0υ,3个具有速率20υ,5个具有速率30υ,4个具有速率40υ,3个具有速率50υ, 2个具有速率60υ,1个具有速率70υ。试计算:(1)平均速率;(2)方均根速率;(3)最概然速率。

答:据平均速率、方均根速率和最概然速率的定义得

20

71625344352320

0000001

υυυυυυυυυ?+?+?+?+?+?+?=

=

∑=N

N

N

i i

i

065.3υ=

()

20

762534435232222222201

2

2

+?+?+?+?+?+=

=

∑=υυ

υN

N N

i i

i

099.3υ=

20个质点中出现速率为03υ的概率最大,有5个,故0p 3υυ=。

5-12 有N 个粒子,其速率分布函数为 d ()d N

f v C N v

=

= (00v ) (1) 画出该粒子的速率分布曲线 (2) 由0v 求出常量C (3) 求粒子的平均速率

解: (1)粒子的速率分布曲线如本题图所示 (2) 由于()??==∞

00

C Cd d υυυυυf

由分布函数的归一化条件 ()0

d 1f v v ∞

=?,得

01Cv =

练习题5-11图

1C v =

(3) 粒子平均速率为

2

d 1

)d (0

υυυυ

υυυυυ=

==??∞

f

5-13 用流体静力学原理及理想气体压强公式导出等温条件下单位体积中大气分子数随高度的变化为

()0gZ RT n n e μ-=

其中,0n 为Z =0处单位体积的分子数,μ为分子平均摩尔质量。

解:由流体静力学可知,大气压强随高度的增加而减小,并且满足

d d p

g Z ρ=- 其中,p 为大气压强、Z 为高度、ρ为大气分子的密度、g 为重力加速度。

将上式分离变量,可写为

d d p g Z ρ=-

设分子质量为m 、分子数密度为n ,则nm ρ=。将其带入上式,得

d d p nmg Z =-

由理想气体压强公式p=nkT ,考虑到等温条件,可得d p =kT d n 。将其带入上式 ,整理后可得

d d n m g Z n k T

=- 积分上式,并考虑到Z =0时,n =n 0,可得

()

(

)

00mgZ

kT gZ

RT n n e

n e μ--==

5-14 假定海平面处的大气压为51000.1?Pa ,大气等温并保持0℃,那么,珠穆朗玛峰顶(海拔8882m )处的大气压为多少?(已知空气的摩尔质量2.89210-? kg ·mol -1)

解:由大气压强公式可得:

RT

gZ kT

mgZ e

p e

p z p μ-

-

==00)(

带入已知数据可得:

(Pa)1029.31000.1)(4273

31.88882

8.9109.252?=??=????--e

z p

5-15 求上升到什么高度处,大气压强减到地面的75%。设空气的温度为0℃,空气的摩尔质量为2.89210-? kg ·mol -1。

答:利用理想气体状态方程可得等温条件下高度随压强的变化关系

RT

gh e

p p μ-=0

可得

31.2ln 0

=-=p p g RT h μ km

5-16 储有氧气的容器以速率v =100m·s -1运动,假设容器突然停止运动,全部定向运动的动能转变为气体分子热运动动能,容器中氧气的温度将上升多少?

解:设每一个分子的质量为m ,1mol 气体的质量为μ,总分子数为N ,则全部分子的定向运动动能为

22

1

mv N E k ?=

按照能量均分原理,每一个分子的热运动动能为

kT i

2

k =ε

N 个分子的热运动动能为

2

i

E N kT =?

温度变化时,热运动动能的增量为

2i

E N k T ?=?

按题意k E E =?,并考虑到氧气的自由度为5,可得

215

22

N

mv N k T =? 即

2232

32101007.7(K)5558.31

mv μv T k R -???====?

5-17 在容积为33m 100.2-?的容器中,有内能为21075.6?J 的刚性双原子分

子理想气体。(1)计算气体的压强;(2)设分子总数为22104.5?个,计算气体的温度和分子的平均平动动能。

解:(1)由理想气体状态方程

RT M

pV μ

=

和理想气体内能公式

2

M i

E RT μ=

? 再考虑到V

N

n =

,可得 (Pa)1035.110

0.251075.62253

2?=????==-iV E p (2)由

p nkT =

53222231.3510 2.010 3.6210(K)5.410 1.3810

p pV T nk Nk --???====???? 232213

3 1.3810 3.62107.4910(J)22

kT ε--==????=?

5-18 一个长为L 、半径21=R cm 的蒸汽导管,外面包围一层厚度2cm 的绝热材料(其热导率κ=0.1 W·m -1·K -1)。蒸汽的温度为100℃,绝热层外表面的温度为20℃。单位时间单位长度传出的热量是多少?

解:如本题图所示,设蒸汽导管的半径为1R ,绝热层的外半径为R 2。在绝缘层中取内半径为r 、外半径为r +d r 的薄层,由热传导定律

S x

T

t Q ???-=??κ 可知,单位时间内通过此薄层的热量为

d d 2d d Q T

rL t r

κπ=-? 由于绝缘层内外温度恒定,所以在稳

态条件下,d Q /d t 是常数。将上式移项并积分得

2211d d d d 2T R T R Q

r

L t T r =-πκ??

2211

d d ln 2Q

R

L t T T R -=-πκ

于是,单位时间内单位长度的绝缘层传出的热量为

1221

2()

d d ln T T Q q R L t R πκ-=

=

习题5-18

()

()

1

-m W 5.722

4ln 201001.02?=-??=

π

第十二章 气体动理论-1

绍兴文理学院 学校 210 条目的4类题型式样及交稿 式样(理想气体的内能、能量按自由度均分定理) 1、选择题 题号:21011001 分值:3分 难度系数等级:1 1 mol 刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C ) kT 2 7 (D ) RT 27 [ ]

答案:( B ) 题号:21011002 分值:3分 难度系数等级:1 根据能量均分定理,分子的每一自由度所具有的平均能量为 (A ) kT 2 1 (B )kT (C ) kT 2 3 (D ) kT 25 [ ] 答案:( A ) 题号:21011003 分值:3分 难度系数等级:1 质量为M kg 的理想气体,其分子的自由度为 i ,摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A )RT (B ) RT i 2 (C ) RT M μ (D ) RT i M 2 μ [ ] 答案:( D ) 题号:21012004 分值:3分 难度系数等级:2 温度为27℃ 时,1 mol 氧气所具有的平动动能和转动动能分别为 (A )21 1021.6-?=平E J ,21 10 14.4-?=转E J (B )21 1014.4-?=平E J ,21 10 21.6-?=转E J (C )3 1049.2?=平E J , 3 1074.3?=转E J (D )3 1074.3?=平E J ,3 1049.2?=转E J [ ] 答案:( D )(氧气为双原子刚性分子)

题号:21012005 分值:3分 难度系数等级:2 1 mol 非刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C )kT 2 7 (D ) RT 2 7 [ ] 答案:( D ) 题号:21012006 分值:3分 难度系数等级:2 质量为M kg 的刚性三原子分子理想气体,其分子的摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A ) RT M μ 27 (B ) RT M μ 3 (C ) RT M μ 25 (D ) RT M μ 23 [ ] 答案:( B ) 题号:21012007 分值:3分 难度系数等级:2 若某种刚性双原子分子的理想气体处于温度为T 的平衡状态下,则该理想气体分子..的平均能量为 (A ) kT 2 3 (B ) kT 2 5 (C ) RT 2 3 (D ) RT 2 5 [ ] 答案:( B ) 题号:21013008 分值:3分 难度系数等级:3 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则下列表述正确的是

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

第二章气体动理论

第二章 气体动理论 1-2-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v = m kT 3 (B) 2 x v = m kT 331 (C) 2 x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4)

5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321+ (D) kT N kT N 2 3 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 16 1 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为: (A )B A V E V E ??? ????? ??

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

第十二章气体动理论题库

第十二章气体动理论 第十二章气体动理论 (1) 12.1平衡态理想气体物态方程热力学第零定律 (3) 判断题 (3) 难题(1题)中题(1题)易题(1题) 选择题 (4) 难题(1题)中题(1题)易题(1题) 填空题 (5) 难题(1题)中题(1题)易题(2题) 计算题 (7) 难题(1题)中题(2题)易题(2题) 12.2物质的微观模型统计规律性 (13) 判断题 (13) 难题(0题)中题(0题)易题(0题) 选择题 (14) 难题(1题)中题(1题)易题(1题) 填空题 (16) 难题(0题)中题(1题)易题(1题) 计算题 (17) 难题(0题)中题(0题)易题(0题) 12.3理想气体的压强公式 (19) 判断题 (19) 难题(0题)中题(0题)易题(2题) 选择题 (20) 难题(3题)中题(4题)易题(1题) 填空题 (22) 难题(0题)中题(4题)易题(3题) 计算题 (24) 难题(1题)中题(3题)易题(2题) 12.4理想气体分子的平均平动动能与温度的关系 (28) 判断题 (28) 难题(0题)中题(0题)易题(3题) 选择题 (29) 难题(1题)中题(6题)易题(1题) 填空题 (31) 难题(5题)中题(6题)易题(3题) 计算题 (36)

难题(2题)中题(5题)易题(3题) 12.5能量均分定理理想气体内能 (42) 判断题 (42) 难题(0题)中题(0题)易题(3题) 选择题 (43) 难题(0题)中题(2题)易题(1题) 填空题 (44) 难题(0题)中题(0题)易题(3题) 计算题 (46) 难题(1题)中题(1题)易题(1题) 12.6麦克斯韦气体分子速率分布率 (49) 判断题 (49) 难题(0题)中题(1题)易题(2题) 选择题 (50) 难题(1题)中题(9题)易题(5题) 填空题 (56) 难题(2题)中题(5题)易题(7题) 计算题 (60) 难题(2题)中题(8题)易题(4题) 12.8分子平均碰撞次数和平均自由程 (68) 判断题 (68) 难题(0题)中题(1题)易题(1题) 选择题 (69) 难题(1题)中题(4题)易题(2题) 填空题 (71) 难题(0题)中题(3题)易题(0题) 计算题 (73) 难题(1题)中题(1题)易题(3题)

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

大学物理第十一章 气体动理论习题详细答案

第十一章气体动理论习题详细答案 一、选择题 1、答案:B 解:根据速率分布函数() f v的统计意义即可得出。() f v表示速率以v为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf) (表示速率以v为中心的dv速率区间内的气体分子数,故本题答案为B。 2、答案:A 解:根据() f v的统计意义和 p v的定义知,后面三个选项的说法都是对的,而只有 A不正确,气体分子可能具有的最大速率不是 p v,而可能是趋于无穷大,所以答案A正确。 3、答案:A rms v=据题意得2222 2222 1 , 16 H O H H H O O O T T T M M M T M ===,所以答案A正确。 4、由理想气体分子的压强公式 2 3k p nε =可得压强之比为: A p∶ B p∶ C p=n A kA ε∶n B kB ε∶n C kC ε=1∶1∶1 5、氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT ν=代入内能公式 2 i E RT ν =可得2 i E pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C。 6、解:理想气体状态方程PV RT ν =,内能 2 i U RT ν =(0 m M ν=)。由两式得 2 U i P V =,A、B两种容积两种气体的压强相同,A中,3 i=;B中,5 i=,所以答案A正确。 7、由理想气体物态方程 'm pV RT M =可知正确答案选D。 8、由理想气体物态方程pV NkT =可得气体的分子总数可以表示为 PV N kT =,故答案选C。 9、理想气体温度公式2 13 22 k m kT ευ ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。温度越高,分子的平均平动动能越大,分子热运动越剧烈。因此,温度反映的是气体分子无规则热运动的剧烈程度。

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

练习册-第十二章气体动理论

第十二章气体动理论 §12-1 平衡态气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV 恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律:

一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数23 6.02310/A N mol =? 质量密度与分子数密度的关系 nm ρ= 分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。 三、理想气体的压强 1、理想气体微观模型的假设 (a )分子本身的大小比起它们之间的距离可忽略不计,可视为质点。 (b )除了分子碰撞瞬间外,分子之间的相互作用以忽略;因此在相邻两次碰撞之间,分子做匀速直线运动。。 (c )分子与分子之间或分子与器壁间的碰撞是完全弹性的。 理想气体可看作是由大量的、自由的、不断做无规则运动的,大小可忽略不计的弹性小球所组成。 大量分子构成的宏观系统的性质,满足统计规律。 统计假设:

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

5-练习册-第十二章 气体动理论

第十二章 气体动理论 §12-1 平衡态 气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态 状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 ' 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: | 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = < (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K =

练习册-第十二章气体动理论

第十二章 气体动理论 §12-1 平衡态 气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态 状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即 V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ= = (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23/ 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数236.02310/A N mol =? 质量密度与分子数密度的关系

第8章 气体动理论 (习题、答案)

第8章气体动理论基础 一. 基本要求 1. 了解气体分子热运动的图象及理想气体分子的微观模型。 2. 理解气体压强、温度的统计意义,通过气体压强公式的推导,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。 3. 理解麦克斯韦速率分布律、分布函数、分布曲线的物理意义,了解气体分子的热运动的最概然速率、平均速率、方均根速率的意义及求法。 4. 理解内能的概念及能量均分定理,会用能均分定理计算理想气体的内能。 5. 了解气体分子的平均自由程、平均碰撞频率的意义及其简单计算。 二. 内容提要 1. 理想气体的状态方程理想气体处于平衡态时,其态参量压强p、体积V及温度T之间存在的关系式 利用状态方程可以由一些已知的态参量推算另一些未知的态参量。 2. 压强公式反映理想气体的压强P与气体分子平均平动动能及分子数密度n之间的关系式,其数学表达式为 式中代表一个分子的平均平动动能,m代表分子的质量。 压强公式表明,气体的压强是一个具有统计意义的物理量。 3. 温度公式描述气体温度与气体分子平均平动动能之间的关系式,其数学表达式为 式中,k为玻耳兹曼常量。 温度公式说明,气体的温度是大量气体分子的集体表现,也是一个具有统计意义的物理量。 由压强公式和温度公式可以得到理想气体物态方程的另一种形式 4. 能量均分定理当气体处于平衡态时,分布与每一个自由度(平动、转动)上的平均能量均为。利用能均分定理很容易计算理想气体的内能。 5. 理想气体的内能气体分子所具有的各种平均动能的总和。质量为M的理想气体的内能 式中为气体的摩尔质量,i为自由度。 6. 麦克斯韦速率分布律气体处于平衡态时,分布在速率区间v~ v+d v内的分子数d N与总分子数N的比率按速率v的分布规律。

第12章气体动理论

第十二章气体动理论作业题 班级:学号:姓名: 一、选择题 1.下列对最概然速率v p的表述中,不正确的是() (A )v p是气体分子可能具有的最大速率; (B)就单位速率区间而言,分子速率取v p的概率最大; (C)分子速率分布函数 f (v)取极大值时所对应的速率就是v p; (D)在相同速率间隔条件下分子处在v p所在的那个间隔内的分子数最多。 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可 以得出下列结论,正确的是() (A )氧气的温度比氢气的高;(B)氢气的温度比氧气的高; (C)两种气体的温度相同;(D)两种气体的压强相同。 3.理想气体体积为V ,压强为p ,温度为T .一个分子的质量为m ,k 为玻耳兹曼常量, R 为摩尔气体常量,则该理想气体的分子数为()(A )pV/m(B)pV/(kT) (C)pV/(RT)(D)pV/(mT) 4.有 A 、B 两种容积不同的容器, A 中装有单原子理想气体, B 中装有双原子理想气体,若两种 气体的压强相同,则这两种气体的单位体积的热力学能(内能)U 和 U 的关系为()V A V B (A)U U ;(B) U U ;(C) U U ;(D)无法判断。V A V B V A V B V A V B 5. 一摩尔单原子分子理想气体的内能()。 ( A ) M 3 RT(B)i RT(C)3RT(D)3KT M mol 2222 二、简答题 1.能否说速度快的分子温度高,速度慢者温度低 ,为什么 ?

第十二章 气体动理论 作业题 班级: 学号: 姓名: 2.指出以下各式所表示的物理含义 : 1 1 kT 2 3 kT 3 i kT 4 i RT 5 i RT 2 2 2 2 2 3. 理想气体分子的自由度有哪几种? 4. 最概然速率和平均速率的物理意义各是什么 ?有人认为最概然速率就是速率分布中的最大速率 , 对不对 ? 三、填空题 1、1 摩尔理想气体在等压膨胀过程中,气体吸收热量一部分 _______________,另一部分 ____________________,当温度升高 1O C 时比等容过程多吸收 ___________J 的热量 2、温度为 T 的热平衡态下,物质分子的每个自由度都具有的平均动能为 ;温度为 T 的 热平衡态下,每个分子的平均总能量 ;温度为 T 的热平衡态下, mol( m 0 / M 为摩 尔数 )分子的平均总能量 ;温度为 T 的热平衡态下,每个分子的平均平动动能 。 3、在相同温度下,氢分子与氧分子的平均平动动能的比值为 _______ ,方均根速率的比值为 _______ 。

气体动理论(附答案)

气体动理论 一、填空题 1. (本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ= 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。(1 atm = 1.013×105 Pa) 答案:495m/s 2. (本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。则 (1)每个分子作用于器壁的冲量ΔP=_____________; (2)每秒碰在器壁单位面积上的分子数n0=___________; (3)作用在器壁上的压强p=_____________; 答案:1.2×10-24kgm/s ×1028m-2s-1 4×103Pa 3. (本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。

(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。) 答案::121 2.4×10-23 4. (本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。 答案:62.5% 5. (本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时, (1)一个分子的平均动能为_______。 (2)一个摩尔氧气分子的转动动能总和为________。 答案:ikT RT 6. (本题5分)图示的两条曲线分别表示氦、氢两种气体在相同温度T时分子按速率的分布,其中

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论 12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的 数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

第十二章 气体动理论-2

绍兴文理学院 学校 209 条目的4类题型式样及交稿 式样(统计规律、理想气体的压强和温度) 1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号:20911003 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 1021.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ]

答案:( D ) 题号:20911004 分值:3分 难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )1 21p p T (D )211 2p p T [ ] 答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 1093.1-?K (B )7 10 28.1-?K (C )6 10 70.7-? K (D )6 10 50.5-?K [ ] 答案:( B )

第12章 气体动理论

第12章 气体动理论 一、选择题 1、一定量某理想气体按2pV =恒量的规律膨胀,则膨胀后理想气体的温度 ( B ) (A )将升高 (B )将降低 (C )不变 (D )不能确定。 2、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B ) (A )pV m (B )()pV kT (C )()pV RT (D )()pV mT 3、如题5.1.1图所示,两个大小不同的容器用均匀的细管相连,管中有一水银作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大? ( A ) (A )氧气的密度大。 (B )氢气的密度大。 (C )密度一样大。 (D )无法判断。 4、若室内生起炉子后温度从015C 升高到0 27C ,而室内气压不变,则此时室内的分子数减少了 ( B ) (A )0.5% (B )4% (C )9% (D )21% 5、一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数Z 和平均自由程λ的变化情况是 ( A ) (A )Z 增大,λ不变。 (B )Z 不变,λ增大。 (C )Z 和λ都增大。 (D )Z 和λ都不变。 6、根据热力学第二定律判断下列哪种说法是正确的是:(C ) A 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体; B 功可以全部变为热,但热不能全部变为功; C 气体能够自由膨胀,但不能自由压缩; D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量。 7、汽缸内盛有一定的理想气体,当温度不变,压强增大一倍时,该分子的平均碰撞频率和平均自由程的变化情况是:(C ) A Z 和λ都增大一倍; B Z 和λ都减为原来的一半;

相关主题
文本预览
相关文档 最新文档