当前位置:文档之家› 北斗星通授时接收机C260

北斗星通授时接收机C260

北斗星通授时接收机C260

15北斗天权接收机

BDSTQ RECEIVERS 产品特点_Receivers_

C201接收机是北斗星通导航技术股份有限公司自行研制的一款性价比非常高的具有北斗功能的

接收机,可封装多款OEM 板卡。该产品有两个串口可以与外部设备进行通讯,配有天线接口、电源输入口等。适合于低成本、低功耗领域BDS/GPS 多系统定位、RTK、授时等应用。本款接收机内可封装BDM100/651/670/680/683型板卡,C201-AT 型采用DB9串口输出,C201-NT 型采用RJ45网口输出。C201接收机通过串口可实现卫星跟踪、接收机定位等状态查询、固件升级等操作。该机前面板提供3个LED 指示灯,可显示包括接收机电源、串口工作状态信息。

C260

北斗导航定位接收机尺寸(不包括天线插座)重量功耗水平定位精度(RMS)RTK精度(水平)工作温度存储温度湿度141mm×118mm×67mm

<500g

≤5W

<3m (根据内部封装板卡为准)

水平 : 1cm+1ppm;垂直 : 2cm+1ppm (内置高精度板卡)

-40℃~+80℃-45℃~+85℃

5% ~95% 相对湿度,无冷凝3.3可输出高精度定位信息支持串口或网口通讯可选

串口接口形式支持LEMO/DB9可选

支持宽范围电压输入可内置北斗星通BDM100/651/670/680/683板卡体积小、重量轻、安装携带方便

北斗gps卫星定位系统定位原理

网址:https://www.doczj.com/doc/8b10899949.html, 北斗gps卫星定位系统定位原理 北斗卫星定位系统哪家好?北斗卫星定位系统的原理是什么?八杰科技为您解答。 定位原理 35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。 事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成

网址:https://www.doczj.com/doc/8b10899949.html, 若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。 卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。 卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。 每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。 卫星导航原理 踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。 卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。 卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

北斗卫星导航系统介绍整理材料

北斗卫星导航系统 (一)概述 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 (二)发展历程 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供

服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。2035年前还将建设完善更加泛在、更加融合、更加智能的综合时空体系。 (三)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (四)建设原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。 ——渐进。分步骤推进北斗系统建设发展,持续提升北斗系统服务性能,不断推动卫星导航产业全面、协调和可持续发展。 (五)发展计划 目前,我国正在实施北斗三号系统建设。根据系统建设总体规划,2018年底,完成19颗卫星发射组网,完成基本系统建设,向全球提

北斗星通2019年度财务分析报告

北斗星通[002151]2019年度财务分析报告 目录 一.公司简介 (3) 二.公司财务分析 (3) 2.1 公司资产结构分析 (3) 2.1.1 资产构成基本情况 (3) 2.1.2 流动资产构成情况 (4) 2.1.3 非流动资产构成情况 (6) 2.2 负债及所有者权益结构分析 (7) 2.2.1 负债及所有者权益基本构成情况 (7) 2.2.2 流动负债基本构成情况 (8) 2.2.3 非流动负债基本构成情况 (9) 2.2.4 所有者权益基本构成情况 (11) 2.3利润分析 (12) 2.3.1 净利润分析 (12) 2.3.2 营业利润分析 (13) 2.3.3 利润总额分析 (13) 2.3.4 成本费用分析 (14) 2.4 现金流量分析 (15) 2.4.1 经营活动、投资活动及筹资活动现金流分析 (15) 2.4.2 现金流入结构分析 (16) 2.4.3 现金流出结构分析 (21) 2.5 偿债能力分析 (25) 2.5.1 短期偿债能力 (25) 2.5.2 综合偿债能力 (26) 2.6 营运能力分析 (27) 2.6.1 存货周转率 (27)

2.6.2 应收账款周转率 (27) 2.6.3 总资产周转率 (28) 2.7盈利能力分析 (29) 2.7.1 销售毛利率 (29) 2.7.2 销售净利率 (30) 2.7.3 ROE(净资产收益率) (31) 2.7.4 ROA(总资产报酬率) (32) 2.8成长性分析 (33) 2.8.1 资产扩张率 (33) 2.8.2 营业总收入同比增长率 (34) 2.8.3 净利润同比增长率 (35) 2.8.4 营业利润同比增长率 (36) 2.8.5 净资产同比增长率 (37)

无线控制授时技术(RCT)及其应用

无线控制授时技术(RCT) CT发射机及接收机技术原理、RCT编码技术以及RCT技术目前在各国的应用情况。给 关键词:无线控制授时 BPC WWCB MSF DFC JJY RCT 1C 情况正确的时间在人们日常生活中是不可或缺的。随着微处理器在家用电器、工业产品中的日益普及,许多产品中嵌入了时间处理、显示模块。目前多数产品中的时钟源由晶体振荡产生比较精确的时间。但是在许多场合,由于晶体振荡需要电源供给,在掉电或更换电池时,原有时间会丢失,系统时间被复位,此时必须依照广播、电视或电话公司提供的标准时间手工重新校对;另外在跨时区旅行时,也需要重新校对时间。这给人们带来许多不便。目前随着RCT技术的应用,使得需要标准时间的系统通过内嵌微型RCT接收装置自动设置标准时间,时间精度一般为秒级且与国家标准时间同步、无需手工调整。从而实现了计时装置计量时间和显示时间的精确性(与授时中心的标准时间同步)、统一性(所有接收该时间信号的计时装置都显示同一时间)。在RCT技术广泛应用之前,也有使用GPS(全球定位系统)接收标准时间的装置,但由于其电路复杂、成本高昂而没有得到普及。在北美及欧洲,由于RCT技术的普及,使得市场对具有自动接收时间功能的钟表及其它计时装置产生了很高的需求。不同的国家使用了不同的时间编码格式和发射频率。表1给出了目前已发射长波授时信号的几个主要国家的时间编码标准及其使用频率。表1 各国RCT技术使用的时间编码及发射频率国家名时间编码标准发射基站地点使用的频率发射功率接收半径中国BPC陕西西安68.6kHz100kW2000km美国WWVBFort Collins60kHz50kW2000km英国MSFRugby60kHz251200km 德国DFCFrankfurt77.5kHz50kW1500km日本JJY40JJY60本州福岛九州富网40kHz60kHz50kW50kW1000km1000km①中国的长波授时编码标准为BPC。目前该长波授时的时间编码还未正式公开,其专利由西安高华实业有限公司持有。同时该公司也是中国第一台长波授时电波钟的开发者。②美国的长波授时编码标准为WWVB,发射基站位于Colorado州的FortCollins。由于美国只建有一个长波授时的发射站,因而在距离发射站较远的地区信号较弱,对接收芯片的灵敏度要求比较高。③英国的长波授时编码标准为MSF,发射基站位于Teddington的Rugby。由于英国本土面积较小,一个长波授时发射站就可以覆盖英伦三岛,时间编码信号较强,对接收芯片的灵敏度要求不高。④德国的长波授时编码标准为DCF,与MSF类似。20世纪50年代末,德国就在Frankfurt建立了长波授时中心。德国国土面积较小,且DFC的长波授时信号发射站功率很强,是RCT技术中对接收芯片的灵敏度要求最低的,因而比较容易开发。⑤日本的长波授时编码标准为JJY。由于日本地形狭长,在本洲福岛的40kHz(JJY40)发射机不能覆盖日本全国。日本通信综合研究所于2001年10月在九州富冈新建了60kHz的授时发射站(JJY60)。[!--empirenews.page--]图2 MSF授时信号编码格式2RCT的技术原理无线控制授时系统由时间编码信号的长波授时发射台及其接收装置共同组成。最初的无线授时系统(包括短波授时和长波授时)只应用于军事目的,现已转为民用。2.1无线控制授时系统的授时信号发送原理RCT系统授时信号发送装置的系统构成如图1所示。首先,通过在标准授时中心内的铯(或铷)原子钟产生标准时间。例如,铯原 进行分频产生实时的标准时间信息,如年、月、日、时、分、秒、毫秒、微秒等。然后将标准时间信号传送给时间编码发生器编码,编码后的时间信号通过调制器调制到长波载波信号(40kHz~80kHz)上,经过功率放大器将信号沿传输线传送到天线塔发射出去。由于授时信号属于长波信号,以地波形式沿地球表面传播。2.2RCT技术系统授时信号的接收原理RCT接收机通过内置微型无线接收系统接收长波时间编码信号,由专用芯片

北斗卫星导航定位系统简介

北斗卫星导航定位系统,是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后,第三个成熟的卫星导航系统。卫星导航系统是重要的空间基础设施,它综合了传统天文导航定位和地面无线电导航定位的优点,相当于一个设置在太空的无线电导航台,可带来巨大的社会经济效益。在测绘、电信、水利、公路交通、铁路运输、渔业生产、勘探、森林防火和国家安全等诸多领域会逐步发挥重要作用。 世界上第一个全球卫星导航系统是美国从1973年开始实施的GPS系统,军民两用。但长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号――也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个“大概”。为打破美国的垄断,俄罗斯耗资30多亿美元建起了自己的全球卫星导航系统GLONASS。2002年,欧盟启动了伽利略(Galileo)全球卫星导航定位系统计划,将在2008年投入运营,预计投资36亿欧元。2003年,我国与欧盟签署了有关伽利略计划的合作协定,目前双方合作项目已有14个。我国自上世纪80年代引进首台GPS接收机以来,已成为GPS应用大国。作为一个拥有广阔领土和海域的国家,中国有能力也有必要拥有自己的全球定位系统。 北斗卫星导航定位系统的系统构成有:由两颗地球静止卫星(800E和1400E)、一颗在轨备份卫星(110.50E)、中心控制系统、标校系统和各类用户机等部分组成。可向用户提供全天候、二十四小时的即时定位服务,定位精度可达20纳秒的同步精度,水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。其精度与GPS相当。工作频率为2491.75MHz,系统容纳的最大用户数达每小时540000户,短报文通信一次可传送多达120个汉字的信息(GPS不具备此项功能),精密授时的精度达20纳秒。 2007年2月3日,第四颗试验“北斗星”在西昌成功发射。 这一系统目前共有四颗导航定位卫星,其发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日,第三颗是备用卫星。 2007年2月3日,北斗导航试验卫星升空。 中国向着努力开发一个堪与美国GPS系统和欧洲伽利略系统(Galileo)媲美的定位系统又迈进了一步。“北斗”导航卫星通过“长征三号甲”运载火箭成功发射,凸显中国政府发展航天工业的决心。此前数周,中国用一种由导弹发射的“动能拦截器”击毁了一颗老化气象卫星,美国对此表示担忧。 北斗卫星导航定位系统——英文名为“Compass”——的计划一直处于保密状态,官方一再拒绝透露意图。不过,最近的卫星发射,似乎是要加强一个相对不很精确的系统,该系统以2000年至2003年发射的三颗北斗卫星为基础。今年初将发射两颗地球静止卫星,使北斗卫星导航系统到2008年能够覆盖中国全境和邻近国家部分区域。北斗卫星导航系统最终将通过由30颗非静止轨道卫星组成的卫星“星座”,扩展到覆盖全球。它将类似于美国的GPS系统(全球定位系统)和欧洲的伽利略卫星网络。 更为精确的定位,对于中国军队来说将是一项重大财富。扩展后的北斗卫星导航系统,将使用与伽利略系统相同的无线电频率,可能也会与GPS系统相同,在战时使敌方更难以干扰网络。 北斗卫星导航系统的开发,可能会对伽利略系统的商业成功构成挑战。虽然中国是伽利略项目的合作方之一,中国政府和企业在相关设施及商业应用研究方面投入了2亿欧元(合2.6亿美元),但中国正成为该 项目的一个潜在竞争者。

北斗授时

1.北斗授时工作机理 在现代卫星导航系统中,为了保证系统中各个钟的精确同步,需要一个准确、稳定和可靠的时间参考,这通常是以系统中的部分钟或全部的钟为基础。利用统计平均的方法建立一个系统时间来实现。星上通常以原子钟为参考钟。 系统时间与UTC之间协调方法,需要考虑国际标准时间到系统时间传递的各个环节,是提高授时准确度中的最重要一环。 系统钟的同步方法,主要涉及到系统中各个钟的精确数据的收集方法和控制方法,要研究相对论效应对星载钟同步的影响,比对测量和钟驾驭方法的研究是时钟同步的基础。 系统授时方法,包括卫星电文中的与时间有关的信息的制定与产生,用户终端定时技术涉及到接收、比对及控制技术等。 对用户来说,北斗的授时精度主要由授时模块来提供,通常20ns,由秒脉冲同步来保证。 2.为何要时间同步 对于一个进入信息社会的现代化大国,导航定位和授时系统是最重要、而且也是最关键的国家基础设施之一。现代武器实(试)验、战争需要它保障,智能化交通运输系统的建立和数字化地球的实现需要它支持。现代通信网和电力网建设也越来越增强了对精度时间和频率的依赖。为了提高民用定位定时的性能和可靠性、安全

性,利用这些卫星系统建立广域增强系统(Waas)美国、日本、欧洲和俄罗斯也在计划或研制之中。 这些系统导航定位的基本概念都是以精度时间测量为基础的。正如有人所指出的那样,我们人类生活在余割四维的世界(x、y、z、t)其中一维就是时间,而另外三维的精度确定,就今天而言,没有精确的定时也是难以实现的。 单从授时出发,不难理解系统发播时间的精确控制是不可缺少的。而对于导航定位,系统内部钟(星载钟和地面监测和控制台站的钟)的同步就极为关键。没有原子钟的支持,没有钟同步和保持技术的支持,实现星基导航和定位是不可能的。在完成精确时间的传递过程,需要对传播时延作精确修正,而这又需要知道用户的精确地理位置。 从以上分析可以看出,无论在系统概念、技术、装备或管理上,与其他通讯和卫星系统相比,导航定位卫星系统与高精度卫星授时系统有很好的兼容性和互补性,二者是相辅相成的。从资源共享和合理利用出发,先进的卫星系统应该成为一个导航授时一体化的高精度星基四维(x、y、z、t)信息源, GPS、北斗、Glonass和正在研制中的Galileo,无不把其授时功能提到仅次于导航定位的重要地位。以便满足个行各业对精度时间和频率日益增长的需求。 一般的电子设备晶振的精度为6~12ppm,亦即每秒有约9微秒(平均)的误差,1小时累积约32毫秒误差,1天累积约0.8秒误差,一个月累积约23秒误差,1年累积约280秒误差。可见日常工

浅议基站IP网络授时系统

浅议基站IP网络授时系统 摘要:随着IP(Internet Protocol)网络的发展,大部分通信网络都实现了IP传输,但由于IP网络是异步网络,IP 网络中的设备无法通过物理链路获取时钟,因此需要为网络设备提供一种新的获取时钟的同步方式。 关键字:授时系统 前言:IP 网络同步主要应用于无线基站的同步,包括WCDMA(Wideband Code Division Multiple Access)中NodeB/AP(Access Preamble)基站设备的频率同步;GSM(Global System for Mobile communications)中BTS(Base Transceiver Station)基站设备的频率同步,CDMA2000、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access)和WiMAX中us级别的高精度时间同步。为满足业务设备的高精度时间和时钟同步需求,本文以SYNLOCK T6020设备为例,分析授时系统在不同组网环境(不同的传送网、不同的网络规模)下,高精度时间和时钟同步系统的应用。 1.系统结构 SYNLOCK T6020 主要由频率同步模块、分频鉴相模块、时间恢复模块、锁相模块、1588 处理模块、接口转换模块、CPU 模块、GPS(Global Positioning System)/PPS 时间同步接口、FE/GE 接口、维护接口等组成。 接口转换模块将GE数据转换成FE数据,提供给CPU处理;同时将非1588信息和1588的general信息提供给CPU处理,并发送CPU的网络协议。 维护接口模块通过维护串口和维护网口,主用板将设备链接到集中维护终端。 2.同步定时接口 1)卫星接口 SYNLOCK T6020 提供GPS卫星接口。设备的GPS 接口是1.5G的射频接口,而卫星卡和设备单板的接口是TTL(Transistor-Transistor Logic)的PPS与TTL串口,单板通过这些串口信息可计算出时间和位置信息。 在观测到三颗卫星的情况下,可以得到三个方程组,求解出接收站的三维位置信息。如果观测到四颗以上的卫星,则可以计算出本地时间。 2)1588 接口 IEEE 1588(PTP)的基本功能是使分布式网络内设备的时间与服务器精确

中国北斗卫星导航系统(全文)

中国北斗卫星导航系统 (2016年6月) 中华人民共和国 国务院新闻办公室 目录 前言 一、发展目标与原则 二、持续建设和发展北斗系统 三、提供可靠安全的卫星导航服务 四、推动北斗系统应用与产业化发展 五、积极促进国际合作与交流 结束语

前言 北斗卫星导航系统(以下简称北斗系统)是中国着眼于国家安全和经济社会发展需要,自主建设、独立运行的卫星导航系统,是为全球用户提供全天候、全天时、高精度的定位、导航和授时服务的国家重要空间基础设施。 20世纪后期,中国开始探索适合国情的卫星导航系统发展道路,逐步形成了三步走发展战略:2000年年底,建成北斗一号系统,向中国提供服务;2012年年底,建成北斗二号系统,向亚太地区提供服务;计划在2020年前后,建成北斗全球系统,向全球提供服务。 随着北斗系统建设和服务能力的发展,相关产品已广泛应用于交通运输、海洋渔业、水文监测、气象预报、测绘地理信息、森林防火、通信时统、电力调度、救灾减灾、应急搜救等领域,逐步渗透到人类社会生产和人们生活的方方面面,为全球经济和社会发展注入新的活力。 卫星导航系统是全球性公共资源,多系统兼容与互操作已成为发展趋势。中国始终秉持和践行“中国的北斗,世界的北斗”的发展理念,服务“一带一路”建设发展,积极推进北斗系统国际合作。与其他卫星导航系统携手,与各个国家、地区和国际组织一起,共同推动全球卫星导航事业发展,让北斗系统更好地服务全球、造福人类。 一、发展目标与原则 中国高度重视北斗系统建设,将北斗系统列为国家科技重大专项,支撑国家创新发展战略。 (一)发展目标 建设世界一流的卫星导航系统,满足国家安全与经济社会发展需求,为全球用户提供连续、稳定、可靠的服务;发展北斗产业,服务经济社会发展和民生改善;深化国际合作,共享卫星导航发展成果,提高全球卫星导航系统的综合应用效益。 (二)发展原则 中国坚持“自主、开放、兼容、渐进”的原则建设和发展北斗系统。 ——自主。坚持自主建设、发展和运行北斗系统,具备向全球用户独立提供卫星导航服务的能力。 ——开放。免费提供公开的卫星导航服务,鼓励开展全方位、多层次、高水平的国际合作与交流。 ——兼容。提倡与其他卫星导航系统开展兼容与互操作,鼓励国际合作与交流,致力于为用户提供更好的服务。

现代授时技术及其用途

现代授时技术及其用途–概述 摘要:涵盖的内容 1、基本的准备知识:单位制、频率基、标准器、频标比对方 法和测量技术。一些内容在“时间与频率测量”中学习,而针对性的频标比对和时间测量等内容在本课程中讲。教材,根据情况不断重复和复习。 2、各种可用的传输载体和途径(无线),时间–空间关系 3、时间和频率信号在授时传递中信号的特点及其处理、测量 技术(扩展) 4、重要的基础:时间同步、相位同步(同频、同相)、相位群 同步。源端和用户端的区别, 周期性(1pps)和非周期性的区别、灵活性;相互间的相关性 5、特有的授时比对方法:三种,单、双、共 6、关于授时技术的应用–其重要性反映了学习的价值。导航 定位、时间同步、电力故障检测、国防军工、航空航天等。注意时–空关系。 7、同步技术的扩展:频率准确度、稳定度的传递,例如在原 子钟等量子频标中。 8、授时、定位、导航系统中的一些关键技术:星载钟、时频 信号生成和保持、星–地、星间、地–地的同步监测等。 9、最新的技术进展 10、GPS等全球定位系统

11、 方法、实验(理解)、和科研的关系。 概述 与其他物理量在量值传递等方面很大的不同,时间和频率信号的准确传递可以借助于电磁波信号以无线的方法进行。这主要是因为光和电磁波信号传递速度的高精度以及快速的原因。 高精度传输的参考时间信号是官方的国际时间,协调世界时UTC ;高精度传输的参考频率(时间间隔)信号是国际原子时TAI 。它们都是由国际度量局BIPM 产生的。授时技术的目的是完成全部(全球)或者局部的时间的一致。 授时技术从最初主要是用于时间和频率标准器之间的准确比对及量值传递。这常常表现为频率信号的校准和时间的同步等。而近年来它也更多地被用于导航定位、通讯、大系统的管理和协调、电力传输中的故障检测等。另外,授时技术的用途也更多的表现在导航和长度的精密测量及控制方面。经过了几年对本课程的讲授,我们感觉到应该在更广义的范畴内把授时问题的内涵、相关知识、可应用的领域以及针对不同情况时的灵活应用等交待的更明白。这样才能发挥它的功能。 用符号S 表示电磁波传播的距离、V 表示电磁波传播的速度、d 表示传播延迟,则 d=V S (1) 对于天波一般取V 等于光速c ;对于地波,根据大地导电率的不同,V 不等于光速,要作相应的修正。此外,能否准确的计量出电磁波信号传播的实际距离也是确定各种发播手段准确度高低的关键。 从计量学的发展中,可以看到一条规律。也就是因为时间和频率量的高精度和便于数字化处理等优点,对于其他量值的测量和处理从高精度的考虑就有向频率或者时间量靠近的趋势。同样,又由于时间和频率量便于高精度传输的优点 (其他量值,如电压等就很难通过这样的途径准确的传输),除了利用这种传输单一地进行时间或者频率量的传递和比对外人们还千方百计地把可能转换或者以时间量值为代表情况下实现其他对象的比对、统一等目的。所以在全球定位星系统(GPS)发展的初期,就有人预测这个系统能够发挥的作用的广度和深度将取决于人们的想象力。如果说,在时间和频率领域授时技术主要的功能是完成时间的同步和频率量值的一致,那末在更广泛的领域它将以时间、相位或者频率为纽带实现不同的控制对象在大空间的统一。这里,最明显的例子就是电力系统的管理、控制和故障检测;在通讯方面对于图像和文字资料的传输所需要的系统等。 为了学习方便,我们先把本课程中的关键的缩写词汇列表如下: (有印象,不要求记;在许多文献中大量应用) BIPM: Bureau International des Poids et Mesures C/A 码:进入探测粗码(Coarse Acguisition of Clear Access) CRL: Communications Research Laboratory, Tokyo CV: Common View

北斗卫星定位系统工作原理

北斗卫星定位系统工作原理 北斗卫星定位系统是全球卫星定位系统的一种,他工作的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过纪录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当北斗卫星行为系统的卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。北斗卫星定位系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于30 0m;P码频率10.23MHz,重复周期266.4天,码间距0. 1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,

其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。可见北斗卫星定位系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。 工作原理1 北斗卫星定位系统接收机可接收到可用于授时的准确至纳秒级的时间信息;用于预报未来几个月内卫星所处概略位置的预报星历;用于计算定位时所需卫星坐标的广播星历,精度为几米至几十米(各个卫星不同,随时变化);以及北斗卫星定位系统信息,如卫星状况等。 北斗卫星定位系统接收机对码的量测就可得到卫星到接收机的距离,由于含有接收机卫星钟的误差及大气传播误差,故称为伪距。对0A码测得的伪距称为UA码伪距,精

北斗卫星在电力系统授时中的研究

2008 中国国际供电会议 1 北斗卫星在电力系统授时中的研究 陈炯聪1,张道杰2,高新华1 1. 广东电网公司电力科学研究院,广州,510600; 2. 深圳市双合电脑系统股份有限公司 摘 要:利用卫星进行授时,有着精度高、受环境干扰小、实时性好等优点,其在授时研究和应用领域有着广泛和美好的前景。 GPS 是目前应用最为广泛的卫星定位授时系统,但仅仅依靠GPS 授时会存在两方面问题,一是手段单一,再则我国没有自主控制权。我国从80年代开始就着手研究双星定位系统,己于2003年成功完成“北斗一号”卫星定位系统的构建工作。 本文在对北斗卫星系统简介的基础上,分析北斗卫星时间同步系统在我国电力系统中应用的必要性和可行性。介绍了结合北斗卫星时钟信号和OCXO 特性 的1PPS 提供给电力授时的理论和实现方法。并设计实现了一种基于单片机和北斗卫星OEM 板的卫星同步时钟装置。它由北斗OEM 接收机、中央处理单元和输出接口组成。利用OEM 接收机提供的北斗卫星标准时间信号,通过中央处理单元对数据的处理驯服OCXO ,使输出的1PPS 具有良好的长稳、短稳特性。输出 的1PPS 秒脉冲信号可同步电网内运行的各时钟,保证电网内所有时钟的高精度同步运行。这种新的时钟同步方法具有实现手段简单、范围大、精度高、不受地理和气候条件限制等诸多优点,是理想的时钟同步方法。 利用北斗卫星同步时钟装置,对所属范围各厂站的保护系统、故障录波系统进行统一的随时的时钟校对,该课题对电网自动化水平的提高,特别是对事故分析、故障测距、稳定判断与控制技术的发展有重要的意义。 关键词:单片机;北斗;电力系统;同步时钟 1. 北斗卫星简介 北斗导航定位系统是由中国自主建设的卫星系统,1994年正式立项,2003年双星导航定位系统正式投入使用。北斗导航定位系统由空间卫星、地面中心控制系统和用户终端组成。 1.1 空间部分 空间部分由两颗地球同步的导航卫星和一颗在轨备用卫星组成。3颗卫星距地面约36000km ,分别位于赤道面东经80度、140度和110.5度(备份卫星)。空间卫星的任务是完成中心控制系统和用户收发机之间的双向无线电信号转发。卫星上主要载荷是变频转发器、S 波段天线(两个波束)和L 波段天线(两个波束)。 1.2 地面中心 地面中心控制系统由一个中心控制站、若干卫星定轨标校站、差分定位标校站和测高标校站组成。地面中心控制系统是北斗定位导航系统的控制和管理中心,是北斗导航定位系统的中枢,它由信号收发分系统、信息处理分系统、时间分系统、监控分系统和信道监控分系统等组成。 1.3 用户终端 用户终端由信号接收天线、混频和放大电路、发射装置、信息输入键盘和显示器等组成。根据执行任务的不同用户终端分为:通信终端、卫星测轨终端、差分定位标校终 端、和授时终端等。 2. 分析北斗卫星时间同步系统在我国电力系统 应用的必要性和可行性 高精度时间频率传递在国民经济中的地位十分突出,其在通信网的时间同步、电力系统调控等许多方面有着无可替代的重大作用。近年来,随着国防和空间技术的发展,对高精度时间和频率传递又提出了更高的要求,空中目标的探测与拦截、无线电导航系统的时钟基准等技术对时间同步精度要求都达到纳秒量级。因此开展高精度授时技术应用研究,对解决国民经济和国防建设事业对高精度时间同步的需求具有重要的意义。 GPS 授时是典型的利用卫星进行时间传递和比对的方法,工作范围覆盖全球,并且时间传递的准确度高,目前,GPS 授时精度已经达到10~20ns 。 但仅仅依靠GPS 授时会存在两方面问题,一是手段单一,再则我国没有自主控制权。我国从80年代开始就着手研究双星定位系统,己于2003年成功完成“北斗一号”卫星定位系统的构建工作。北斗导航系统又称双星快速定位通讯系统,它是星基区域双向主动式无线电导航系统,具有全天候、高精度、连续、实时、快速的导航定位和多功能、多用途、高可靠性的特点。 随着国民经济的不断发展,人们对电力的质量、需求

NTP网络授时系统设计与实现——NTP网络授时系统服务器硬件设计

第3章NTP网络授时系统服务器硬件设计 3.1 服务器端硬件系统结构图 NTP服务器的硬件设计,按照最小设计的原则,以保证整个硬件的尺寸符合要求,只提供系统所必须的功能,如串口、以太网口等。系统结构如图3-1所示: 图3-1 NTP服务器硬件实现框图 3.2 系统硬件选型 3.2.1 芯片选型 根据前面的需求分析和硬件总体设计,结合实际应用和实现的需要,选择以下硬件芯片,如表3-1所示。 表3-1 NTP服务器芯片选型

3.2.2 S3C4510B简介 本系统选择了ARM架构的Samsung的S3C4510B处理器作为整个服务器硬件的核心。 ARM(Advanced RISC Machines)架构是面向低预算市场设计的第一款RISC 微处理器,除了RISC的一些特点外,ARM体系结构还采用了一些特别的技术,在保证提高性能的前提下尽量缩小芯片的面积,并降低功耗。 ARM微处理器具有体积小、低功耗、低成本、高性能的特点,支持Thumb(16位)/ARM(32位)双指令集,大量使用存储器而使指令执行速度更快,寻址方式灵活简单,执行效率高,指令长度固定等优点,主要应用在工业控制、无线通讯、网络应用、消费电子、成像产品、安全产品、存储产品、汽车行业等领域[10]。 S3C4510B是Samsung公司生产的基于以太网应用的高性价比16/32位RISC 微控制器,内含一个由ARM公司设计的16/32位ARM7TDMI RISC处理器核[11]。另外,S3C4510B的片内外围功能模块主要包括: ——2个带缓冲描述符(Buffer Descriptor)的HDLC通道 ——2个UART通道 ——2个GDMA通道 ——2个32位定时器 ——18个可编程的I/O口 S3C4510B的片内逻辑电路包括: ——中断控制器 ——DRAM/SDRAM控制器 ——系统管理器 ——ROM/SRAM和FLASH控制器

北斗星通分析报告

证券投资分析报告北斗星通导航技术股份有限公司股票分析 院系:管理学院 班级: 姓名:

一、公司简介 北斗星通导航技术股份有限公司成立于2000年,于2007年8月在深圳交易所挂牌上市,注册资本4,000万元,以12.18元每股价格发行股票1350万股,首日开盘价为56.88元每股,股票代码为“002151”,成为卫星导航定位行业内首家上市企业。主要业务包括卫星导航定位产品供应、基于位置的信息系统应用以及基于位置的运营服务,集研发、生产、销售、运营为一体,服务于导航定位、指挥调度、精密测量、机械控制、目标监控、物联网等军民应用领域。 作为中国最早从事卫星导航定位业务的专业公司之一,北斗星通公司提出并建立了“产品+系统应用+运营服务”的业务模式,以此致力于为用户提供基于卫星导航定位技术的全面解决方案。在卫星导航定位产品业务领域,公司通过自主创新与合作创新,为国防、海洋渔业、测绘、机械控制、通信、电力等领域提供包括自主开发生产的GNSS芯片、北斗天玑系列集团用户中心设备、BDNA V系列板卡、北斗天璇系列终端/接收机、其它GNSS相关配套产品;在基于位置的信息系统应用业务领域,公司以自主研发的卫星导航应用软件为基础,将卫星导航定位、地理信息、自动控制、通讯、传感等技术,应用于用户的业务流程优化整合,提供感知位置、跟踪监控、管理服务的物联网应用平台,提高行业用户生产作业效率和管理效能;在基于位置的运营服务业务领域,通过公司构建的海、天、地一体化的综合信息运营服务网络平台(以北斗为核心,兼容GPS,整合移动通信网络和互联网,即基于位置信息的物联网运用服务平台),为注册用户提供导航定位、数字报文通信服务和基于位置的增值信息服务业务。 二、行业背景分析 2.1卫星导航定位产业链构成 公司所处的卫星导航定位产业,是一个新兴的高科技产业,也是一个市场发展潜力巨大的朝阳产业。卫星导航定位产业经过近二十年的发展,已初步发展成为一个国际性产业,其产业链主要包括全球卫星导航定位系统、基础类产品、用户终端产品、位置应用系统与位置运营服务五大部分。从应用领域来看,公司业务主要分布于测绘及高精度应用、港口、海洋渔业及国防等四大领域。其中,测绘及高精度应用和海洋渔业领域是公司主要营收来源。 2.2全球卫星导航定位产业快速成长 从全球来看,目前投入正式运行的卫星导航定位系统有美国的GPS(全球定位系统)系统、俄罗斯的GLONASS(格洛纳斯)、欧洲的GALILEO(伽利略)系统和中国的COMPASS(北斗)系

北斗卫星导航系统定位原理及应用

xxxx导航系统定位原理及其应用 北斗卫星定位系统是由中国建立的区域导航定位系统。该系统由四颗(两颗工作卫星、2颗备用卫星)北斗定位卫星(北斗一号)、地面控制中心为主的地面部份、北斗用户终端三部分组成。北斗定位系统可向用户提供全天候、二十四小时的即时定位服务,授时精度可达数十纳秒(ns)的同步精度,北斗导航系统三维定位精度约几十米,授时精度约100ns。美国的GPS三维定位精度P码目前己由16m提高到6m,C/A码目前己由25-100m提高到12m,授时精度日前约20ns。。 北斗一号导航定位卫星由中国空间技术研究院研究制造。四颗导航定位卫星的发射时间分别为: 2000年10月31日; 2000年12月21日; 2003年5月25日, 2007年4月14日,第三、四颗是备用卫星。2008年北京奥运会期间,它将在交通、场馆安全的定位监控方面,和已有的GPS卫星定位系统一起,发挥?双保险?作用。北斗一号卫星定位系统的英文简称为BD,在ITU(国际电信联合会)登记的无线电频段为L波段(发射)和S波段(接收)。北斗二代卫星定位系统的英文为Compass(即指南针),在ITU登记的无线电频段为L波段。北斗一号系统的基本功能包括: 定位、通信(短消息)和授时。北斗二代系统的功能与GPS相同,即定位与授时。 其工作原理如下: ?北斗一号?卫星定位系出用户到第一颗卫星的距离,以及用户到两颗卫星距离之和,从而知道用户处于一个以第一颗卫星为球心的一个球面,和以两颗卫星为焦点的椭球面之间的交线上。另外中心控制系统从存储在计算机内的数字化地形图查寻到用户高程值,又可知道用户出于某一与地球基准椭球面平行的椭球面上。从而中心控制系统可最终计算出用户所在点的三维坐标,这个坐标

北斗授时介绍

卫星授时介绍 1 概述 1.1 北斗系统介绍 “BD一号”系统是我国自行研制和建立的一种区域卫星导航定位通信系统,又称:“双星定位”系统或“BD一号”系统。主要是利用两颗地球同步卫星来测量地球表面和空中的各种用户的位置,并同时兼有双向报文通信和定时授时的功能。该系统集测量技术、定位技术、数字通信和扩频技术为一体,是一种全天候的覆盖我国及周边国家和地区的区域性卫星导航、定位、通信系统。随着2003年5月25日“BD一号”系统的第3颗卫星成功发射升空,将进一步完善“BD一号”系统工作的稳定性和可靠性。 “BD一号”系统主要由一个地面中心站、两颗地球同步卫星(目前3颗)、若干个专用测轨站和标校站,以及成千上万个各类用户机等部分组成。用户机是“BD一号”卫星导航定位通信系统的应用终端,可以应用于各种不同的载体之中。按应用的载体不同,用户机可以分为:手持(单兵携带)型、车载型、舰载型、机载型和弹载型等;按用途不同又分为指挥型、定位型、授时型、信息接收型和组合功能型等。与GPS、GLONASS卫星导航定位系统相比,具有我国自主知识产权的“BD一号”系统在国防军事领域的部队作战、训练、科研、武器装备等方面,在公安、武警和民用交通运输、地质、科考、探险、地形测绘等领域中将具有更加广泛和深入的应用前景,该系统的建立和应用不仅会对我国国防现代化建设和国民经济建设作出重大的贡献,而且对国民经济的发展也会带来巨大的社会经济效益。 1.2 工作原理概述 “BD一号”系统的工作原理是“三球交会测量原理”,即: 以位置已知的两颗地球同步卫星为两个球心,以它们分别到用户的距离(要完成的测量量)为半径可以作两个球面;以地球的球心为中心,以地球的半径加上用户的高程为半径作出第三个球面,三个球面的交会点排除其镜象点即为用户的位置。 “BD一号”系统的定位工作过程是: 首先由地面中心站向两颗地球同步卫星发送确定格式的询问信号,两颗地球同步卫星将询问信号广播转发给服务区域内的各种用户机。当用户机接收到一颗地球同步卫星转发的信号以后,自动搜索、捕获和稳定跟踪

GPS授时系统

GPS授时系统设计 摘要:使用GPS25一LVS OEM板(接收机)接收卫星信号,通过串口异步通信把数据传送给89C51单片机,单片机通过并口控制LED显示,从而实现GPS准确授时.同时,介绍了GPSOEM板输出的数据形式,并采用NMEA_0183格式中最常用的“$GPGGA”格式输出,由“$G —PGGA”数据输出格式可编写出相关的接收程序. 关键词:GPS授时;0EM板;秒脉冲 0 引言 时间信号的准确与否,直接关系到人们的日常生活、工业生产和社会发展.人们对时间精度的要求也越来越高.天文测时所依赖的是地球自转,而地球自转的不均匀性使得天文方法所得到的时间(世界时)精度只能达到9 10-.因此“原子钟”广 10-,“原子钟”精度可达12 泛运用到精密测量和日常生活、生产领域.GPS接收机授时系统是利用接收机接收卫星上的“原子钟”时间信号,然后把数据传输给单片机进行处理并显示出时间,由此可制作出GPS精密时钟.目前已有专门用于授时的授时型接收机,可以提供ns级的精确时间,但由于其价格昂贵,多数用户难以接受,因此无法普及.本文采用具有定时功能的GPS 0EM板的串口输出的协调世界时进行授时,可提供经济、实用、准确的公众时间,避免了因时钟不准确给生活、生产带来的不便.. 0.1 GPS系统简介

1973年12 月,美国国防部组织陆海空三军联合研制新一代的卫星导航系统:“Navigation Satellite Timing and Ranging/Global Positioning System”,意为“卫星测时测距导航全球定位系统”,简称 GPS。原系美国国防部军事系统中的一个组成部分,现已广泛应用于航海、航天、测量、通信、导航、智能交通等诸多领域。它是新一代精密卫星定位系统,是现代科学技术迅速发展的结晶。 GPS 是一种全球性、全天候的卫星无线电导航系统,可连续、实时地为无限多用户提供。由于 GPS 定位技术具有精度高、速度快、成本低的显著优点,因而己成为目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统。这个系统向全球范围内的用户提供高精度的三维位置和精密时间信息。 0.2 GPS系统的组成 GPS 系统主要由 3 大部分组成,即空间星座部分、地面控制部分和用户设备部分(图 0-1)。 图 0-1 GPS 系统的组成 (1)、空间星座部分

相关主题
文本预览
相关文档 最新文档