当前位置:文档之家› 东北输油管道林源首站原油工艺系统存在问题及对策

东北输油管道林源首站原油工艺系统存在问题及对策

东北输油管道林源首站原油工艺系统存在问题及对策
东北输油管道林源首站原油工艺系统存在问题及对策

编号:AQ-Lw-03592

( 安全论文)

单位:_____________________

审批:_____________________

日期:_____________________

WORD文档/ A4打印/ 可编辑

东北输油管道林源首站原油工艺系统存在问题及对策Problems and Countermeasures of crude oil process system in Linyuan initial station of

Northeast Oil Pipeline

东北输油管道林源首站原油工艺系

统存在问题及对策

备注:加强安全教育培训,是确保企业生产安全的重要举措,也是培育安全生产文化之路。安全事故的发生,

除了员工安全意识淡薄是其根源外,还有一个重要的原因是员工的自觉安全行为规范缺失、自我防范能力不强。

摘要本文对东北输油管道林源首站原油工艺系统,实施安全技术改造的重要意义进行了讨论,对原油工艺系统存在的主要安全隐患进行了分析,对实施安全技术改造的基本目标、原则、基本思路,进行了分析与讨论,提出了改造过程中需要注意的事项,同时提出对原油工艺系统的配套支持系统应进行一并改造的建议,对工艺设备及配套设备的选型提出了基本技术要求,该文对较为彻底解决林源首站存在的安全问题和技术落后问题,有较强的指导意义。

主题词首站原油工艺系统问题对策

1概述

林源站是东北输油管道上的首站,担负着储与运的双重任务。有30万方储油库一座,有大型输油机组9台套,有大型电动阀门与

手动阀门50多台,还有锅炉、变电所、消防系统、给排水系统、清蜡发球系统等生产设施。负责大庆油田原油的总外输任务。战略地位十分重要。但是由于始建于70年,到目前已连续运行30多年。工艺系统上的设备老化严重,技术落后,工艺流程设计复杂,隐患逐年增多,严重威胁东北输油管道的安全运行,再加上当时科学技术水平的限制,无论是工艺设计,还是设备选型,都存在着严重的不合理性。目前在这种情况下已难以维持正常输油生产。只有通过大规模彻底的进行安全技术改造,才能解决存在的诸多隐患和严重威胁安全生产的问题。本文对此进行研究和讨论。

2林源站原油工艺系统现状及存在的问题

林源站有30万方油库一座,其中:5万方浮顶油罐4座,2万方浮顶油罐5座,310KW给油泵机组5台套,2500KW输油机组6台套,有电动阀门21台套,手动阀门22台,有气动阀门13台,还有其他各类小型阀门数十台。上述设备与管网构成了林源站原油工艺系统。由于连续运行30多年,曾出现多次重大安全事故和威胁安全运行的诸多安全技术问题,主要有以下几方面。

①、5台310KW的给油泵机组,均是70年代生产的20SH-13型铸铁泵,其进出口阀门10台也均为铸铁阀门。从而使给油系统的承压能力不到1.0Mpa。林源曾因铸铁阀门破裂造成多人伤亡的重大安全事故。同时给油泵出口没有止回阀,给油泵进行小型检修时,只能全线停输。若继续使用后果不堪设想。《输油管道工程设计规范》(GB50253-94)中明确规定:输油管道不得使用铸铁阀门。因此,该问题是亟待解决的重大安全隐患。另外,因当时考虑战备需要,给油泵机组的安装均是半地下结构,由于通风不畅,夏季厂房内温度偏高,曾多次造成给油泵电机烧毁事故,且室内噪音超标准,严重影响员工的身体健康。

②、6台输油泵机组型号、性能技术参数不统一,匹配不合理。

2、3、5#机组是70年代生产的400KD250*2型中开式多级离心泵,配套电机是2500KW的非节能型产品,输水泵效仅达68%,浪费极其严重。1、4、6#输油机组是97年引进的德国梯森泵机组,综合性能较先进,但与2、3、5#机组匹配运行,没有达到预期效果,节流严重,且没有考虑大庆油田产量下降的影响,建立输油生产输量

台阶,工艺系统运行极不经济。

③、工艺阀门种类繁多,且存在严重缺陷。阀门种类繁多造成不利于维修,配件不利于互换。目前统计,有电动阀门、电液联动阀门、液压球阀、气动阀门、手动阀门等。都是70年代生产的楔式闸阀和老式板阀或老式球阀,大部分阀门存在严重缺陷。电动阀门均为老式电动楔式闸阀,其行程控制机构及转矩控制机构失灵或不灵,且没有限位和超扭矩保护,已发生多次顶坏阀门支架事故,且开度指示器不灵,无法确定阀门开度,给员工的操作带来极大不便。电液联动阀门,由于产品技术落后,液压系统渗漏相当严重,由于是属淘汰产品,无法修复,阀杆密封无排气孔,密封脂无法注入,部分阀门无法拆卸液压活塞,密封圈无法更换。个别阀门中开面渗漏严重,因系统不能停输,只好将阀门的中开面焊死,液动阀门的上下限位失灵,操作上极不安全。气动与手动阀门问题更多,已到了不解决将面临事故临界状态的程度。阀组间重复设置的阀门和迂回管段过多,废弃的阀门因不能停输无法拆除,从而使工艺流程复杂化,又增加了事故隐患。

(完整版)输油管道工程设计规范2003版

1总则 1. 0. 1为在输油管道工程设计中贯彻执行国家现行的有关方针政策,保证设计质量,提高设计水平,以使工程达到技术先进、经济合理、安全可靠及运行、管理、维护方便,制定本规范。 1.0.2本规范适用于陆上新建、扩建或改建的输送原油、成品油、液态液化石油气管道工程的设计。 1. 0. 3输油管道工程设计应在管道建设、营运经验和吸取国内外先进科技成果的基础上合理选择设计参数,优化设计。 1. 0. 4输油管道工程设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 2术语 2. 0. 1输油管道工程oil pipeline project 用管道输送原油、成品油及液态液化石油气的建设工程。一 般包括输油管线、输油站及辅助设施等。 2.0.2管道系统pipeline system 各类型输油站、管线及输送烃类液体有关设施的统称。 2.0.3输油站oil transport station 输油管道工程中各类工艺站场的统称。 2.0. 4首站initial station 输油管道的起点站。 2. 0. 5末站terminal 输油管道的终点站。 2. 4. 6中间站intermediate station 在输油首站、末站之间设有各类站场的统称。 2. 0. 7中间热泵站intermediate heating and pumping station 在输油首站、末站之间设有加热、加压设施的输油站。 2. 0. 8中间泵站intermediate pumping station

在输油首站、末站之间只设有加压设施的输油站。 2.0.9中间加热站intermediate heating station 在输油首站、末站之间只设有加热设施的输油站。 2. 0. 10输人站input station 向管道输入油品的站。 2. 0. 11分输站off-take station 在输油管道沿线,为分输油品至用户而设置的站。 2. 0. 12减压站pressure reducing station 由于位差形成的管内压力大于管道设计压力或由于动压过大,超过下一站的允许进口压力而设置减压装置的站。 2. 0.13弹性弯曲elastic bending 管道在外力或自重作用下产生的弹性限度范围内的弯曲变形。 2.0.14顺序输送hatch transportation 多种油品用同一管道依次输送的方式。 2. 0.15翻越点turnatrer point 输油管道线路上可能导致后面管段内不满流(slack f low)的某高点。 2.0.16一站控制系统,ration control system 对全站工艺设备及辅助设施实行自动控制的系统。 2. 0. 17管件pipe fittings 弯头、弯管、三通、异径接头和管封头等管道上各种异形连接件的统称。 2. 0. 18管道附件pipe accessories 管件、法兰、阀门及其组合件,绝缘法兰、绝缘接头、清管器收发筒等管道专用部件的统称。 2. 0. 19最大许用操作压力maximum allowable operating pressure(MADP) 管道内的油品处于稳态(非瞬态)时的最大允许操作压力。其值应等于站间的位差、摩阻损失以及所需进站剩余压力之和。 2. 0. 20 U管道设计内压力pipeline internal design pressure 在相应的设计温度下,管道或管段的设计内压力不应小于管道在操作过程中管内流体可能产生的最大内压力。 2. 0. 21线路截断阀line block valve

(工艺流程)长距离输送管道场站典型输油工艺流程

长距离输送管道场站典型输油工艺流程 一、工艺流程的设计原则及要求 (1)工艺流程设计应符合设计任务书及批准的有关文件的要求,并应符合现行国家及行业有关标准、规范及规程的要求。 (2)工艺流程应能实现管道必需的各种输油操作,并且应体现可靠的先进技术,应采用新工艺、新设备、新材料,达到方便操作、节约能源、保障安全的目的。 (3)工艺流程设计力求简洁、适用。尽可能减少阀门及管件的设置,管线连接尽可能短捷。 (4)工艺流程的设计除满足正常输油的功能要求外,还应满足操作、维修、投产、试运的要求。当工程项目有分期建设需要时,还应能够适应工程分期建设的衔接要求。 (5)工艺流程图中,工艺区域编号及设备代号应符合《油气管道监控与数据采集系统通用技术规范》Q/SY 201的规定;所有的机泵、阀门等设备均应有独立的编号,重要阀门应有固定的编号。 二、各类站场的典型工艺流程 (一)输油首站 1.输油首站典型工艺流程说明 (1)对于需要加热输送的输油首站,加热设施应设在给油泵与外输泵之间,加热设施可采用直接加热炉,也可采用间接加热系统,由于加热方式的不同,工艺流程也不相同。为节约能源,加热系统应设冷热油掺合流程。 (2)对于加热输送的管道,根据我国输送油品的性质和管道在投产运行初期低输量的特点,在投产前试运期间,需要通过反输热水建立稳定的管道沿线温度场,为确保管道输油安全,必要时还应设置反输流程。 (3)为方便管道管理,必要时可设置计量流程,流量计应设在给油泵与外输泵之间,加热系统之后。流量计的标定可采用固定方式,也可采用移动方式。 (4)与油罐连接的进出油管线,可采用单管,在油罐区外设罐区阀组,油罐的操作阀门集中设置,这种安装方式,阀门在罐区外操作,阀门的动力电缆和

2011版输油管道设计与管理习题

《输油管道设计与管理》习题 一、等温输油管道工艺计算习题 1、某φ355.6×6的长输管道按“密闭输油”方式输送汽油,输量为310万吨/年,年工作日按350天计算。管壁粗糙度e =0.1mm ,计算温度为15℃。油品的物性参数:υ15=0.82×10-6 m 2/s ,ρ20=746.2 kg/m 3。密度按以下公式换算: ρt =ρ20-ξ(t -20) kg/m 3 ξ=1.825-0.00l315ρ20 kg/m 3℃ 试做: (1)判断管内流态. (2)选择《输油管道工程设计规范》中相应的公式计算水力摩阻系数,如果有一个以上的计算公式,需比较计算结果的相对差值。 2、某φ323.9×6的等温输油管道,全线设有两座泵站,管道全长150km ,管线纵断面数据见下表,计算该管道输量可达多少? 己知:全线为水力光滑区,站内阻力忽略不计,翻越点或终点的动水压力按20m 油柱计算。 油品计算粘度6 6.410ν-=?m 2/s 首站进站压力201=S H 米油柱 首站和中间站两台同型号的离心泵并联工作,每台泵的特性方程为: 1.755902165H Q =- 米 (Q :m 3/s ,H :m ) 二、加热输送管道工艺计算习题 某长距离输油管道长280km ,采用φ273.1×6钢管,管道中心埋深1.4m ,沿线全年最低月平均 地温2℃,最低月平均气温-10℃。管壁粗糙度e =0.1mm 。土壤导热系数0.96W/m ℃,防腐层导热系数0.15 W/m ℃,聚氨脂泡沫导热系数0.05 W/m ℃,防水层导热系数0.17 W/m ℃。 1、计算管道埋地保温与不保温时的总传热系数【埋地不保温管道防腐绝缘层厚度3mm ,保温管道的结构:钢管外为环氧粉末防腐层(由于厚度很小,热阻可忽略不计),防腐层外是聚氨酯泡沫塑料保温层,保温层外是防水层。40mm 厚的保温层,3mm 厚的防水层,忽略管内壁对流换热热阻及钢管热阻】。 2、计算架空保温管道的总传热系数(冬季计算风速5m/s ,管外壁至大气的幅射放热系数可取为αar =3.5W/m 2℃)。 3、若输量为200万吨/年,输送ρ20为870kg/m 3的原油,设计出站油温60℃、进站温油35℃,原油品比热2.1kJ/kg ℃,粘温方程 υ=37.338×10 -6e -0.041t m 2/s ,计算上述管道埋地保温时所需的

油气储运中输油管道防腐工艺的发展与应用

油气储运中输油管道防腐工艺的发展与应用 发表时间:2019-06-27T16:02:00.437Z 来源:《防护工程》2019年第7期作者:王劲寒 [导读] 采用一些防腐措施可以有效地防止管道被外力破坏产生的腐蚀穿孔发生泄露的现象,提升管道的使用寿命,提升经济效益。 沈阳奥思特安全技术服务集团有限公司辽宁沈阳 110179 摘要:油气管道对于运输油气有着十分重大的意义。将石油运往各大工业发展区或者其他的需求地,可以促进当地经济社会的不断发展。但是,在运输过程中就容易出现管道被腐蚀的问题。管道被腐蚀,油气泄露,环境污染是一回事,石油资源的浪费又是另一回事。关键词:油气运输;输油管道防腐工艺;应用与发展 引言 随着现代国民经济的不断发展,人们对资源的使用率也在飞速的提升,石油能源就是其中之一。随着石油的需求量不断增加,使得输油管道越来越长。在进行石油储运的过程当中,输油管道的防腐处理一直是人们所关注的一项重要项目,因为防腐处理技术会直接关系到管道的使用,会对管道的使用寿命产生严重的影响。采用一些防腐措施可以有效地防止管道被外力破坏产生的腐蚀穿孔发生泄露的现象,提升管道的使用寿命,提升经济效益。 1 针对输油管道的腐蚀机制进行分析 管道防腐指的是为减缓或防止管道在内外介质的化学、电化学作用下或由微生物的代谢活动而被侵蚀和变质的措施。输送油、气的管道大多处于复杂的土壤环境中,所输送的介质也多有腐蚀性,因而管道内壁和外壁都可能遭到腐蚀。一旦管道被腐蚀穿孔,即造成油、气漏失,不仅使运输中断,而且会污染环境,甚至可能引起火灾,造成危害。根据相关的资料表明,由于管道腐蚀所造成的损失高达上亿美元。因此,管道防腐对管道有着极为重要的作用。 目前,国内的输油管道普遍是以埋地的手段将钢管埋在土里,储运过程当中会有一些腐蚀性较强的介质以及含有水以及气体元素侵蚀到管道里,而且伴随着高温高压等情况,导致金属在土壤中的腐蚀情况特别严重,会导致管道出现外部破坏穿孔的情况,使管道的油料泄露,对周围环境造成严重的破坏。国内的输油管道普遍埋在土里,埋在地下的管道会严重受到环境因素的影响,具体的影响因素有土壤腐蚀、细菌腐蚀以及杂散电流腐蚀。因为土壤是存在着一定的固液气三相的毛线管多孔性胶物质,其主要被空气以及水所填满,而且水中还具有一定的盐成分,导致土壤根据着一些物质产生一定的离子导电性。并且土壤的物理化学成分性质不均匀,金属材质的电化学不均匀性导致埋地管道容易出现电化学腐蚀。 2 油气储运中输油管道防腐工艺的发展与应用要点 2.1 加强安全管理 油气泄漏将会造成严重的后果,所以做好石油管道的防腐工作是十分必要的。关于石油运输管道防腐工作的开展,需要有专门的人员进行监管,对于管道的安装各个过程进行监管。从材料的购置,材料选择以及管道的安装等各方面都进行监管。一旦出现问题,要及时请教专家,不断改善,否则将造成不可挽回的后果。材料选择方面要选择质量较高的材料;安装安置等方面,要采用最合理的结构,节省能源,达到安全经济环保的目标与要求,同时,建设完毕之后要尽量恢复周围的植被。管道安装本身就会给当地的植被产生不利的影响,如果再不进行相关的植草种草的活动,那么当地的生态环境将会继续恶化,一直到不可挽回的地步。 2.2 做好管道的防腐工作 油气运输过程中会对运输管道的墙壁产生腐蚀,一旦腐蚀,则会造成油气运输管道的墙壁出现裂缝,油气泄漏。一旦出现泄露问题,就会污染环境,对周围的环境造成十分恶劣的影响。做好防护工作是十分必要的,首先要选用防腐材料,结合相应的技术,不断提升管道防腐能力,同时也有对泄漏的石油进行相关的处理,要及时处理遭到石油污染的土壤,避免进一步扩散,影响到更大范围内的土壤。还要严厉打击人为偷油行为,有些人为了获取石油油气资源,恶意破坏石油运输管道,所以要加强监管。国家政府要颁布相关的政策,严厉打击这种违法犯罪行为。总体来说,要加强对石油管道防腐工作的监管力度,加强对石油油气运输运输管道的保护,对石油资源的保护。同时也要积极宣传法制意识,杜绝违法犯罪行为,使其不可有侥幸心理。 2.3 强对防腐工程的质量检验 (1)对防腐工程的过程进行检验 为了能够提高防腐工程的质量,需要对防腐工程的施工过程进行检验,使其能够避免影响管道的寿命。首先,需要成立专业的检验小组,并将责任落实到个人,使其在发生事故时,能及时找到相关的责任人。然后,定期的安排小组成员全程对施工过程进行监督,并对在施工过程中存在的问题,及时地进行制止和处理。最后,在每日工作结束后,要召开相关会议,将在施工中出现的问题、出现的现象进行沟通,从根本上提高防腐工程的质量; (2)对重点部位进行重点检验 保证防腐工程的质量,不仅要对整个施工过程进行检验,还需要对重点的部位进行重点的检验。第一,根据防腐工程的开展情况,对输油管道的重要施工部位进行检验,比如:输油管道的弯道处;第二,对输油管道中重点的位置进行检验,防止安全事故的发生。对输油管道的重点部位进行检验,不仅能够保证质量达到规定的标准,还能有针对性的进行检验,从而保证了整个防腐工程的质量; (3)对防腐施工质量进行评价 为了提高防腐工程的有效性,需要建立起完善地防腐施工质量评价制度,在制度中的内容有检验的内容、检验的方法、检验的责任人、检验的时间、检验的部位、检验的结果、二次检验的结果等等。这样不仅能够保证工程的实际性,还能对防腐工作的进行提供最根本的保障。 2.4 管道内防腐技术 管道的防腐层不仅有外防腐层还有内防腐层,内防腐层主要是将一些防腐物质涂抹到管道的内壁中,相比外防腐层,不会收到土壤的侵蚀危害,以下对内防腐层进行概括分析。 环氧粉末涂层是一种热固体粉末,主要的特点为使用温度较广,且整体的化学稳定性较好,耐酸碱性物质性能较强,使用性能较为优

《输油管道设计与管理》要点

《输油管道设计与管理》 一、名词解释(本大题╳╳分,每小题╳╳分) 1可行性研究:是一种分析、评价各种建设方案和生产经营决策的一种科学方法。 2等温输送:管道输送原油过程中,如果不人为地向原油增加热量,提高原油的温度,而是使原油输送过程中基本保持接近管道周围土壤的温度,这种输送方式称为等温输送。 4、线路纵断面图:在直角坐标上表示管道长度与沿线高程变化的图形称为线路纵断面图。 5、管路工作特性:是指管长、管内径和粘度等一定时,管路能量损失H与流量Q之间的关系。 6、泵站工作特性:是指在转速一定的情况下,泵站提供的扬程H和排量Q之间的相互关系。 7、工作点:管路特性曲线与泵站特性曲线的交点,称为工作点。 8、水力坡降:管道单位长度上的水力摩阻损失,叫做水力坡降。 10、翻越点:在地形起伏变化较大的管道线路上,从线路上某一凸起高点,管道中的原油如果能按设计量自流到达管道的终点,这个凸起高点就是管道的翻越点。 11、计算长度:从管道起点到翻越点的线路长度叫做计算长度。 12、总传热系数K:指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量。 13、析蜡点:蜡晶开始析出的温度,称为析蜡点。 14、反常点:牛顿流体转变为非牛顿流体的温度,称为反常点。 15、结蜡:是指在管道内壁上逐渐沉积了某一厚度的石蜡、胶质、凝油、砂和其它机械杂质的混合物。 19、顺序输送:在一条管道内,按照一定批量和次序,连续地输送不同种类油品的输送方法。 20、压力越站:指油流不经过输油泵流程。 21、热力越站:指油流不经过加热炉的流程。 25.混油长度:混油段所占管道的长度。 26.起始接触面:前后两种(或A、B)油品开始接触且垂直于管轴的平面。 27、动水压力:油流沿管道流动过程中各点的剩余压力。 二、填空题 1、由于在层流状态时,两种油品在管道内交替所形成的混油量比紊流时大得多,因而顺序输送管道运行时,一般应控制在紊流状态下运行。

输油管道设计与管理

输油管道设计与管理 一、名词解释(本大题╳╳分,每小题╳╳分) 1可行性研究:是一种分析、评价各种建设方案和生产经营决策的一种科学方法。2等温输送:管道输送原油过程中,如果不人为地向原油增加热量,提高原油的温度,而是使原油输送过程中基本保持接近管道周围土壤的温度,这种输送方式称为等温输送。 4、线路纵断面图:在直角坐标上表示管道长度与沿线高程变化的图形称为线路纵断面图。 5、管路工作特性:是指管长、管内径和粘度等一定时,管路能量损失H与流量Q 之间的关系。 6、泵站工作特性:是指在转速一定的情况下,泵站提供的扬程H和排量Q之间的相互关系。 7、工作点:管路特性曲线与泵站特性曲线的交点,称为工作点。 8、水力坡降:管道单位长度上的水力摩阻损失,叫做水力坡降。 10、翻越点:在地形起伏变化较大的管道线路上,从线路上某一凸起高点,管道中的原油如果能按设计量自流到达管道的终点,这个凸起高点就是管道的翻越点。 11、计算长度:从管道起点到翻越点的线路长度叫做计算长度。 12、总传热系数K:指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量。 13、析蜡点:蜡晶开始析出的温度,称为析蜡点。 14、反常点:牛顿流体转变为非牛顿流体的温度,称为反常点。 15、结蜡:是指在管道内壁上逐渐沉积了某一厚度的石蜡、胶质、凝油、砂和其它机械杂质的混合物。 19、顺序输送:在一条管道内,按照一定批量和次序,连续地输送不同种类油品的输送方法。

20、压力越站:指油流不经过输油泵流程。 21、热力越站:指油流不经过加热炉的流程。 25.混油长度:混油段所占管道的长度。 26.起始接触面:前后两种(或A、B)油品开始接触且垂直于管轴的平面。 27、动水压力:油流沿管道流动过程中各点的剩余压力。 二、填空题 1、由于在层流状态时,两种油品在管道内交替所形成的混油量比紊流时大得多,因而顺序输送管道运行时,一般应控制在紊流状态下运行。 2、采用顺序输送时,在层流流态下,管道截面上流速分布的不均匀时造成混油的主要原因。 3、石油运输包括水运、公路、铁路、管道等几种方式。 4、输油管道由输油站和线路两部分组成。 5、原油管道勘察工作一般按踏堪、初步勘察与详细勘察三个阶段进行。 6、在纵断面图上,其横坐标表示管道的实际长度,纵坐标为线路的海拔高程。 9、管路特性曲线反映了当管长L,管内径D和粘度μ一定,Q 与Hz 的关系。 10、若管路的管径D增加,特性曲线变得较为平缓,并且下移;管长、粘度增加,特性曲线变陡,并且上升。 11、线路上有没有翻越点,除了与地形起伏有关,还取决于水力坡降的大小,水力坡降愈小,愈易出现翻越点。 12、泵站总的特性曲线都是站内各泵的特性曲线叠加起来的,方法是:并联时,把相同扬程下的流量相加;串联时,把相同流量下的扬程相加。 14、加热站加热原油所用设备有加热炉和换热器两类。 15、泵站-管道系统的工作点是指在压力供需平衡条件下,管道流量与泵站进、出站压力等参数之间的关系。 16、有多个泵站的长输管道,中间站C停运后的工况变化具体情况是:在C以前各站的进出站压力均上升,在C以后各站的进出站压力均下降,且距C站愈远,变化幅度愈小。

典型输油站场工艺流程教材(DOC 43页)

第三章输油站场及阀室 第一节典型输油站场工艺流程 一、工艺流程的设计原则及要求 (1)工艺流程设计应符合设计任务书及批准的有关文件的要求,并应符合现行国家及行业有关标准、规范及规程的要求。 (2)工艺流程应能实现管道必需的各种输油操作,并且应体现可靠的先进技术,应采用新工艺、新设备、新材料,达到方便操作、节约能源、保障安全的目的。 (3)工艺流程设计力求简洁、适用。尽可能减少阀门及管件的设置,管线连接尽可能短捷。 (4)工艺流程的设计除满足正常输油的功能要求外,还应满足操作、维修、投产、试运的要求。当工程项目有分期建设需要时,还应能够适应工程分期建设的衔接要求。 (5)工艺流程图中,工艺区域编号及设备代号应符合《油气管道监控与数据采集系统通用技术规范》Q/SY 201的规定;所有的机泵、阀门等设备均应有独立的编号,重要阀门应有固定的编号。 二、各类站场的典型工艺流程 (一)输油首站 1.输油首站典型工艺流程说明 (1)对于需要加热输送的输油首站,加热设施应设在给油泵与外输泵之间,加热设施可采用直接加热炉,也可采用间接加热系统,由于加热方式的不同,工艺流程也不相同。为节约能源,加热系统应设冷热油掺合流程。 (2)对于加热输送的管道,根据我国输送油品的性质和管道在投产运行初期低输量的特点,在投产前试运期间,需要通过反输热水建立稳定的管道沿线温度场,为确保管道输油安全,必要时还应设置反输流程。 (3)为方便管道管理,必要时可设置计量流程,流量计应设在给油泵与外输泵之间,加热系统之后。流量计的标定可采用固定方式,也可采用移动方式。 (4)与油罐连接的进出油管线,可采用单管,在油罐区外设罐区阀组,油罐的操作阀门集中设置,这种安装方式,阀门在罐区外操作,阀门的动力电缆和控制电缆不进罐区,比

某热油管道工艺设计.

重庆科技学院 《管道输送工艺》 课程设计报告 学院:石油与天然气工程学院专业班级:油气储运专业08 学生姓名:马达学号: 2008254745 设计地点(单位)重庆科技学院K栋 设计题目:某热油管道工艺设计 完成日期: 2010 年 12 月 30 日 指导教师评语: ___________________________________________________________________________ ___________________________________________________________________________ ______________ 成绩(五级记分制): 指导教师(签字):

摘要 我国原油大部分都属于高粘高凝固点原油,在原油管道输送过程中一般都采取加热输送,目的是为了使管道中的原油具有流动性同时减少原油输送过程中的摩阻损失。热油管道输送工艺中同样要求满足供需压力平衡,在起伏路段设计管道输油关键因素是泵机组的选择和布置,要在满足热油管道输送压力平衡的条件下尽量使管道输送能力增大。 热油管道工艺设计中要根据具体输送原油的性质、年输量等参数确定加热参数,结合生产实际,由经济流速确定经济管径,设计压力确定所使用管材,加热参数确定热站数。然后计算管道水力情况,按照“热泵合一”原则布置泵站位置,选取泵站型号,并校合各泵进出站压力和沿线的压力分布是否满足要求,并按照实际情况调整泵机组组成。最后计算最小输量,确保热油管道运行过程中流量满足最小流量要求,避免管道低输量运行。 关键词:原油加热输送泵站压力平衡输量

原油输送管道工艺计算及校核计算方法的研究

原油输送管道工艺计算及校核计算方法的研究 【摘要】本文介绍了原油输送管道在设计过程中工艺计算的具体方法,以及校核计算的具体步骤。 【关键词】原油管道工艺计算校核计算 柴塘管线工程全长437km,年设计最大输量为600万吨,最小输量为354万吨。 管线沿程地形起伏较大,最大高差为422m,经校核全线无翻越点;在较大输量时可热力越站,较小输量时可压力越站。 1 最优管径的选择 在设计输量下,若选用较大的管径,可以降低输送时的压头损失,减少泵站数,从而减少泵站的建设费用,降低了输油的动力消耗,但同时也增加了管路的建设费用[1]。 本设计中根据国内热油输送管道的实际经验,热油管道的经济流速在1.5-2.0m/s范围内,在此基础上选择1.8m/s的流速进行初步的管径计算,然后对附近管径系列进行计算,分别算出不同系列的费用现值,根据费用现值的大小选择出最优管径。最终选定了外径φ457,壁厚6.4mm的管径。 2 工艺计算说明 2.1 概述 对于易凝、高粘、高含蜡油品的管道输送,如果直接在环境温度下输送,则油品粘度大,阻力大,管道沿途摩阻损失大,导致了管道压降大,动力费用高,运行不经济,且在冬季极易凝管,发生事故。所以为了安全输送,在油品进入管道前必须采用降凝降粘措施。目前,国内外很多采用加入降凝剂或给油品加热的方法,使油品的粘度降低。 本设计采用加热的方法,提高油品温度以降低其粘度,减少摩阻损失,降低管输压力,使输油总能耗小于不加热输送,并使管内最低油温维持在凝点以上,确保安全输送。 2.2 确定加热站及泵站2.2.1?热力计算 埋地不保温管道的散热传递过程由三部分组成的,即油流至管壁的放热,沥青防腐层的热传导和管外壁至周围土壤的传热,由于本设计中所输介质的要求不高,而且管径和输量较大,油流到管壁的温降比较小,流态为紊流,故油流到管

输油管道的加工工艺流程及焊接工艺设计

专业课程设计(论文) 题目: 输油管道得加工工艺流程及焊接工艺设计学生姓名: 院(系):材料科学与工程学院 专业班级:焊接 指导教师: 完成时间: 摘要 输油管线主要由输油站与管线两大部分组成、管道得起点就是一个输油站通称首站,油品或原油在首战被收集后,经过计量后,在由首站提供动力向下游管线输送。首站一般布设有储油罐,输油泵与油品计量装置,若所属油品因粘度高需要加热,则亦设有加热装置,输油泵提供动力使得油品可以沿管线向终点或下一级输油站运动,一般情况下,由于距离长,油品在运输过程中能量损失明显,需要多级输油站提供动力,直至将油品输送至终点。终点输油站称为末站,主要负责收集上游管线输送而来得物料,因此多配有储罐与计量系统。 关键词:输油管线、X80钢、半自动焊接技术。

目录 1 综述 (1) 1。1输油管道概况 (1) 1。2输油管道分类 (1) 1。2。1按距离分 (1) 1。2。2按油品分 (1) 1、2、3按材料分 (2) 1。3输油管道常用得焊接方法 (2) 1。3、1手工电弧焊 (2) 1。3。2钨极氩弧焊 (2) 1。3、3半自动焊 (3) 1。3。4全自动焊 (3) 1。4输油管道连接分类与法兰 (4) 1、5焊接材料得选择 (4) 2 工艺说明 (6) 2。1管线材料得选择 (6) 2。2焊接方法得选择 (6) 2、3坡口形式得设计制造及清根方法 (7) 2。4焊缝层数及焊接顺序设计 (8) 2、4。1焊接层数得选择 (8) 2、4。2焊接顺序得设计 (8) 2、5焊后热处理工艺说明 (8) 2。6焊接工艺参数得选择 (8) 2。7焊接质量检测 (8) 3 总结 (10) 4 参考文献 (11) 5 焊接工艺卡 (12)

油气输送管道穿越工程设计要求规范(GB50423-2015)

油气输送管道穿越工程设计规范(GB50423-2007) 3.1 基础资料 3.1.1 穿越工程设计前,应取得所输介质物性资料及输送工艺参数。其要求应按现行国家标准《输油管道工程设计规范》GB 50253和《输气管道工程设计规范》GB 50251的规定执行。 3.1.2 穿越工程设计前,应根据有关部门对管道工程的环境影响评估报告、灾害性地质评估报告、地震安全评估报告及其他涉及工程的有关法律法规,合理地选定穿越位置。穿越有防洪要求的重要河段,应根据水务部门的防洪评价报告,选定穿越位置及穿越方案。 3.1.3 选定穿越位置后,应按照国家现行标准《长距离输油输气管道测量规范》SY/T 0055和《油气田及管道岩土工程勘察规范》SY/T 00 53,根据设计阶段的要求,取得下列测量和工程地质所需资料: 1 工程测量资料,包括1:200~1:2000,平面地形图(大、中型工程)与断面图; 2 工程地质报告,包括1:200~1:2000地质剖面图、柱状图、岩土力学指标、地震、水文地质及工程地质的结论意见。 3.1.4 应根据下列钻孔布置要求获取地质资料: 1 挖沟埋设穿越管段,应布置在穿越中线上。 2 水平定向钻、顶管或隧道敷设穿越管段,应交叉布置在穿越中线两侧各距15~50m处。在岩性变化多时,局部钻孔密度孔距可布置为20~30m。 3.1.5 根据现行国家标准《中国地震动参数区划图》GB 18306,位于地震动峰值加速度a≥0.19地区的大中型穿越工程,应查清下列四种情况,并取得量化指标: 1 有无断层及断层活动性质、一次性最大可能错动量。 2 地震时两岸或水床是否会出现开裂或错动。 3 地震时是否会发生基土液化。 4 地震时是否会引起两岸滑坡或深层滑动。 3.1.6 穿越管段应有防腐控制的设计资料。 3.2 材料 3.2.1 穿越工程用于输送油气的钢管,应符合现行国家标准《石油天然气工业输送钢管交货技术条件第1部分:A级钢管》GB/T 97 11.1或《石油天然气工业输送钢管交货技术条件第2部分:B 级钢管》GB/T 9711.2的规定,并应根据所输介质、钢管直径、钢管壁厚、使用应力与设计使用温度等补充有关技术条件要求。对于管径小于DN300,设计压力小于6.4MPa的输油钢管或设计压力小于 4.0MP a的输气钢管,可采用符合现行国家标准《输送流体用无缝钢管》GB/

原油长输管道初步设计计算书53页word

绪论 原油的运输作为能源利用技术的重要一环,越来越受到重视,而其中管道运输与铁路、水路、公路、航空相比,因其输送距离长、建设速度快、占地少、管径大、输量高、能耗低、不污染环境、受地理及气象条件影响小等优点,而得到快速发展,已成为世界主要的原油输送方法[1]。 原油按其油品性质来分,可以将原油分为轻质原油和高粘易凝原油,后者还可以分为含蜡量较高的含蜡原油和含胶质、沥青质较高高粘重质原油(即稠油)[2]。轻质原油的输送较为容易,一般常规输送工艺就能满足要求。含蜡原油的的凝点较高,管输过程中易出现析蜡、凝管、堵塞等事故,严重影响管输的能力和效率。而高粘重质原油的粘度非常高(通常是几百甚至是几万厘波[3]),因此管路的压降就相当大,这就大大增加了原始基建投资和运行费用。 现在原油管输工艺的种类很多,应用较多、技术比较成熟的传统管输工艺有火焰加热器的加热输工艺、热处理输送工艺、加剂(包括降凝剂、减阻剂、乳化剂)输送工艺[4~13]、稀释输送工艺[14]。另有相对来说应用较少、有待进一步研究开发的现代工艺,有保温结合伴热输送工艺、太阳能加热等特殊加热工艺[15]、低粘液环输送工艺、微波降粘输送工艺[16]、水悬浮输送工艺、气饱和输送工艺、磁处理输送工艺[17]、改质输送工艺[18]、管道内涂输送工艺[19]等。 由于我国生产的原油多属高含蜡、高凝固点、高粘度原油,因此我国多数管道仍采用加热输送。无论从输油成本以及设备投资方面都比常温输送高出很多,并且我国大部分输油管道都建在70年代,为了保证安全运

行和提高企业经济效益,旧管输工艺的改进和新建管道先进技术研究开发是当前管输工作的重点。我国从事管道科研人员近年来在这方面取得了较大进展。 我国输油工艺技术发展方向[20]: (1) 适应国内油田发展的特点,解决东部管道低输量运行,西部管道常温输送,海洋管道间歇输送和成品油顺序输送问题。坚持输油工艺的新型化和多样化。(2) 采用高效节能设备,管输过程中节能和降低油耗的最有效措施是采用高效的输油泵和加热炉,开展新型高效离心泵和国产高效加热炉的研制是摆在我们面前的一项艰巨任务。(3) 加强原油热处理、降凝剂和减阻剂机理的研究,从根本添加剂对不同原油减阻降凝机理的认识问题。(4) 开展添加剂的研制工作,形成添加剂研究—生产—应用一条龙。(5) 进一步研究降粘裂化输送,水环输送,界面减阻输送,磁处理输送机理和适应范围。针对不同油田原油的特点进行工业性试验,对特定的原油采用特殊的方法输送。

毕业设计 Z—L输油管道初步设计

毕业设计 Z—L输油管道初步设计

西南石油大学 学生毕业设计(论文) 任 务 书 二00八年二月一日

教学部于 2008 年 2 月 1 日批准指导教师发给 05 级油气储运工程专业学生。 1、题目: Z—L输油管道初步设计

2.题目设计范畴及主要内容: 该管道的设计输量为2000万吨/年,管道全长为220km,管道的纵断面数据见表1,输送的原油性质如下:20℃的密度为860kg/m3,初馏点为81℃,反常点为28℃,凝固点为25℃。表2列出了粘温数据。 表1 沿程里程、高程数据(管道全长220km) 里程(km )0 4 5 8 11 15 17 19 21 22 高程(m)2 8 6 9 35 25 28 46 52 88 表2 粘温数据 温度(℃)28 30 35 4 4 5 5 5 5 60 粘度(cP)124. 5 11 1 83. 2 6 9 6 5 3 4 8 42. 5 本设计主要的研究内容如下: ①用经济流速确定管径,并计算该管径下的费用现值和输油成本; ②通过热力和水力计算确定该经济管径方案下的热站数和泵站数,并进行热泵站的合一; ③主要设备选择(包括泵、炉、罐、原动机);

④站址确定,在纵断面图上布站;⑤反输运行参数的确定; ⑥站内工艺流程设计;⑦方案经济效益分析。

3.设计方案及研究要求: 本次设计的题目是输油管道工艺的初步设计。长输管道的投资巨大, 需在长期的时间内保持在其经济输量范围内,才有明显的经济效益。所以 选择合适的路线走向,合理确定建设规模,选择正确的站址,对于节省投 资和运行费用,以及安全环保都有很重要的意义。 长距离输油管道由输油站和线路组成。故设计的主要内容也主要关于 这两部分: 1、通过选线和管道路线的勘查,收集基本的设计参数。 2、工艺计算部分,具体包括: (1) 根据导师给的原始数据,确定进出站油温,并由此确定经济管径, 其中经济管径的确定方法最经常用的有输油成本法和费用现值法。 (2) 通过热力和水力计算及流态的判断,泵站数的确定,最终进行站 址的确定,其中按最小输量确定热站数,按最大输量确定泵站数。 (3)校核计算。包括热力、水力校核,压力越站校核,热力越站校核, 动静水压力校核,反输校核,全越站校核等。 (4) 工艺流程设计,其原则是满足各个输油生产环节的需要,中间热 泵站工艺流程应与输油方式相适应,便于事故的处理和检修,节约,和能 促进新技术新设备的采用。 4、安排任务日期: 2008 年 2 月 1 日;预计完成任务日期 2008 年 4 月 30 日;

输油管道系统输送工艺设计规范

输油管道系统输送工艺设计规范 3. 1一般规定 3.1.1输油管道工程设计计算输油量时,年工作天数应按354d计算。 3. 1. 2应按设计委托书或设计合同规定的输量(年输量、月输量、日输量)作为设计输量。设计最小输量应符合经济及安全输送条件。 3. 1. 3输油管道设计宜采用密闭输送工艺。若采用其他输送工艺,应进行技术经济论证,并说明其可行性。 3. 1. 4管输多种油品,宜采用顺序输送工艺。若采用专管专用输送工艺,应进行技术经济论证。 3.1.5输油管道系统输送工艺方案应依据设计内压力、管道管型及钢种等级、管径、壁厚、输送方式、输油站数、顺序输送油品批次等,以多个组合方案进行比选,确定最佳输油工艺方案。 3.1.6管输原油质量应符合国家现行标准《出矿原油技术条件》(SY 7513的规定;管输液态液化石油气的质量应符合

现行国家标准《油气田液化石油气》(GB 9052.1)或《液化石油气》(GB 11174)的规定;管输其他成品油质量应符合国家现行产品标准。 3.1.7输油管道系统输送工艺总流程图应标注首站、中间站、末站的输油量,进出站压力及油温等主要工艺参数。并注明线路截断阀、大型穿跨越、各站间距及里程、高程(注明是否有翻越点)。 3.1.8输油管道系统输送工艺设计应包括水力和热力计算,并进行稳态和瞬态水力分析,提出输油管道在密闭输送中瞬变流动过程的控制方法。 3. 2原油管道系统输送工艺 3. 2. 1应根据被输送原油的物理化学性质及其流变性,通过优化比选,选择最佳输送方式。原油一般物理化学性质测定项目,应符合本规范附录A的规定;原油流变性测定项目,应符合本规范附录B的规定。 3.2.2加热输送的埋地原油管道,应优选加热温度;管道是否需保温,应进行管道保温与不保温的技术经济比较,确

等温(顺序)输送输油管道设计计算书

等温(顺序)输送输油管道设计计算书 (一) 管道基础数据 1.设计输量 G 汽=(200+10×31)×104 =510×104 t/a G 煤=400×104 t/a 2.管线长度 L=500+20×31=1120 km 3.油品密度 参考《输油管道设计与管理》P46, 根据任务书已知,20℃时,汽油密度为730㎏/m3, 煤油密度为845㎏/m3, 则t ℃时,各油品的密度为: ρt =ρ 20 -ξ(t -20),ξ=1.825-0.001315ρ 20 3/94.723)2027(730001315.0825.1730m kg =-??--=)(汽ρ 3/00.840)2027(845001315.0825.1845m kg =-??--=)(煤ρ 4.体积流量 27 ρG Q = , 式中: 设一年中输送汽油需要208天,则输送煤油需要142天, 所以有Q 汽= s /m 392.094 .723243600208101051033 4=????? Q 煤= s /m 388.000 .840243600142101040033 4=????? 5.高差 930m 31300H =?+=? 6.各油品27℃下粘度 根据《石油库设计手册》查粘温曲线,有s /m 10570.026-?=汽ν,s /m 10733.02 6 -?=煤ν (二) 管径、管材及管壁厚的确定 1.管径 总设计输量G=(510+400) 4 10?=9.16 10?t/a 查《输油管道设计与管理》表2-4(P63)知,该长输管道管径D=630㎜。参考《输油管道设计与管理》附录二API 标准钢管部分规格(P489)确定:外径D=660㎜,管厚δ=14.3㎜,内径D=631.4㎜。

输油管道工艺设计

输油管道工艺设计

管道输送工艺设计

目录 1 总论............................................................................. 错误!未定义书签。 1.1 设计依据及原则................................................ 错误!未定义书签。 1.1.1 设计依据 .................................................. 错误!未定义书签。 1.1.2 设计原则 .................................................. 错误!未定义书签。 1.2 总体技术水平.................................................... 错误!未定义书签。 2 输油工艺..................................................................... 错误!未定义书签。 2.1 主要工艺参数.................................................... 错误!未定义书签。 2.1.1 设计输量 .................................................. 错误!未定义书签。 2.1.2 其它有关基础数据 .................................. 错误!未定义书签。 2.2 主要工艺技术.................................................... 错误!未定义书签。 3 工程概况..................................................................... 错误!未定义书签。 4 设计参数..................................................................... 错误!未定义书签。 4.1 管道设计参数.................................................... 错误!未定义书签。 4.2 原油物性 ........................................................... 错误!未定义书签。 4.3 其它参数 ........................................................... 错误!未定义书签。 5 工艺计算..................................................................... 错误!未定义书签。 5.1 输量换算 ........................................................... 错误!未定义书签。 5.2 管径规格选择.................................................... 错误!未定义书签。 5.2.1 选择管径 .................................................. 错误!未定义书签。 5.2.2 选择管道壁厚 .......................................... 错误!未定义书签。 5.3 热力计算 ........................................................... 错误!未定义书签。

输油管道设计规范总则

总则 1. 0. 1 为在输油管道工程设计中贯彻执行国家现行的有关方针政策,保证设计质量,提高设计水平,以使工程达到技术先进、经济合理、安全可靠及运行、管理、维护方便,制定本规范。 1.0.2 本规范适用于陆上新建、扩建或改建的输送原油、成品油、液态液化石油气管道工程的设计。 1. 0. 3 输油管道工程设计应在管道建设、营运经验和吸取国内外先进科技成果的基础上合理选择设计参数,优化设计。 1. 0. 4 输油管道工程设计除应符合本规范外,尚应符合国家现行的有关强制性标准的规定。 2 术语 2. 0. 1 输油管道工程oil pipeline project 用管道输送原油、成品油及液态液化石油气的建设工程。一般包括输油管线、输油站及辅助设施等。 2.0.2 管道系统pipeline system 各类型输油站、管线及输送烃类液体有关设施的统称。 2.0.3 输油站oil transport station 输油管道工程中各类工艺站场的统称。 2.0. 4 首站initial station 输油管道的起点站。 2. 0. 5 末站terminal 输油管道的终点站。 2. 4. 6 中间站intermediate station 在输油首站、末站之间设有各类站场的统称。 2. 0. 7 中间热泵站intermediate heating and pumping station 在输油首站、末站之间设有加热、加压设施的输油站。 2. 0. 8 中间泵站intermediate pumping station在输油首站、末站之间只设有加压设施的输油站。 2.0.9 中间加热站intermediate heating station 在输油首站、末站之间只设有加热设施的输油站。

输油管道设计与管理

《输油管道设计与管理》书面作业 作业题目 1.某长输管线按“从泵到泵”方式输送柴油,输量为50万吨/年,管材为φ159×6,管壁粗糙度e=0.1mm。管线的最高工作压力64×105Pa,沿线年平均地温t0=12℃,最低月平均地温t0=3℃,年工作日按350天计算。 泵站选用65y-50×12型离心泵,允许进口压力为0-40m油住,每个泵站的站内损失按20m油柱计算。首站进站压力取20m油柱。 泵特性: ρt=ρ20-ξ(t-20) kg/m3 ξ=1.825-0.00l315ρ20kg/m3℃ 按平均地温试作以下计算: (1) 按米勒和伯拉休斯公式计算输送柴油的水力摩阻系数,并比较计箕结果的相对差值。 (2) 若改输汽油,按列宾宗公式和伊萨也夫公式计算水力摩阻系数,比较计算结果的相对差值。 (3) 输送柴油的工艺计算: ①用最小二乘法求泵特性方程,比较计算与实测值的相对误差。 ②确定泵站泵机组的运行方式及台数(不计备用泵)。 ③按列宾宗公式计算水力坡降,求所需泵站数并化整。 ④用解析法求工作点。 ⑤在管线纵断面图上布置泵站。 ⑥根据站址计算全线各站进、出站压力,检查全线动静水压力。 ⑦计算冬季地温3℃时,输送柴油的工作点及各站的进、出站压力,并与年平均地温时的进、

出站压力比较。 ⑧从起点到翻越点,计算平均站间距L f/n、起点至各站的平均站间距L j/j,据此定性分析油品粘度变化时各站进站压力的变化趋势。对比⑥、⑦的计算结果是否符合这个规律,若不符合,请说明原因。 2.管路热力计算 某管路长286km,采用φ426×8钢管,埋深1.4m,沿线冬季月平均地温2℃,月平均气温-10℃。管壁粗糙度e=0.1mm。 (1) 计算管路保温与不保温的总热阻及总传热系数(埋地不保温管线沥青防腐绝缘层厚度7mm,埋地保温管线用聚氨脂泡沫塑料,厚40mm,外面有沥青防水层,厚7mm,忽略α1及钢管热阻)。 (2) 若管线架空铺设,试计算不保温及有40mm厚的聚氨脂泡沫塑料保温层时,管线的总热阻及总传热系数。 冬季计算风速5m/s,管外壁至大气的幅射放热系数可取为αar=3.5W/m2℃。 (3) 若输量为500万吨/年,输送密度为870kg/m3的粘油,设计最高输油温度60℃,最低35℃,计算上述管路埋地无保温及埋地保温时所需的加热站数、站间长度。油品比热C=2.1kJ/kg℃。 (4) 管路埋地无保温铺设,计算冬季条件下,间站允许的最小输量。允许最高、最低输油温度为70℃、30℃。 (5) 若上述管路的输量降至240万吨/年,可以在设计及运行中采取什么措施实现正常安全输油? 有关参数如下: 土壤导热系数(w/m℃) 0.96 沥青导热系数(w/m℃) 0.15 聚氨脂泡沫导热系数(w/m℃) 0.05 3.分别按理论公式及平均温度计算法计算某热油管路的站间摩阻。 管线φ325×7,站间距32km,总传热系数K=1.8w/m2℃,输量98kg/s,出站油温65℃,沿线地温t0=3℃。所输油品物性如下: ρcp=852kg/m3,C=2.0kJ/kg℃ υTR=5.3×10-6m2/s,u=0.036(粘温指数) 4.热油管路设计方案 已知条件: (1) 管线总传热系数K=2.1w/m2℃,管线埋深处最低月平均地温t0=1℃,螺纹焊接钢管φ325×7,工作压力46×105Pa,沥青绝缘层厚度为7mm。 (2) 管输原油的物性参数如下: ρ20=840kg/m3 C=2.1kJ/kg℃ 粘温方程lnυ=3.62-0.041t (cs) (3) 任务输量为300万吨/年 (4) (5) 可供选择的加热炉、泵的性能

相关主题
文本预览
相关文档 最新文档