当前位置:文档之家› 线性代数习题及解答

线性代数习题及解答

线性代数习题及解答
线性代数习题及解答

线性代数习题

说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||:. ||表示向量:.的长度,:.T表示向量:.的转置, 单位矩阵,A|表示方阵A的行列式.

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

a11a12

a133耳13a123a13

1.设行列式

a21a22

a23=2,则_a31_a32_a33=( )

a31932a33a21 — a31a22 — a32323 —a33

A . -6 B. -3

C. 3

D. 6

2 .设矩阵A,X为同阶方阵,且A可逆,若A (X七)=E,则矩阵X=( )

■1

A. E +A 1

B. E-A

■1

C. E+A

D. E-A 1

3?设矩阵A,B均为可逆方阵,则以下结论正确的是( )

A 1A可逆,且其逆为"< A;

B 1A不可逆

I B丿丿I B丿

r B、% )A-1

C.. 可逆,且其逆为 D .. 可逆,且其逆为

I B丿

I B丿< B J

4. 设:? 1,「2,…,:-k是n维列向量,则1,2,…,:-k线性无关的充分必要条件是

(

A .向量组仆2,…,〉k中任意两个向量线性无关

B .存在一组不全为0的数11,12,…,I k,使得11 1 + 12〉2+…+ l k二0

C .向量组:-1,:- 2,…,〉k中存在一个向量不能由其余向量线性表示

D .向量组:?仆〉2,…,〉k中任意一个向量都不能由其余向量线性表示

5. 已知向量2:-(1,一2,-2,-1)丁,3二日'21 =(1,Y,-3,0)丁,则鳥-■'■=( )

A

.

(0,-2, -1, 1) T B . (-2 , 0, -1, 1) T

C

.

(1 , -1, -2 , o) T D . (2, -6 , -5, -1) T

6 . 实数向量空间V={( x, y, z)|3x+2y

+5z=0}的维数

( )

A . 1

B . 2

E表示

C . 3

D . 4

7 ?设:.是非齐次线性方程组 Ax =b 的解,1是其导出组Ax = 0的解,则以下结论正确的是

B .

+『■是Ax =b 的解

D . :- - 是 Ax =0 的解

、填空题(本大题共10小题,每空2分,共20 分)

请在每小题的空格中填上正确答案,错填、不填均无分。

11.设 det (A )=-1,det (B )=2,且 A ,B 为同阶方阵,则 det ((AB )3)= ____________

1 2 -2

12 .设3阶矩阵A = 4 t 3 ,B 为3阶非零矩阵,且 AB =0,则t= ________________

3 -1

1

13. ________________________________________________________ 设方阵A 满足A k =E ,这里k 为正整数,则矩阵

A 的逆A -1= ______________________________________________________________ .

14 .实向量空间 R n 的维数是 ____________ ?

15 .设A 是m x n 矩阵,r (A )=r,则Ax =0的基础解系中含解向量的个数为 _______________ .

16. ________________________________________________ 非齐次线性方程组 Ax =b 有解的充分必要条件是 .

17. _____________________________________________________________________________________ 设a 是齐次线性

方程组 Ax =0的解,而0是非齐次线性方程组 Ax =b 的解,则A (3a +20) = __________________________________

18 .设方阵A 有一个特征值为 8,_则det (-8E +A ) = ______________ .

19 .设P 为n 阶正交矩阵,x 是n 维单位长的列向量,则||Px ||= ______________ .

2 2 2

20 .二次型 f (N ,X 2,X 3)=人 +5X 2 +6X 3 +4XM-2人乂3 —2X 2X 3 的正惯性指数是 ___________ .

C .

设三阶方阵 A 的特征值分别为

,则A -1的特征值为(

1 2,4, 3

1 1 1 B .—,—,

2 4 3

C .

1 1

3

D ? 2,4,3

设矩阵A =

,则与矩阵A 相似的矩阵是(

-1

1 /

A . -1

2

3

-2

C .

1

1

10?以下关于正定矩阵叙述正确的是(

A ?正定矩阵的乘积一定是正定矩阵

0 1

B . 1 0

2

1

D . -2

1

)

B .正定矩阵的行列式一定小于零

C .正定矩阵的行列式一定大于零

D ?正定矩阵的差一定是正定矩阵

三、计算题(本大题共6小题,每小题9分,共54分)

4 4

11—12

—1 / / 1 21 ?计算行列式

2 4-61

12 4

2

2

22 .设矩阵A =

3

,且矩阵B 满足ABA -1=4A -1+BA -1,求矩阵B .

5

23 ?设向量组 冷=(3,1,2,0),:匕=(0,7,1,3), :w =(-1,2,0,1),為=(6,9,4,3),求其一个极大线性无关组,并将其余向量通过

极大线性无关组表示岀来.

3 3,求矩阵

A 的特征值和特征向量.

-2

25?求下列齐次线性方程组的通解.

-2

线性代数习题二

说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 表示单位矩阵。

A 表示方阵A 的行列式,r(A)

表示矩阵A 的秩。

一、单项选择题(本大题共 10小题,每小题2分,共20分)

在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无 分。

1.设3阶方阵A 的行列式为2,则一

1

A =()

2

1

A.- 1

B.

1

C .-

-1

4 24.设三阶矩阵 A = -2

5

2

-4 -2

26. 求矩阵A =

的秩.

四、 证明题(本大题共 1小题, 6 分)

a

n 27.设三阶矩阵A = a 21

a

12

a

13

a 22 a 23的行列式不等于o ,证明:

'a.

&

'a 13 '

a 21 02 =

a 22

,。3 =

a 23 线性无

『31丿

金2丿

D.1

a

31

狂2

a

33

4 4

3x —2 3x —2 3x —5

B . A+B 式0

D . A-B 0

4.设A ,B 是任意的n 阶方阵,下列命题中正确的是(

A. (A B )2 二 A 2

2AB B 2 B.( A B )(A -B ) = A 2 - B 2

2 2 2

C.( A-E )(A E )=(A E )(A-E ) D . (AB )二 A B

C.2

x -1

2.设 f (X )

2x —2 2x -1

2x —2

,则方程f (X )=0的根的个数为

( A.O B.1 C.2 D.3

3.设A 为n 阶方阵,将 A 的第1 列与第2列交换得到方阵B ,若A 式B ,则必有(

aib 2

5.设 A = a 2b 1 826

玄2匕3 ?b 1

a s

b 2 a 3b 3 j

,其中a i

A.0

-0, h = 0,i =1,2,3,则矩阵A 的秩为(

B.1

6.设6阶方阵A 的秩为4,则A 的伴随矩阵 A.0

A *的秩为( B.2

C.3

D.4 7.设向量 a = (1 , -2 , 3)与萨(2, k , 6) A.- 10 正交,则数k 为() B.-4 C.3

D.10 X 1 X 2 X 3 = 4 8.已知线性方程组 为? ax 2 - X 3 = 3无解,则数a=() I 2x 1 2ax 2 二 4

1 A.

2 1 C .- 2

B.0

D.1 9.设3阶方阵A 的特征多项式为|扎E —A =(人+2)(人+3)2,则A=() A.- 18 B.-6 C.6 D.18 10.若3阶实对称矩阵 A = (a ij )是正定矩阵,则 A 的3个特征值可能为(

) A.- 1, -2, -3

B.- 1, -2, 3

C.- 1, 2, 3

D.1 , 2, 3

二、填空题(本大题共 10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。

A. A -0 C . A

丰 0

D.3

4

3

'a

12.设 A =

广1

0 3、

13. 设 A 是 4X 3 矩阵且 r(A )=2,B= 0

2 0 ,则 r(AB )= ____________ .

<-1 0 3

14. 向量组(1,2),( 2,3)( 3, 4)的秩为 _______________ .

15. 设线性无关的向量组 a 1, a,…,a 可由向量组 亂 邑 …,伍线性表示,则r 与s 的关系为

丄捲::;X 2 X 3 = 0

16. 设方程组 ■ X 1 X 2 X 3 = 0有非零解,且数.?;“ :, 0,则’= _____________ .

x 1 X 2 /. X 3 = 0

17.设 4 元线性方程组 A x 二b 的三个解 a ,%2,?3,已知宀=(1,2,3,4)丁,>2 叱3 =(3,5,7,9) T , r( A ) =3.则 方程组的通解是 ____________ .

2

18.设3阶方阵A 的秩为2,且A +5 A= 0,则A 的全部特征值为 _________________

-2 1 1

■1

19.设矩阵A =

0 a 0 有一个特征值九=2,对应的特征向量为 x =

2 则数a= J

1 3

丿

<2

20. 设实二次型f (X 1, X 2,X 3)=X

T

A X ,已知A 的特征值为-1,1,2,则该二次型的规范形为 _________________ .

三、计算题(本大题共 6小题,每小题9分,共54分)

21. 设矩阵 A = 0,2 2,3 3), B = (:, 2,3),其中:',■ , 2, 3 均为 3 维列 向量,且A =18,B 二 2求

1

1 -1、

广

1

-r

22.解矩阵方程

0 2 2 X + 1 0 = 1 1

<1 _1 0> <4 3」

<2 J

23. 设向量组 a = ( 1,1,1,3) T ,02= (-1,-3,5,1) T

,?3= ( 3,2,- 1,p+2) T ,a = (3,2,-1,p+2) T 问 P 为

何值时,该向量组线性相关?并在此时求岀它的秩和一个极大无关组

2捲’x 2 - x 3 = 1

24. 设3元线性方程组」— X ? +X 3 = 2

,

i4x<| +5x 2 —5x 3 = _1

(1) 确定当入取何值时,方程组有惟一解、无解、有无穷多解?

(2) 当方程组有无穷多解时,求岀该方程组的通解(要求用其一个特解和导岀组的基础解系表示)

r

1 2

25. 已知2阶方阵A 的特征值为> =1及'2

,方阵B = A .3 0 11.设行列式D = 2 2 5 3 2 ,其第3行各元素的代数余子式之和为

-2

-b

b / 则 A B =

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数复习题及答案

《 线性代数复习提纲及复习题 》 理解或掌握如下内容: 第一章 n 阶行列式 .行列式的定义,排列的逆系数,行列式性质,代数余子式, 行列式的计算,三角化法及降阶法,克莱姆法则。 第二章 矩阵及其运算 矩阵的线性运算,初等变换与初等矩阵的定义,方阵的逆矩阵定义及性质 方阵的逆矩阵存在的充要条件,用初等变换求逆矩阵,矩阵方程的解法,矩阵的秩的定义及求法;齐次线性方程组只有零解、有非零解的充要条件,;非齐次线性方程组有解的充要条件,解的判定。 第三章 线性方程组 n维向量的线性运算,向量组线性相关性的定义及证明,向量空间,向量组的极大线性无关组、秩; 齐次线性方程组的基础解系,解的结构,方程组求解;非齐次线性方程组解的结构,用初等变换解方程组,增广矩阵含有字母元素的方程组的求解。 复习题: 一、填空 (1)五阶行列式的项5441352213a a a a a 前的符号为 负 ; (2)设)3,3,2(2),3,3,1(-=+-=-βαβα,则α= (1,0,0) ; (3)设向量组γβα,,线性无关,则向量组γβαβα2,,+-线性 无关 ; (4)设* A 为四阶方阵A 的伴随矩阵,且*A =8,则12)(2-A = 4 ; (5)线性方程组054321=++++x x x x x 的解空间的维数是 4 ; (6)设???? ? ??=k k A 4702031,且0=T A 则k = 0或6 ; (7)n 元齐次线性方程组0=Ax 的系数矩阵A 的秩r(A)秩是r,则其解空间的维数是 n-r ; (8)的解的情况是:方程组b Ax b A R A R 2),,()3(== 有解 ; (9)方阵A 的行向量组线性无关是A 可逆的 充要 条件;

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

8线性代数练习题(带解题过程)

8线性代数练习题(带解题过程)

0 线性代数试题 一 填空题 ◆1. 设 A 为3阶方阵且 2 =A ,则 = -*-A A 231 ; 【分析】只要与* A 有关的题,首先要想到公式, E A A A AA ==**,从中推 你要的结论。这里1 1* 2--==A A A A 代入 A A A A A 1)1(231311-= -=-=---*- 注意: 为什么是3 )1(- ◆2. 设1 33322211 ,,α+α=βα+α=βα+α=β, 如 3 21,,ααα线性相关,则3 21,,βββ线性 ______(相关) 如 3 21,,ααα线性无关,则 3 21,,βββ线性 ______(无关) 【分析】对于此类题,最根本的方法是把一个向量组由另一个向量表示的问题转化为矩阵乘

1 法的关系,然后用矩阵的秩加以判明。 ?? ?? ? ?????=110011101],,[],,[321321αααβββ,记此为AK B = 这里)()()(A r AK r B r ==, 切不可两边取行列式!!因为矩阵不一定 是方阵!! ◆3. 设非齐次线性方程b x A m =?4 ,2)(=A r ,3 2 1 ,,ηη η是 它的三个解,且 T T T )5,4,3,2(,)4,3,2,1(,)7,6,4,3(133221=+=+=+ηηηηηη 求该方程组的通解。(答案: T T T k k x )2,2,1,1()1,1,1,1()6,5,3,2(2 1 21++= ,形式不 唯一) 【分析】对于此类题,首先要知道齐次方程组基础解系中向量的个数(也是解空间的维数) 是多少,通解是如何构造的。其次要知 道解得性质(齐次线性方程组的任意两解的线性

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

相关主题
文本预览
相关文档 最新文档