当前位置:文档之家› 线性代数(王定江)第4章答案

线性代数(王定江)第4章答案

线性代数(王定江)第4章答案
线性代数(王定江)第4章答案

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数第3章习题解答(rr)

1.已知向量:112[5,1,3,2,4],34[3,7,17,2,8],T T ααα=--=-- 求1223αα+ 解: ∵ 21{[3,7,17,2,8][15,3,9,6,12]}4T T α=----- 1[12,4,8,8,4][3,1,2,2,1]4 T T =-----=- ∴ 1223[10,2,6,4,8][9,3,6,6,3][19,1,0,10,11]T T T αα+=-+-= 2.设 12[2,5,1,3],[10,1,5,10],T T αα== 3123[4,1,1,1],3()2()5()0T ααααααα=--++-+=并且 求 α 解: ∵ 1236325αααα=+- [6,15,3,9][20,2,10,20][20,5,5,5][6,12,18,24], T T T T =+--= ∴ [1,2,3,4].T α= 3.判断下列命题是否正确,为什么? (1)如果当 120m k k k ====L 时, 11220m m k k k ααα+++=L 成立, 则向量组12,,m αααK 线性相关 解:不正确.如:[][]121,2,3,4T T αα==,虽然 12000,αα+=但12,αα线性无关。 (2) 如果存在m 个不全为零的数12,,,,m k k k L 使 11220,m m k k k ααα+++≠L 则向量组12,,,m αααL 线性无关。 解: 不正确. 如[][]11121,2,2,4,1,2,T T k αα====存在k 使 121220,,.αααα+≠但显然线性相关 (3) 如果向量组12,,,m αααL 线性无关,则其中任何一个向量都 不能由其余向量线性表出. 解: 正确。(反证)如果组中有一个向量可由其余向量线性表示,则向量组 12,,,m αααL 线性相关,与题没矛盾。 (4) 如果向量组123,,ααα线性相关,则3α一定可由12,αα线性表示。 解:不正确。例如:[][][]1230,0,0,0,1,0,0,0,1,T T T ααα===向量组123,,ααα线性相关,但3α不能由12,αα线性表示。 (5) 如果向量β可由向量123,,ααα线性表示,即: 112233,k k k βααα=++则表示系数 123,,k k k 不全为零。 解:不正确。例如:[][][]120,0,0,1,0,0,0,1,0,T T T βαα=== []31230,0,1,000T αβααα==++,表示系数全为0。 (6) 若向量12,αα线性相关,12,ββ线性无关,则1212,,,ααββ线性相关.

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数第四版答案

第一章行列式 1利用对角线法则计算下列三阶行列式 (1) 解 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644 (2) 解 acb bac cba bbb aaa ccc 3abc a3b3c3 (3) 解 bc2ca2ab2ac2ba2cb2

(a b)(b c)(c a) (4) 解 x(x y)y yx(x y)(x y)yx y3(x y)3x3 3xy(x y)y33x2y x3y3x3 2(x3y3) 2按自然数从小到大为标准次序求下列各排列的逆序数 (1)1 2 3 4 解逆序数为0 (2)4 1 3 2 解逆序数为441 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 3 2 (1个) 5 2 5 4(2个)

7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项 解含因子a11a23的项的一般形式为 (1)t a11a23a3r a4s 其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是 (1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a42 4计算下列各行列式

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

线性代数练习册第三章答案(本)

第三章 行列式及其应用 §3-1 行列式的定义 一、填空题。 1、行列式a b c d =__ad bc -___;112 2 13141 ---=____-24____. 2、行列式 1 111 1 21 21 2 00 000 a a a a b b c c d d =______0_____. 3、已知行列式1111111 1 11111111 D -= -----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶行列式中含1331a a 且符号为负的项是____ 13223144a a a a -____. 二、选择题。 1、方程01 1 0001x x x =的实根为__C___. (A )0; (B )1; (C )-1; (D )2. 2、若n 阶行列式中零元素的个数大于2n n -,则此行列式的值为__A__. (A )0; (B )1; (C )-1; (D )2. 3、排列396721584的逆序数为__C__. (A )18; (B )19; (C )20; (D )21 4、n 阶行列式001 020 00 D n = 的值为__D ___. (A )!n ; (B )!n -; (C )(1)!n n -; (D )(1)2 (1) !n n n --.

5、行列式312111321111x x x x x --中4 x 的系数为__A____. (A )-1; (B )1; (C )2; (D )3. 三、计算下列行列式 1、12 1 10001- 解:33 312 121 10(1)(1)1 11 001 r +--=-按展开 2、 1010120012301234 解:444321010 101 1200 4(1)120 1230 123 1234101 412024 003 r r +--=按c 展开 3、 11321011 23011 002 -- 解:

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数与概率统计及答案

线性代数部分 第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 5. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 6.设行列式 n a a a a =22 2112 11 , m a a a a =21 2311 13 ,则行列式 23 2221131211--a a a a a a 等于() A. m n - B.)(-n m + C. n m + D.n m - 二、填空题 1. 行列式=0 100111010100111.

2.行列式010...0002... 0......... 00 0 (10) 0 0 n n = -. 3.如果M a a a a a a a a a D ==333231 232221 131211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D . 4.行列式= --+---+---1 1 1 1 111111111111x x x x . 5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为 . 6.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 7.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =. 三、计算题 2.y x y x x y x y y x y x +++; 3.解方程 00 11 01110111 0=x x x x ; 6. 111...1311...1112... 1 ... ...... 1 1 1 ...(1)b b n b ----

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

昆明理工大学 线性代数 第4章 习题册答案

1 习题4.1(线性方程组解的结构) 一、下列齐次线性方程组是否有非零解? 分析:n 阶方阵A ,AX=0有非零解0()A R A n ?=?<;仅有零解0()A R A n ?≠?= (1)1234123412341 23442020372031260 x x x x x x x x x x x x x x x x -+-=?? --+=??++-=??--+=? ; 解:1142111231 7 21 312 6 A ----= ---21 3241 31142005404540 2 16 8 r r r r r r ---=-------21 054054544544004016 8 2 16 8 2 16 8 r r -= ---=-=-≠-------- 仅有零解。 (2)12451234123453020426340 x x x x x x x x x x x x x +--=?? -+-=?? -++-=? . 分析:n 元齐次线性方程组有非零解()R A n ?≤;仅有零解()R A n ?= 解:()35R A n ≤<=,有非零解(即有无穷多解)。 二、求齐次线性方程组12341234123420 363051050 x x x x x x x x x x x x ++-=?? +--=?? ++-=?的一个基础解系。 解:32 21 12 31 412351 21101 2110120103 61300 04000 0100 510 1 5000 4 000 00r r r r r r r r r A --------=--→-→--?? ???? ?? ???? ????????????? ?? ??? 所以原方程组等价于1243 20 0x x x x +-=??=?(24,x x 可取任意实数) 原方程组的通解为1 122 1342 20x k k x k x x k =-+??=??=??=?(12,k k R ∈)

相关主题
文本预览
相关文档 最新文档