当前位置:文档之家› 第12章 气体动理论

第12章 气体动理论

第12章 气体动理论
第12章 气体动理论

第12章 气体动理论

一、选择题

1、一定量某理想气体按2pV =恒量的规律膨胀,则膨胀后理想气体的温度 ( B ) (A )将升高 (B )将降低 (C )不变 (D )不能确定。

2、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B ) (A )pV m (B )()pV kT (C )()pV RT (D )()pV mT

3、如题5.1.1图所示,两个大小不同的容器用均匀的细管相连,管中有一水银作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大? ( A ) (A )氧气的密度大。 (B )氢气的密度大。 (C )密度一样大。 (D )无法判断。

4、若室内生起炉子后温度从015C 升高到0

27C ,而室内气压不变,则此时室内的分子数减少了 ( B ) (A )0.5% (B )4% (C )9% (D )21%

5、一定量的理想气体,在容积不变的条件下,当温度升高时,分子的平均碰撞次数Z 和平均自由程λ的变化情况是 ( A ) (A )Z 增大,λ不变。 (B )Z 不变,λ增大。

(C )Z 和λ都增大。 (D )Z 和λ都不变。

6、根据热力学第二定律判断下列哪种说法是正确的是:(C )

A 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体;

B 功可以全部变为热,但热不能全部变为功;

C 气体能够自由膨胀,但不能自由压缩;

D 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量。

7、汽缸内盛有一定的理想气体,当温度不变,压强增大一倍时,该分子的平均碰撞频率和平均自由程的变化情况是:(C ) A Z 和λ都增大一倍;

B Z 和λ都减为原来的一半;

C Z 增大一倍而λ减为原来的一半;

D Z 减为原来的一半而λ增大一倍。

8、在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为(C ) A Z 与T 无关; B Z 与T 成正比;

C Z 与T 成反比;

D Z 与T 成正比。

9、一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们:

( C )

A 温度相同、压强相同;

B 温度、压强相同;

C 温度相同,但氦气的压强大于氮气的压强;

D 温度相同,但氦气的压强小于氮气的压强。

10、已知氢气与氧气的温度相同,请判断下列说法哪个正确?

A 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强;

B 氧分子的质量比氢分子大,所以氧气密度一定大于氢气的密度;

C 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大;

D 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大。

11、按2PV =恒量规律膨胀的理想气体,膨胀后的温度为:( C )

A 升高;

B 不变;

C 降低;

D 无法确定

12、下列各式中哪一种式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子的质量,N 为气体分子总数目,n 为气体分子密度,0N 为阿伏加德罗常数,mol M 为摩尔质量。) A 32m PV M ; B 32mol

M PV M ; C 32nPV ; D 032mol M N PV M 13、一定量的理想气体可以:(D )

A 保持压强和温度不变同时减小体积;

B 保持体积和温度不变同时增大压强;

C 保持体积不变同时增大压强降低温度;

D 保持温度不变同时增大体积降低压强。

14、设某理想气体体积为V ,压强为P ,温度为T ,每个分子的质量为μ,玻尔兹曼常数为k ,则该气体的分子总数可以表示为:(C ) A PV k μ B PT V

μ C PV kT D PT kV 15、关于温度的意义,有下列几种说法:

(1)气体的温度是分子平均平动动能的量度;

(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义;

(3)温度的高低反映物质内部分子运动剧烈程度的不同;

(4)从微观上看,气体的温度表示每个气体分子的冷热程度;

上述说法中正确的是:(B )

A (1),(2),(4)

B (1),(2),(3)

C (2),(3),(4)

D (1),(3),(4)

16、设某种气体的分子速率分布函数为()f v ,则速率在12v v →区间内的分子平均速率为:

(C )

A 21()v v vf v dv ?

B 2

1()v v v vf v dv ? C 212

1()()v v v v vf v dv f v dv ?? D 210()()v v vf v dv f v dv

∝?? 17、两容积不等的容器内分别盛有可视为理想气体的氦气和氮气,如果它们温度和压强相同,则两气体:(C )

A 单位体积内的分子数必相同;

B 单位体积内的质量必相同;

C 单位体积内分子的平均动能必相同:

D 单位体积内气体的内能必相同。

18、在标准状态下,体积比为1:2的氧气和氦气(均视为理想气体)相混合,混合气体中氧气和氦气的内能之比为:(C )

A 1:2

B 5:3

C 5:6

D 10:3

二、填空题:

1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的压强是 。(设内胎容积不变)

2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?)

3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 。(设分子均匀等距排列)

4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 。

5、在压强为51.0110pa ?下,氮气分子的平均自由程为6

6.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。

6、若氖气分子的有效直径为8

2.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的平均碰撞次数为 。

7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 f (v )

(1)

(2)

某种理想气体不同温度下的速率分布曲线,对应温度高的曲线

是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .

参考答案:

1、54.4310pa ?

2、536.1110m -?

3、253

32192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121

121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2)

填空题2:

1、要使一热力学系统的内能增加,可以通过(传热)或(作功)两种方式,或者两种方式兼用来完成。热力学系统的状态发生变化时,其内能的改变量只决定于(初末状态),而与(过程)无关。

2、16g 氧气在400K 温度下等温压缩,气体放出的热量为1152J ,则被压缩后的气体的体积为原体积的(12)倍,而压强为原来压强的(2)倍。

3、一热机从温度为727o C 的高温热源吸热,向温度为527o

C 的低温热量放热,若热机在最大效率下工作,且每一循环吸热2000J ,则此热机每一循环作功为(400J )。

4、一卡诺热机在每次循环中都要从温度为400K 的高温热源吸热418J ,向低温热源放热334.4J ,低温热源的温度为(320K )。

5、汽缸内有单原子理想气体,若绝热压缩使体积减半,问气体分子的平均速率变为原来速率的( 1.26 )倍?若为双原子理想气体又为( 1.4 )倍?

6、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程。

(1)()mol PdV M M RdT =表示(等压)过程;

(2)()mol VdP M M RdT =表示(等容或者等体)过程;

(3)0PdV VdP +=表示(等温)过程。

7、容积为10升的容器中储有10克的氧气。若气体分子的方均根速率21600v m s -=?,则此气体的温度T =(462)K ;压强P =( 51.210? )Pa 。

8、在室温27o

C 下,1mol 氢气和1mol 氧气的内能比为(1:1);1g 氢气和1g 氧气的内能比为(16:1)

第十二章 气体动理论-1

绍兴文理学院 学校 210 条目的4类题型式样及交稿 式样(理想气体的内能、能量按自由度均分定理) 1、选择题 题号:21011001 分值:3分 难度系数等级:1 1 mol 刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C ) kT 2 7 (D ) RT 27 [ ]

答案:( B ) 题号:21011002 分值:3分 难度系数等级:1 根据能量均分定理,分子的每一自由度所具有的平均能量为 (A ) kT 2 1 (B )kT (C ) kT 2 3 (D ) kT 25 [ ] 答案:( A ) 题号:21011003 分值:3分 难度系数等级:1 质量为M kg 的理想气体,其分子的自由度为 i ,摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A )RT (B ) RT i 2 (C ) RT M μ (D ) RT i M 2 μ [ ] 答案:( D ) 题号:21012004 分值:3分 难度系数等级:2 温度为27℃ 时,1 mol 氧气所具有的平动动能和转动动能分别为 (A )21 1021.6-?=平E J ,21 10 14.4-?=转E J (B )21 1014.4-?=平E J ,21 10 21.6-?=转E J (C )3 1049.2?=平E J , 3 1074.3?=转E J (D )3 1074.3?=平E J ,3 1049.2?=转E J [ ] 答案:( D )(氧气为双原子刚性分子)

题号:21012005 分值:3分 难度系数等级:2 1 mol 非刚性双原子分子理想气体的内能为 (A ) kT 2 5 (B ) RT 2 5 (C )kT 2 7 (D ) RT 2 7 [ ] 答案:( D ) 题号:21012006 分值:3分 难度系数等级:2 质量为M kg 的刚性三原子分子理想气体,其分子的摩尔质量为μ,当它处于温度为T 的平衡态时,该气体所具有的内能为 (A ) RT M μ 27 (B ) RT M μ 3 (C ) RT M μ 25 (D ) RT M μ 23 [ ] 答案:( B ) 题号:21012007 分值:3分 难度系数等级:2 若某种刚性双原子分子的理想气体处于温度为T 的平衡状态下,则该理想气体分子..的平均能量为 (A ) kT 2 3 (B ) kT 2 5 (C ) RT 2 3 (D ) RT 2 5 [ ] 答案:( B ) 题号:21013008 分值:3分 难度系数等级:3 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则下列表述正确的是

第二章气体动理论

第二章 气体动理论 1-2-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v = m kT 3 (B) 2 x v = m kT 331 (C) 2 x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4)

5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321+ (D) kT N kT N 2 3 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 16 1 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为: (A )B A V E V E ??? ????? ??

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

第七章 气体动理论答案

一.选择题 1、(基础训练1)[ C ]温度、压强相同的氦气与氧气,它们分子的平均动能ε与平均平动动能w 有如下关系: (A) ε与w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε与w 都不相等. 【解】:分子的平均动能kT i 2 = ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气与氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 2 3 = ,仅与温度有关,所以温度、压强相同的氦气与氧气,它们分子的平均平动动能w 相等。 2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同, 而方均根速率之比为( )()()2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. 【解】:气体分子的方均根速率:M RT v 32 = ,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同, 则其压强之比等于温度之比,即:1:4:16。 3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ? 2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0()d f v v ∞ ? . 【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总与,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总与,因此?2 1 d )(v v v v v f /?2 1 d )(v v v v f 表 示速率分布在v 1~v 2区间内的分子的平均速率。 4、(基础训练10)[ B ]一固定容器内,储有一定量的理想气体,温度为T ,分子的平均碰撞次数为 1Z ,若温度升高为2T ,则分子的平均碰撞次数2Z 为 (A) 21Z . (B) 12Z . (C) 1Z . (D) 12 1Z . 【解】:分子平均碰撞频率n v d Z 2 2π,因就是固定容器内一定量的理想气体,分子数密 度n 不变,而平均速率: v = 温度升高为2T ,则平均速率变为v 2,所以2Z =12Z 5、(自测提高3)[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了:(A)0、500. (B) 400. (C) 900. (D) 2100.

第二章气体分子运动论的基本概念汇总

第二章?????气体分子运动论的基本概念2013-7-22崎山苑工作室1 2.1物质的微观模型分子运动论是从物质的微观结构出发来阐明热现象的规律的。 一、宏观物体是由大量微粒--分子(或原子)组成的宏观物体是由分子组成的,在分子之间存在着一定的空隙。例如气体很容易被压缩,又如水和酒精混合后的体积小于两者原有体积之和,这都说明分子间有空隙。用20000atm的压强压缩钢筒中的油,结果发现油可以透过筒壁渗出,这说明钢的分子间也有空隙。目前用高分辨率的扫描隧道显微镜已能观察晶体横截面内原子结构的图像,并且能够操纵原子和分子。2013-7-22崎山苑工作室2 2013-7-22崎山苑工作室

二、物体内的分子在不停地运动着,这种运动是无规则的,其剧烈程度与物体的温度有关扩散现象说明:一切物体(气体、液体、固体)的分子都在不停地运动着 在显微镜下观 察到悬浮在液 体中的小颗粒 都在不停地作 无规则运动,

该运动由布朗 最早发现,称 为布朗运动。 2013-7-22崎山苑工作室4 布朗运动的无规则性,实际上反映了液体内部分子运动的无规则性。 所谓“无规则”指的是: 1。由于分子间的相互碰撞,每个分子的运动方向和速率都在不断地改变; 2。任何时刻,在液体或气体内部,沿各个方向运动的分子都有,而且分子运动的速率有大有小。 实验结果:扩散的快慢和布朗运动的剧烈程度都与温度的高低有显著的关系。随着温度的升高,扩散过程加快,悬浮颗粒的运动加剧。 结论:分子无规则运动的剧烈程度与温度有关,温度越高,分子的无规则运动就越剧烈。通常把分子的这种运动称为热运动。 2013-7-22崎山苑工作室5 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力 排斥力:固体和液体的很难压缩说明分子之间存在着斥力结论:一切宏观物体都是由大量分子(或原子)组成的;所有的分子都处在不停的、无规则热运动中;分子之间有相互作用力。 2013-7-22崎山苑工作室6 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力

第四章 气体动理论

4-1 20个质点的速率分布如下 解:⑴07 1 65.31 v N v N v i i i == ∑= ⑵01 2 2 99.31v N v N v i N i i == ∑= ⑶03v v p = 4-2 容积为10L 的容器中由1mol CO 2气体,其方均根速率为1440Km/h ,求CO 2气体的压强。 解:分子总数为A N ,摩尔质量为M ,则分子数密度为 A N V ,分子质量为A M N ,因此由 气体压强公式得222 111333A A N M M p nmv v v V N V = == 代入数字求得5 2.3510p =?Pa 4-3 体积为3 10-m 3 ,压强为5 1.01310?Pa 的气体,所有分子的平均平动动能的总和是多少? 解:分子的平均平动动能为 21322 mv kT = 容器中分子数N nV =,又由压强公式P nkT =,可得容器中所有分子的平均平动动能 总和为 2133 152222 N mv nV kT PV ===J 4-4 求压强为5 1.01310?Pa 、质量为3 210-?Kg 、容积为3 1.5410-?m 3 的氧气的分子平均平动动能。 解:由23p nw = 可得31 2p w n = 而A mol A mol M N M MN n V M V == 所以 213 6.22102mol A M V p w MN -= =?J 4-6 一篮球充气后,其中有氮气8.5g ,温度为17℃,在空气中以65km/h 做高速飞行。求:

(1) 一个氮分子(设为刚性分子)的热运动平均平动动能、平均转动动能和平均总动能; (2) 球内氮气的内能; (3) 球内氮气的轨道动能。 4—6解:⑴J kT k 211000.623-?== ε 转ε= J kT 211000.42 2 -?= J kT 201000.12 5-?==总ε. ⑵J kT i M M E mol 31083.12 ?=?= . ⑶J mv E k 39.12 12 == . 4-7 质量为50.0g ,温度为18.0℃的氦气装在容积为10.0L 的封闭容器内,容器以200v =m/s 的速率做匀速直线运动,若容器突然停止,定向运动的动能全部转化为分子热运动的动能,试问平衡后氦气的温度和压强将增大多少?(王彬第二版206页8题) 解:322223 23 11141020013.310222 6.0210 A E mv v N μ--?===??=??J 23 23 2213.310 6.4233 1.3810E T k --???===??K 32 53 50108.2110 6.420.66 1.0131041010 MR p T V μ---????=?=?=????Pa 4—8解:⑴ kT 21 在平衡态下分子运动的能量平均分配给每一个自由度的能量为kT 2 1. ⑵在平衡态下,分子平均动能为kT 2 3 . ⑶在平衡态下,自由度为i 的分子平均总能量为kT i 2 . ⑷自由质量为M ,摩尔质量为mol M ,自由度为i 的分子组成的系统的内能为RT i M M mol 2 ? ⑸1摩尔自由度为i 的分子组成的系统的内能为 RT i 2. ⑹1摩尔自由度为3的分子组成的系统的内能为2 3 RT,或者说热力学系统内1摩尔分子的平 均平动动能之和为2 3 RT. 4-9 假定太阳是由氢原子组成的理想气体恒星,且密度是均匀的,压强为 141.3510p =?Pa ,已知氢原子质量271.6710m -=?kg ,太阳质量301.9910M =?kg ,太阳 半径为8 6.9610R =?m ,试估算太阳内部的温度。

第8章 气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ K 1015.1)3/4(73?===Mk m R nk p T π 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3462310 /cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 32323 1076.210540010 38.1?=????== -∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分子) 解:1mol 氧气的质量kg 10323 -?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T T R V p RT pV ?=???=νν

第十二章气体动理论答案

一、选择题 1.下列对最概然速率p v 的表述中,不正确的是( ) (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( ) (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为: (A )pV/m (B )pV/(kT) (C )pV/(RT) (D )pV/(mT) 答案:B 4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ?? ???和B U V ?? ???的关系为 ( ) (A )A B U U V V ????< ? ?????;(B )A B U U V V ????> ? ?????;(C )A B U U V V ????= ? ?????;(D )无法判断。 答案:A 5.一摩尔单原子分子理想气体的内能( )。 (A )32mol M RT M (B )2i RT (C )32RT (D )32 KT 答案:C

热学(李椿+章立源+钱尚武)习题解答_第二章 气体分子运动论的基本概念

第二章 气体分子运动论的基本概念 2-1 目前可获得的极限真空度为10-13 mmHg 的数量级,问在此真空度下每立方厘米内有多少空气分子,设空气的温度为27℃。 解: 由P=n K T 可知 n =P/KT=) 27327(1038.11033.1101023 213+?????-- =3.21×109(m –3 ) 注:1mmHg=1.33×102 N/m 2 2-2 钠黄光的波长为5893埃,即5.893×10-7 m ,设想一立方体长5.893×10-7 m , 试问在标准状态下,其中有多少个空气分子。 解:∵P=nKT ∴PV=NKT 其中T=273K P=1.013×105 N/m 2 ∴N=6 23375105.5273 1038.1)10893.5(10013.1?=?????=--KT PV 个 2-3 一容积为11.2L 的真空系统已被抽到1.0×10-5 mmHg 的真空。为了提高其真空度, 将它放在300℃的烘箱内烘烤,使器壁释放出吸附的气体。若烘烤后压强增为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子。 解:设烘烤前容器内分子数为N 。,烘烤后的分子数为N 。根据上题导出的公式PV = NKT 则有: )(0 110011101T P T P K V KT V P KT V P N N N -=-= -=? 因为P 0与P 1相比差103 数量,而烘烤前后温度差与压强差相比可以忽略,因此 T P 与 1 1 T P 相比可以忽略 1823 2 23111088.1) 300273(1038.11033.1100.1102.11??+???????=?=?---T P K N N 个 2-4 容积为2500cm 3 的烧瓶内有1.0×1015 个氧分子,有4.0×1015 个氮分子和3.3×10-7 g

大学物理第四章《气体动理论》

第四章 气体动理论 一、基本要求 1.理解平衡态的概念。 2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。 3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。 4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。 5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。 6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。 二、基本内容 1. 平衡态 在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。 2. 理想气体状态方程 在平衡态下,理想气体各参量之间满足关系式 pV vRT = 或 n k T p = 式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=??,k 为玻尔兹曼常量 2311.3810k J K --=?? 3. 理想气体压强的微观公式 212 33 t p nm n ε==v 4. 温度及其微观统计意义 温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上

32 t kT ε= 5. 能量均分定理 在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2 kT 。以 i 表示分子热运动的总自由度,则一个分子的总平均动能为 2 t i kT ε= 6. 速率分布函数 ()dN f Nd = v v 麦克斯韦速率分布函数 23 2/22()4()2m kT m f e kT ππ-=v v v 7. 三种速率 最概然速率 p = ≈v 平均速率 = =≈v 方均根速率 = =≈8. 玻尔兹曼分布律 平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。重力场中粒子数密度按高度的分布(温度均匀): kT m gh e n n /0-= 9. 范德瓦尔斯方程 采用相互作用的刚性球分子模型,对于1mol 气体 RT b V V a p m m =-+ ))((2 10. 气体分子的平均自由程 λ= =

第十二章气体动理论题库

第十二章气体动理论 第十二章气体动理论 (1) 12.1平衡态理想气体物态方程热力学第零定律 (3) 判断题 (3) 难题(1题)中题(1题)易题(1题) 选择题 (4) 难题(1题)中题(1题)易题(1题) 填空题 (5) 难题(1题)中题(1题)易题(2题) 计算题 (7) 难题(1题)中题(2题)易题(2题) 12.2物质的微观模型统计规律性 (13) 判断题 (13) 难题(0题)中题(0题)易题(0题) 选择题 (14) 难题(1题)中题(1题)易题(1题) 填空题 (16) 难题(0题)中题(1题)易题(1题) 计算题 (17) 难题(0题)中题(0题)易题(0题) 12.3理想气体的压强公式 (19) 判断题 (19) 难题(0题)中题(0题)易题(2题) 选择题 (20) 难题(3题)中题(4题)易题(1题) 填空题 (22) 难题(0题)中题(4题)易题(3题) 计算题 (24) 难题(1题)中题(3题)易题(2题) 12.4理想气体分子的平均平动动能与温度的关系 (28) 判断题 (28) 难题(0题)中题(0题)易题(3题) 选择题 (29) 难题(1题)中题(6题)易题(1题) 填空题 (31) 难题(5题)中题(6题)易题(3题) 计算题 (36)

难题(2题)中题(5题)易题(3题) 12.5能量均分定理理想气体内能 (42) 判断题 (42) 难题(0题)中题(0题)易题(3题) 选择题 (43) 难题(0题)中题(2题)易题(1题) 填空题 (44) 难题(0题)中题(0题)易题(3题) 计算题 (46) 难题(1题)中题(1题)易题(1题) 12.6麦克斯韦气体分子速率分布率 (49) 判断题 (49) 难题(0题)中题(1题)易题(2题) 选择题 (50) 难题(1题)中题(9题)易题(5题) 填空题 (56) 难题(2题)中题(5题)易题(7题) 计算题 (60) 难题(2题)中题(8题)易题(4题) 12.8分子平均碰撞次数和平均自由程 (68) 判断题 (68) 难题(0题)中题(1题)易题(1题) 选择题 (69) 难题(1题)中题(4题)易题(2题) 填空题 (71) 难题(0题)中题(3题)易题(0题) 计算题 (73) 难题(1题)中题(1题)易题(3题)

第四章气体动理论

第四章 气体动理论 2-4-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比 4:2:1::222=C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2 x v =m kT 3 (B) 2x v = m kT 331 (C) 2 x v = m kT 3 (D) 2x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4) 5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 2523)(2121

第章气体动理论

第10章 气体动理论题目无答案 一、选择题 1. 一理想气体样品, 总质量为M , 体积为V , 压强为p , 绝对温度为T , 密度为?, 总分子数为N , k 为玻尔兹曼常数, R 为气体普适常数, 则其摩尔质量可表示为 [ ] (A) MRT pV (B) pV MkT (C) p kT ρ (D) p RT ρ 2. 如T10-1-2图所示,一个瓶内装有气体, 但有小孔与外界相通, 原来瓶内温度为300K .现在把瓶内的气体加热到400K (不计容积膨胀), 此时瓶内气体的质量为 原来质量的______倍. [ ] (A) 27/127 (B) 2/3 (C) 3/4 (D) 1/10 3. 相等质量的氢气和氧气被密封在一粗细均匀的细玻璃管内, 并由一 水银滴隔开, 当玻璃管平放时, 氢气柱和氧气柱的长度之比为 [ ] (A) 16:1 (B) 1:1 (C) 1:16 (D) 32:1 4. 一容器中装有一定质量的某种气体, 下列所述中是平衡态的为 [ ] (A) 气体各部分压强相等 (B) 气体各部分温度相等 (C) 气体各部分密度相等 (D) 气体各部分温度和密度都相等 5. 一容器中装有一定质量的某种气体, 下面叙述中正确的是 [ ] (A) 容器中各处压强相等, 则各处温度也一定相等 (B) 容器中各处压强相等, 则各处密度也一定相等 (C) 容器中各处压强相等, 且各处密度相等, 则各处温度也一定相等 (D) 容器中各处压强相等, 则各处的分子平均平动动能一定相等 6. 理想气体能达到平衡态的原因是 [ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 7. 理想气体的压强公式 k 3 2 εn p = 可理解为 [ ] (A) 是一个力学规律 (B) 是一个统计规律 (C) 仅是计算压强的公式 (D) 仅由实验得出 8. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是: [ ] (A) p 1> p 2 (B) p 1< p 2 (C) p 1=p 2 (D)不确定的 9. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1;B 种气体的分子数密度为2n 1;C 种气体的分子数密度为3 n 1.则混合气体的压强p 为 [ ] (A) 3 p 1 (B) 4 p 1 (C) 5 p 1 (D) 6 p 1 10. 若室内生起炉子后温度从15?C 升高到27?C, 而室内气压不变, 则此时室内的分子数减少了 [ ] (A) % (B) 4% (C) 9% (D) 21% 11. 无法用实验来直接验证理想气体的压强公式, 是因为 T10-1-2图 T 10-1-3图

气体动理论习题解答,DOC

习题 8-1设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014Pa 。 解:(1) J 1014.41054001038.12 3)(233232321?=?????=+=-∑N N kT t ε(2)Pa kT n p i 323231076.21054001038.1?=????==-∑

2 8-4储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及 体的温度需多高? 解:(1)J 1065.515.2731038.12 323212311--?=???==kT t ε (2)kT 23 J 101.6ev 1t 19-==?=ε

8-7一容积为10 cm 3的电子管,当温度为300K 时,用真空泵把管内空气抽成压强为5×10-4mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气 量。 解:RT i E ν2= ,mol 1=ν 若水蒸气温度是100℃时

4 8-9已知在273K 、1.0×10-2atm 时,容器内装有一理想气体,其密度为1.24×10-2 kg/m 3。求:(1)方均根速率;(2)气体的摩尔质量,并确定它是什么气体;(3) 分子间均匀等距排列) 解:(1)325/m 1044.2?==kT p n

(2)32kg/m 297.1333====RT P RT p v p μμρ (3)J 1021.62 3 21-?==kT t ε (4)m 1045.3193-?=?=d n d (2)K 3.36210 38.1104.51021035.12322=??????==-Nk pV T 8-13已知)(v f 是速率分布函数,说明以下各式的物理意义:

练习册-第十二章气体动理论

第十二章气体动理论 §12-1 平衡态气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV 恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律:

一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K = 阿伏加德罗常数23 6.02310/A N mol =? 质量密度与分子数密度的关系 nm ρ= 分子数密度/n N V =,ρ气体质量密度,m 气体分子质量。 三、理想气体的压强 1、理想气体微观模型的假设 (a )分子本身的大小比起它们之间的距离可忽略不计,可视为质点。 (b )除了分子碰撞瞬间外,分子之间的相互作用以忽略;因此在相邻两次碰撞之间,分子做匀速直线运动。。 (c )分子与分子之间或分子与器壁间的碰撞是完全弹性的。 理想气体可看作是由大量的、自由的、不断做无规则运动的,大小可忽略不计的弹性小球所组成。 大量分子构成的宏观系统的性质,满足统计规律。 统计假设:

5-练习册-第十二章 气体动理论

第十二章 气体动理论 §12-1 平衡态 气体状态方程 【基本内容】 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、平衡态 状态参量 1、热力学系统:由大量分子组成的宏观客体(气体、液体、固体等),简称系统。 外界:与系统发生相互作用的系统以外其它物体(或环境)。 从系统与外界的关系来看,热力学系统分为孤立系统、封闭系统、开放系统。 ' 2、平衡态与平衡过程 平衡态:在不受外界影响的条件下,系统的宏观热力学性质(如P 、V 、T )不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 热力学过程:系统从一初状态出发,经过一系列变化到另一状态的过程。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、状态参量 系统处于平衡态时,描述系统状态的宏观物理量,称为状态参量。它是表征大量微观粒子集体性质的物理量(如P 、V 、T 、C 等)。 微观量:表征个别微观粒子状况的物理量(如分子的大小、质量、速度等)。 二、理想气体状态方程 1、气体实验定律 (1)玻意耳定律: | 一定质量的气体,当温度保持不变时,它的压强与体积的乘积等于恒量。即PV =恒量,亦即在一定温度下,对一定量的气体,它的体积与压强成反比。 (2)盖.吕萨克定律: 一定质量的气体,当压强保持不变时,它的体积与热力学温度成正比。即V T =恒量。 (3)查理定律: 一定质量的气体,当体积保持不变时,它的压强与热力学温度成正比,即 P T =恒量。 气体实验定律的适用范围:只有当气体的温度不太低(与室温相比),压强不太大(与大气压相比)时,方能遵守上述三条定律。 2、理想气体的状态方程 (1)理想气体的状态方程 在任一平衡态下,理想气体各宏观状态参量之间的函数关系;也称为克拉伯龙方程 M PV RT RT νμ = = < (2)气体压强与温度的关系 P nkT = 玻尔兹曼常数23 / 1.3810A k R N -==?J/K ;气体普适常数8.31/.R J mol K =

第四章--气体动理论-总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与 C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 描述气体状态三个物理量: P,V T

12 2 ω=mv 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 =在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 m k T v v x ===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度

相关主题
文本预览
相关文档 最新文档