当前位置:文档之家› 石墨烯在锂电池中的应用研究

石墨烯在锂电池中的应用研究

石墨烯在锂电池中的应用研究
石墨烯在锂电池中的应用研究

LUOYANG NORMAL UNIVERSITY

2015届本科毕业论文

石墨烯在锂离子电池材料中的应用研究

院(系)名称化学化工学院

专业名称化学工程与工艺

学生姓名雷丙丽

学号110644058

指导教师刘丰讲师

完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究

摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。

关键词:石墨烯;锂离子电池材料;电化学

The application of graphene in lithium-ion battery materials

research

Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected.

Keywords:graphene; the modification of graphene; lithium—ion battery material

1 引言

近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

各国开始对环保的可再生新能源的运用和开发投入了非常大的科技技术和资金,而新能源材料的开发一直是能源研究领域的热点。近几年来,电子产业的发展非常迅速,电子产品的功能越来越多,手机、电脑等对电池的电化学性能的要求越来越高。然则仅随着电动车、汽车等新能源产业的迅速发展,二次电池的开发迫在眉睫。未来锂离子电池也可能作为电动汽车的动力电源系统之一。因而,开发安全性比较高、能量密度比较大的锂离子电池材料是目前研究方向的热点之一。

锂离子电池有许多优点,包括能量密度大、无记忆效应、无污染、使用寿命长以及自放电率小,是环保电池,并呈现出快速发展的势态[1]。在1970年前后,随着对嵌入化合物的研究,人们发现了锂离子可在TiS2和MoS2等嵌入化合物的晶格中嵌入或脱出。1983年,首次建立了以碳/石墨材料作为负极,以金属锂作为正极的锂离子电池体系[2]。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。碳/石墨材料是目前商业化使用的负极材料,其来源丰富、成本低、能量密度高、稳定性高,但石墨烯在最低能量下会发生重排,其结构会从标准的六元碳环转变为包含五元环和七元环的杂乱结构,从而形成结构缺陷。因而,摸索新型的负极材料以达到锂离子电池的须要可以作为探究的方向。2004年,英国的曼彻斯特大学安德烈-海姆教授和他的同事们[3]第一次运用微机械力从石墨上剥离出非常薄的石墨烯碳层。由于石墨烯非凡的构造和性能,在国内掀起了研究热潮,其中石墨烯在锂离子电池的电极材料中的应用研究一样也得到了普遍关注。

2 石墨烯的结构与制备

2.1 石墨烯的结构

石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。单层石墨烯(如图1所示)中的碳原子周期性排列于石墨烯平面内,它是以六元环形式存在的。在石墨稀中,碳原子可以在石墨稀平面内来回移动,而且碳原子贡献的一个未成键的π电子可以与平面形成垂直的π轨道,因而石墨烯具有良好的导电性[4]。然而由于石墨烯热学波动起伏容易扩散,导致了石墨烯表面出现不平整、皱褶和卷曲的特色。根据石墨烯的此微观结构,制备的石墨烯复合材料,具有不同的优良性质。一方面,科学家们研究了石墨烯的电化学性能和电荷迁

图1 单层石墨烯的电子结构示意图[6]

移率与皱褶的关系以及如何控制[5]。另一方面,石墨烯有许多突出的物理化学性质也是因为石墨烯特殊的构造。其中研究的最早最多的就是石墨烯的电子特性。石墨烯是零带隙半导体,不仅具备特别的线性光谱特征,而且具备独特的载流子特性,因而人们以为单层石墨烯由于非束缚抛物线电子式扩散关系,室温下的电子迁移率达到20000 cm2V-1s-1,受温度影响很小,所以它的电子结构与传统的半导体和金属不同。此外,石墨烯不但有完美的量子隧道效应,还有半整数的量子霍尔效应以及室温铁磁性等共同性质,它们使石墨烯在锂离子电池材料中的应用更具有突出优势。

2.2 石墨烯的制备

人们发现石墨烯有较高的储锂才能,材料自身的电子迁移率高,导热性能突出,稳定性高以及力学性能优异。目前,石墨烯制备的方法主要包括:微机械剥离法、有机合成法、外延生长法、化学气相沉积法、氧化还原法等。

2.2.1 微机械剥离法

英国曼彻斯特大学的Novoselov[7]等人通过微机械剥离法(如图2)得到了比较薄的石墨烯。该研究把石墨薄片粘在胶带上,把有粘性的一面对折,再把胶带撕开,这样可以使石墨薄片一分为二。通过不断地重复这个过程,片状石墨越来越薄,直至该平面上剩下较薄的片层为止。然后将其溶于丙酮溶液中,再在该溶液中浸渍表面为SiO2薄膜的硅基片十分钟左右,并进行超声洗涤,那些厚度小于10 nm的石墨片层于范德华力或毛细作用下严密地固定在硅基片上。思虑到石墨烯特殊的光学特性,研究人员使用扫描电子显微镜(如图3所示)的方法,清楚的观测到了单层石墨烯和多层

石墨烯的形态。这种方法制备的石墨烯晶体结构不仅比较完整,而且缺陷较少,可用于实验。但是这种方法单层石墨烯的尺寸大小不易控制,而且产率低、成本高不能应用于实践。

图2 微机械剥离法制备石墨烯装置示意图[7]

图3 石墨烯的扫描电镜图

2.2.2 有机合成法

有机合成法(如图4所示)能够制备具有良好功能的连续的石墨烯半导体薄膜用料,在电子行业有很大的应用潜力。Qian等[8]运用有机合成法实现了含酰亚胺基团和石墨烯纳米带的化学合成,制备了石墨烯纳米带,其结构特殊并且无缺陷,提高了合成效率。但这种方法所制的石墨烯尺寸小,而克服这个缺陷将会带来在锂离子电池材料中广阔的应用前景。

图4 有机合成法制备石墨烯的合成示意图

2.2.3 外延生长法

此措施平常是加热6H-SiC单晶表面[9],使Si原子蒸发,从而制备出石墨烯。首先将经氧化或H2刻蚀预处理,得到的SiC样品在超高真空下(1.33×10-8Pa)的条件下,加热到1000 ℃去除其表面氧化物,当运用电子能谱能确认氧化物已经完全去除后,样品再加热到1250-1450 ℃并恒温9-20 min,当表面Si原子蒸发且碳原子重新组建后,便可形成极薄的石墨层。这样制备的石墨烯质量较好,面积较大,但由于SiC晶体表面的构造不简单,所以获得大面积、厚度均一的石墨烯较难[10]。Berger等[11]运用此方法分别制备出了单层和多层石墨烯还研究了其功能。与机械剥离法制得的石墨烯比较,外延生长法制得的石墨烯具有载子迁移率高的优点以及不能观测量子霍尔效应的缺点。

2.2.4 化学气相沉积法

石墨烯是在金属(Ni,Cu或Pt)或金属氧化物(Al2O3或MgO)表面上,通过化学气相沉积,在高温下分解的烃制备的。该法制备的石墨烯拥有均匀、表面积大、

质量高、合成成本高和产率较低的特性。

2.2.5 氧化还原法

目前,氧化还原法成为了制备石墨烯的最佳措施,其具有低廉的成本和易实现规模化的优势。此方法是将天然石墨与强氧化剂发生反应,削弱层间作用力,从而易于从氧化石墨(如图5所示)中剥离氧化石墨烯,然后加入还原剂去除氧化石墨烯表面的含氧基团得到石墨烯。如可采用高锰酸钾/硝酸钠为氧化剂,浓硫酸为插层剂,通过Hummers 法制备氧化石墨,并以水合肼作为还原剂,制备石墨烯。

图5 氧化石墨的结构示意图

3 石墨烯材料在锂离子电池中的应用

3.1 石墨烯直接用作锂离子电池负极活性材料

石墨烯具备优良的储锂功能,可以直接作为锂离子电池的负极材料。Yoo等[12]首先报道了石墨烯的储锂性能,石墨烯的比容量为540mAh/g。中科院大连化物所的Lian等[13]报道了利用快速热膨胀法制备的石墨烯薄片,可用于锂离子电池,当电流密度为100mA/g时,石墨烯的首次可逆比容量达到1264mAh/g,当电流密度增加5倍时,可逆比容量明显减少,但不容乐观的是,该石墨烯锂电池首次不可逆比容量损失达到30%以上。在电流密度减少至首次一半时,比容量提高了。Li等[14]通过氢气热还原法制备的石墨烯经过50次循环平均库仑效率即可达到97% 。由此可见,制备过程中锂离子在石墨烯层间的脱嵌是由于含氧官能团的消失和夹层间距的增加引起的。

此外,石墨烯片层容易汇集堆积成多层结构,因而有其因高比表面积而具备的比较高的储锂空间的劣势,但是石墨烯却可以作为一种优异的改性材料在复合电极材料

中可发挥更大的意义。

3.2 石墨烯改性负极材料

石墨烯可以广泛地应用于改性其它负极材料,这样制备石墨烯复合材料在锂离子电池中的电化学性能能够发挥更重要的作用。目前研究的锂离子电池的非碳基负极材料主要有:锡基、硅基以及过渡金属氮化物,这类材料具有高理论容量,但其缺点是在嵌锂/脱锂过程中材料的内应力大,体积膨胀收缩变化明显。在不断充放电后,材料很容易发生分裂,脱离于集流体,导致活性物质含量下降和材料的循环性能降低。

氮掺杂的石墨烯不但能改善它们单独使用时的缺点,还能充分发挥石墨烯与负极材料之间的协同效应。下述分析了这种改性的协同作用及改善效果。

3.2.1 石墨烯改性锡基氧化物

目前,研究学者对锂离子负极材料研讨最多的是Sn以及其氧化物SnO2。他们通过制备合成的锡基/石墨烯复合材料研讨了石墨烯复合材料的非宏观形貌与电化学性能。在充放电过程中,特有的石墨烯结构可以使电池结构比较稳定,导电率增加,并提供额外的锂离子储存空间,从而使电池容量的变化没有升高,但增长了电池的使用寿命。因此,二氧化锡/石墨烯纳米复合材料的可逆容量大,并且具有良好的充放电性能。但由于制备方法有所差别,所以不同研究者得到的最佳复合比例也不同,因此对协同效应机理的探究还需进一步深入。

根据实际测量结果(如图6),从电极材料种类上分析,二氧化锡石墨烯复合纳米材料的电池容量和性能比其它锡基化合物好。纯石墨烯纳米层理论上具有570mAh/g的储能能力,适合作为锂离子电池的负极,并且在充放电30个循环的情况下,能够保留约70%的最大容量。研究者们制备的二氧化锡纳米材料电极第一次充放电容量为1170mAh/g,循环后迅速下降到40%,而二氧化锡纳米颗粒石墨烯纳米复合电极在最佳配比下(1:1),能够表现出1888mAh/g的首次充放电容量,以及725 mAh/g的稳定充放电容量。研究者们还研究了二氧化锡纳米层的电化学性能,以探究锡基材料对电池性能的作用。二氧化锡纳米层/石墨烯纳米颗粒电极的初始放电容量为806 mAh/g,充电容量为683 mAh/g,在30次充放电结束后,放电容量达到607 mAh/g,是初始放电容量的88.7%。因此,使用球状纳米颗粒结构的锡基化合物明显优于纳米层结构的电极性能。综上所述,二氧化锡球状颗粒的石墨烯复合材料在高性能锂离子电池的负极材料中是非常有前途的。

图6 不同重量比混合的二氧化锡石墨烯纳米复合材料的容量与充放电次数变化曲线

3.2.2 石墨烯改性硅基材料

硅与锂离子可以形成Li4Si,它的理论充电比容量可达4200mAh/g,且它的放电电压较低,自然储量又非常丰富,作为锂离子电池的负极材料具有良好的前景。但石墨烯改性的硅基材料循环稳定性较差,是因为在充放电过程中体积效应比较严重。为了在一定程度上缓冲它巨大的体积变化,需要将硅材料碳包覆以及纳米化,提高体积效应。与其他碳材料的改性方法相比,石墨烯的引入有阻止硅纳米颗粒的聚集、减小材料的体积变化以及有效的提高其储锂量和电子速率的优势。

对于硅纳米颗粒的石墨烯复合材料电极锂离子电池(如图7所示),如果仅仅通过简便的研磨或机械混合,不能将纳米Si颗粒与石墨烯基体结合,形成均匀的复合物。然而利用氧化石墨烯和稳定悬浊液这样简单的方法,可以得到硅纳米颗粒的石墨烯复合材料。该悬浊液均质稳定,所以在电极中石墨烯可以有效的作为导电体,同时可以对纳米颗粒进行固定作用,维持硅纳米粒子之间的空隙,从而使锂离子易于扩散。石墨烯的机械特性能够有效地缓解硅纳米颗粒在锂离子电池充放电过程中的体积膨胀。硅纳米颗粒电极虽然在初始阶段具有非常高的可逆容量,但是在经过几十次充电循环之后,其储能量下降到其10%,由此可看出这种方法制备的硅纳米颗粒与石墨烯的复合材料具备稳定的循环性能。在1A/g以条件下,初始阶段可逆容量达到2810 mAh/g,200次循环后容量能够达到1611 mAh/g。由此可见,石墨烯改性过的硅基材料能够改变电池充放电过程中的体积变化,提高锂离子电池的电化学性能。

图7 硅纳米颗粒石墨烯复合材料电极200次循环后的HRTEM图

3.2.3 石墨烯改性过渡金属氮化物

因为过渡金属的氧化物和化合物具有高储锂容量,也成为了新型锂离子电池负极材料的研究方向之一。由于在充放电过程中,这类材料也存体积变化明显和电子迁移率低的问题,因而可以利用石墨烯改性这类材料,从而提高材料的电化学性能。过渡金属氮化物N2O3的容量可以达至1890 mAh/g,尽管其具有良好的导电性,但材料稳定性能不好,仍然需要更深入的研究。

3.2.4 石墨烯改性其他材料

除上述材料之外,目前,许多的科研工作者正在研究铁酸盐、硫化物等材料。Chu等[15]发现CoFe202的放电容量达910 mAh/g;秦启宗等[16]制备了纳米NiFe202材料,经过1 00次循环后,可逆容量能够保持在600 mAh/g。通过热解硫钨酸铵,马江虹等[17]制备得到了纳米WS2材料,它的放电比容量能够保持在730mAh/g。这种材料具有特殊的微观多孔结构,不但能有效缩小锂离子扩散间距,还有利于锂离子和电子在该材料中的储存和传输。因此,这种复合材料有较高的可逆比容量和较好的循环性能以及良好的传输速率。

3.2.4氮掺杂石墨烯

通过氮掺杂可有效地提高石墨烯的储锂性能。氮掺杂后,石墨烯材料的构造不仅发生变化,而且其电学性能也发生了很大变化[18]。氮原子的引入,不但可以提供更多

的活跃区域,还可以有效改善其电子性能,并增强复合材料和锂离子之间的相互作用的效果,从而可以加速锂离子的扩散和转移,以提高其电化学性能。在N2和高温条件下,氧化石墨与三聚氰胺反应合成得到氮掺杂石墨烯,与天然石墨和石墨烯相比,它的电化学性能更加优异[19]。在0.2mA/cm2电流密度下,氮掺杂石墨烯电极的第一次充电容量达到461 mAh/g,可逆容量达到365 mAh/g,明显比天然石墨(322 mAh/g)高,比石墨烯(1000 mAh/g)低,接着继续充放电,发现具备氮掺杂石墨烯极高的循环稳定性且容量几乎没有发生减少。在1 mA/cm2电流密度下,氮掺杂石墨烯的首次库伦效率略比天然石墨低,比石墨烯高。因为与石墨比较,氮掺杂石墨烯表面活性比较高,在第一次充放电中可能形成SEI膜而导致能量消耗比较高。然而石墨烯的掺杂改性后的复合材料改善了这两种材料的缺陷。说明石墨烯的引入使产物的比容量和循环性能都有了提高。为了避免单独使用时的缺点,应充分发挥石墨烯与被改性材料之间的协同效应。更重要的是,因为N元素在整体上比石墨烯的有序化程度高,且能修复材料的部分缺陷,所以其第一次库伦效率比石墨烯高,这在实际应用中具有重要探究意义。

3.3石墨烯在正极材料中的应用

通过对电极活性材料中网络结构的SEM 和TEM 分析,研究发现,石墨烯和导电碳黑作为正极材料LiCoO2的导电剂,二维石墨烯的面网可以有效扩大石墨烯与LiCoO2活性颗粒的导电碰触面面积,从而有效提高了导电性和强度,减少了电池内阻,增强了LiCoO2的电化学性能。实验表明,石墨烯的加入有助于提高LiCoO2的电化学性能、循环性能和放电容量。与传统的炭黑相比,LiCoO2的放电容量在0.2C 条件下可以提高10mAh/g。然而石墨烯LiCoO2电池在1C倍率下,循环300次后,放电容量能由145.0 mAh/g 减少到137.8 mAh/g,放电容量只减少了4.9%。石墨烯/LiCoO2电池同样具备良好的放电能力,20C下的放电容量可以达到1C下放电容量的91.3%[20]。可以说,因为石墨烯二维高的比表面积和优良的电子传输能力,所以在正极复合材料中,能改变锂离子电池正极材料的导电性能以及提高锂离子的扩散传输能力。

4. 结论

石墨烯在锂离子电池材料中的研究己取得较丰富的成果。石墨烯能有效阻碍硅纳米颗粒的聚集,减小材料的体积变化,提高其储锂量和电子速率,并且有良好的导电

性能,可逆容量大,较好的循环性能以及优良的储锂功能,充分发挥石墨烯及相关材料之间的协同效应。然而,尽管石墨烯是一种新型电池材料,但是在锂离子电池领域的运用仍然有很多问题。例如:石墨烯制备过程中片层容易堆积,首次循环库伦效率较低,大规模制备困难,价格昂贵等。因此设计大规模生产石墨烯的制备工艺;开发具有高比容量、高工作电压、大比功率以及长循环寿命的石墨烯复合电极材料;以及石墨烯的储锂性能及其复合材料中的微观特征与电化学性能之间的关系深入研究,还有石墨烯的尺寸、缺陷、结构以及孔径等对电化学功能的作用的深入研究,都将是今后我们需要解决的重要问题。

总而言之,石墨烯的研究已取得优异的成绩。但为了能够应广大人民对电池循环寿命、快速大电流充放电、高比容量等的需求,应该注意以下几个方面的探究:(1) 为了材料大规模生产应用并进入市场,须要注意以降低石墨烯的制备工艺成本为前提设计大规模生产石墨烯的制备工艺; (2) 提高石墨烯及其复合材料的高倍率性能和循环寿命,使其能满足实际应用需求。

参考文献

1. Brandt K. Solid State Lonies ,1994,69:173-183

2. Yazami R,Touzain P.J.Power Sourees,1983,9:365-371

3. Novoselov K S,Geim A K,Morozow S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A.

Science,2004,306:666-669

4. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, E. D. Williams. Atomic structure of

graphene on SiO2 [J]. Nano Lett., 2007, 7 (6):1643-1648.

5. Stoller MD,Park S,Zhu Y et a1.Graphene-based ultracapacitors[J].Nano Lett.,2008,8:3498-3502

ehavior ofepoxy-imidazole system[J].Carbon,2009,47:1l 12·1 1 18

6. Zhou T, Wang X, Liu X, et al. Influence of multi-walled carbon nanotubes on the cure behavior of

epoxy-imidazole system [J]. Carbon, 2009, 47: 1112-1118

7. Challet S,Azais P,Pellenq R J M,et a1.Hydrogen adsorption In microporous alkali·doped

carbons(activated carbon and single wall nanotubes).J.Phys.Chcrn.S01.,2004,65:541.544

8. Qian, H. L.; Negri, F.; Wang, C. R.; Wang, Z. H. J. Am. Chem.Soc., 2008, 130(52): 17970

9. Forbeaux, I.; Themlin, J. M.; Charrier,A.; Thibaudau, F.; Debever,J. M. Appl. Surf. Sci., 2000,

162-163(1): 406

10. Hannon, J. B.; Tromp, R. M. Phys. Rev. B, 2008, 77(24): 241404

11. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai,Z. T.; Marchenkov, A. N.;

Conrad, E. H.; First, P. N.; de Heer, W.A. J. Phys. Chem. B, 2004, 108(52): 19912

12. YOO E J, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families

for use in rechargeable lithium-ion batteries[J]. Nano Lett, 2008, 8(8):2277-2282.

13. LIAN P C, ZHU X F, LIANG S Z, et al. Large reversible capacity of high quality graphene sheets as

an anode material for lithium-ion batteries[J]. Electrochim Acta, 2010, 55:3909-3914.

14. LI T, GAO L J. A high-capacity graphene nanosheet material with capacitive characteristics for the

anode of lithium-ion batteries[J]. J Solid State Electrochem, 2012, 16(2):557-561.

15. Chu Y Q,Fu Z W,Qin Q Z.Cobalt ferrite thin films as anode material for lithium ion

batteries[J].Electroch.Acta,2004,49(27):4915-。4921.

16. 秦启宗,傅正文,储艳秋等.一种用于锂离子电池的纳米阳极材料及其制备方法吲.中国专

利02136299,2002.

17. 马江虹,翟玉春,田彦文等.WS2纳米纤维的制备及电化学性能[J].材料与冶金学报,2004,

3(1):39"--42.

18. 于陕升,郑伟涛.氮原子吸附锯齿型石墨烯纳米带第一原理研宄[J]中国科技论文在线,2009,

4(4).

19. 高云雷,赵东林,白利忠,等.氮掺杂石墨烯作为锂离子电池负极材料的电化学性能[J].中

国科技论文,2012,6:006.

20. 邓凌峰, 余开明,石墨烯改善锂离子电池正极材料LiCoO2电化学性能的研究,J.,功能材

料,2014,45:1001-9731.

致谢

在论文的准备和写作过程中,雷丙丽得到了刘丰老师的悉心指导和热情帮助,受益匪浅,万分感谢!

雷丙丽

2015年04月于洛阳师范学院

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

黑磷和石墨烯对比的优缺点

黑磷和石墨烯对比的优缺点 黑磷和石墨烯对比的优缺点,是大多数人想要了解的事情。因为,这两种材料都是近年来热门的话题,很多媒体都在宣传,但是大家对黑磷、石墨烯可能仅限于听过名字,对它们都没有深入的了解过,自然也就不知道黑磷、石墨烯的优缺点。先丰纳米作为专业的纳米材料公司,下面就给大家简单的介绍黑磷和石墨烯对比的优缺点。 石墨烯具备众多优异的力学、光学、电学和微观量子性质,是具备透光性好、导热系数高、电子迁移率高、电阻率低、机械强度高等众多普通材料不具备的性能,未来有望在电极、电池、晶体管触摸屏、太阳能、传感器超轻材料、医疗、海水淡化等众多领域应用,是很有前景的先进材料之一。 石墨烯可能不会通过其自身作为一种理想材料来实现未来的巨大影响,而是通过它衍生的产物。尽管石墨烯有着许多令人眼花缭乱的优点,但它也有缺点,尤其是不能充当半导体——这是微电子的基石。 在高科技设备面前,石墨烯的光环黯淡了一些。电子时代的大多数被认为有价值的材料都是半导体,而石墨烯更像一个金属导体。 二维黑磷单晶(又称黑磷),二维黑磷单晶是纯磷可以形成的三种不同的晶体结构(或同素异形体)之一。其他两种材料分别是用于制造烟花的白磷和用于制造火柴头的红磷。 二维黑磷单晶由位于两个位面的波浪形磷原子组成,其属性已经使它成为材料学界的宠儿,其电子转移速率为600 cm2/vs,一些研究人员希望进一步提高这一速率;同时,

其频间带隙(让电流通过该物质所需要的电伏)是可调谐的,即电子工程师可以通过简单 的改变二维黑磷单晶的叠层调整带隙,这一特性有利于根据具体要求设计出期望的带隙。 二维黑磷单晶在空气中不稳定,在24小时后,就可以看到材料表面的气泡,然后整 个设备在数日内就会失效。 以上就是黑磷和石墨烯对比的优缺点的介绍,有任何问题,欢迎立即咨询先丰纳米公司。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳 米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜 完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过 一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现 专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及 技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米 材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

石墨烯在锂离子电池负极材料中的应用

石墨烯在锂离子电池负极材料中的应用石墨烯(Graphene)是一种仅由碳原子以sp2杂化轨道组成六角型晶格的平面薄膜,亦即只有一个碳原子厚度的二维材料。相比其他炭材料如碳纳米管,石墨烯具有独特的微观结构,这使得石墨烯具有较大的比表面积和蜂窝状空穴结构,具有较高的储锂能力。此外,材料本身具有良好的化学稳定性、高电子迁移率以及优异的力学性能,使其作为电极材料具有突出优势。与碳纳米管类似,纯石墨烯材料由于首次循环库仑效率低、充放电平台较高以及循环稳定性较差等缺陷并不能取代目前商用的炭材料直接用作锂离子电池负极材料。随着制备技术的发展,通过控制石墨烯片层间的间距,防止固体电介质层的形成大量消耗锂离子,并合理平衡缺陷结构与“死锂”的产生也许是石墨烯材料进一步向实用化材料发展的方向之一。 1.硅-石墨烯基复合材料在锂电池负极材料中的应用 石墨烯也是对硅负极进行改性的重要骨架材料。它能够提供自由空间来缓冲充放电过程中的体积效应,保证脱嵌锂过程中材料结构的完整性;同时,石墨烯片层间能形成稳定的导电网络,从而提高电极的储锂性能。Lee等将纳米硅颗粒高度分散在石墨烯薄片上,然后进行热处理还原得到硅-石墨烯复合材料,电化学测试表明,该复合材料经过50个循环后,容量大于2200mA·h/g,200个循环后容量大于1500mA·h/g,每个循环的衰减率小于0.5%。该复合材料优异的电化学性能得益于纳米硅颗粒均匀分散在柔韧的石墨烯层间,不仅改善了硅的电子电导,而且有效缓冲了硅的体积效应。 高鹏飞通过喷雾干燥技术将二维的石墨烯加工成具有三维结构的导电网络,同时将纳米硅粉包裹在其内部空腔内,得到了一种“包裹型”硅碳复合材料。该材料具有高达1525mA·h/g 的比容量和较好的循环稳定性。这得益于硅与石墨烯的协同效应,纳米硅粒可分隔石墨烯层,防止其堆叠失效;而石墨烯层可以缓冲硅的体积效应,其导电网络结构可改善活性硅颗粒的电接触,维持材料结构稳定。Ma等通过喷雾干燥法合成具有浴花形状的硅-石墨烯复合材料(见图1)。电化学测试表明,该复合材料的首次充放电容量分别为2174mA·h/g和1252mA·h/g,经过30个循环后,可逆容量仍保持在1500mA·h/g以上。其优异的电化学性能归因于这种特殊的浴花状结构以及石墨烯与纳米硅颗粒之间的协同作用,石墨烯提供足够的空间来缓冲充放电过程中硅的体积变化,并防止硅颗粒的聚集。此外,高导电性的石墨烯包裹活性纳米硅颗粒,从而保持其循环过程中稳定的电接触。

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

石墨烯基锂离子电池项目策划商业计划书

石墨烯基锂离子电池项目商业计划书(典型案例·仅供参考) 广州中撰企业投资咨询有限公司 中国·广州

目录 1执行总结 (4) 1.1公司 (6) 1.2 产品 (6) 1.3市场 (6) 1.4 生产 (7) 1.5 营销 (7) 1.6 投资与财务 (7) 1.7组织与人员管理 (8) 2项目背景 (9) 2.1产业背景 (9) 2.2政策背景 (10) 2.3市场前景 (11) 2.4行业上、下游产业链分析 (13) 2.5 现有技术、产品情况分析 (15) 3产品及技术描述 (17) 3.1产品描述 (17) 3.2技术描述 (17) 3.3产品专利与设计 (27) 4市场分析 (29) 4.1市场定位 (29) 4.2产品价值 (30) 4.3产品产量分析及预测 (31) 4.4市场需求分析及预测 (32) 4.5消费状况分析 (33) 4.6进出口量值分析 (33) 4.7 效益分析 (34)

5竞争分析 (36) 5.1 行业内的竞争 (36) 5.2 买方讨价还价的能力 (37) 5.3 供应商 (38) 5.4 潜在进入者 (38) 5.5 替代威胁 (38) 6公司战略 (39) 6.1公司概述 (39) 6.2企业文化 (40) 6.3发展战略 (40) 7市场营销 (42) 7.1 销售策略和目标 (42) 7.2 产品策略(Product) (43) 7.3 价格策略(Price) (43) 7.4 销售渠道(Place) (44) 7.5促销策略(Promotion) (45) 8 生产管理 (47) 8.1 厂址选择 (47) 8.2 产品生产 (48) 8.3 质量管理体系 (50) 8.4 产品包装与储存 (50) 8.5生产车间生产秩序管理制度 (50) 9财务分析 (52) 9.1投资分析 (52) 9.2财务分析 (53) 9.3财务假设 (55) 10公司管理体系 (66) 10.1公司性质 (66) 10.2组织结构 (66) 10.3部门职责 (67)

石墨烯在锂离子电池中的应用

石墨烯在锂离子电池中的应用 碳材料因其具有独特的性质和优异的功能,被广泛应用于高温耐火材料,生物工程材料,核反应堆用结构材料,导电用炭材料,电极材料等高科技产业中的各个领域。碳元素的存在形式多种多样,有零维纳米结构富勒烯,一维碳纳米管,三维结构的金刚石、石墨,以及近几年发现的二维结构石墨烯。 图1 0维、1维、2维和3维碳结构示意图 2004年英国的两位科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫从石墨中剥离出石墨片,然后通过特殊的胶带分离法制得仅由一层碳原子构成的薄片——石墨烯。它是一种新型二维碳质材料,具有超大的比表面积, 同时具有良好的导电性和导热性, 也是很有潜力的储能材料,因此成为物理、化学、材料领域的研究热点。石墨烯的出现在科学界掀起了巨

大的波澜,这种新材料的诞生最终使安德烈·海姆和康斯坦丁·诺沃肖洛夫获得2010年诺贝尔物理学奖。 1 石墨烯的结构和性质 石墨烯是只有一个碳原子层厚度的石墨,具有理想的二维晶体结构,碳原子通过SP2杂化成键,与周围其他三个碳原子以C—C单键相连,同时每个碳原子剩有一个垂直于石墨烯平面的p电子,未成对的p电子在与平面垂直的方向形成π轨道,可以在石墨烯晶体结构中自由移动,从而使得石墨烯具有良好的导电性能。 图1.1 石墨烯结构示意图 但是,二维晶体在热学上不稳定,透射电镜观察及电子衍射分析表明单层石墨烯并不是完全平整的,而是呈现出本征的微观的不平整,在平面方向发生角度弯曲。扫描隧道显微镜观察表明纳米级别的褶皱出现在单层石墨烯表面及边缘。这种褶皱起伏变化可以导致静电的产生,从而使得石墨烯在宏观易于聚集,很难以单片层存在。

“石墨烯电池”技术

传说中的“石墨烯电池”技术,难道是一场弥天大谎? 近几年来,石墨烯这种获过诺奖的材料一直广受社会关注,在相关媒体上也充满了各种“石墨烯电池”等方面的新闻。 广大群众此时可能会好奇:石墨烯这种材料到底有多少用处,能不能依靠它来解决目前材料、电池等方面遇到的一系列技术瓶颈,帮助电动汽车、储能等行业实现飞跃? 首先上一下结论:“石墨烯电池”这个技术接近于不存在,石墨烯只有在理论上能够提高充放电速率,而对于容(能)量的提升基本没有任何帮助(期望“石墨烯电池”可以解决手机/电动汽车续航的人要失望了),其噱头意义远大于实用价值。 而且石墨烯材料本身纳米材料的高比表面积等性质与现在的锂离子电池工业的技术体系是不兼容的,应用的希望十分渺茫。

在本文中,笔者将结合石墨烯的具体特性,来重点分析石墨烯相关技术,即所谓的“石墨烯电池”在锂电池/储能行业中的发展情况和应用前景。 定义问题:“石墨烯电池”是否存在? 此处,首先援引知乎用户@土豆泥同学的一篇关于石墨烯的文章,其中对于“石墨烯”电池的定义介绍如下: “事实上,国际锂电学术界和产业界并没有“石墨烯电池”这个提法。维基百科里也没有发现“graphene battery”或者“graphene Li-ion battery”这两个词条的解释。根据美国Graphene-info这个比较权威的石墨烯网站的介绍,“石墨烯电池”的定义是在电极材料中添加了石墨烯材料的电池。这个解释显然是误导。 根据经典的电化学命名法,一般智能手机使用的锂离子电池应该命名为“钴酸锂-石墨电池”。之所以称为“锂离子电池”,是因为SONY在1991年将锂离子电池投放市场的时候,考虑到经典命名法太过复杂一般人记不住,并且充放电过程是通过锂离子的迁移来实现的,体系中并不含金属锂,因此就称为“Lithium ion battery”。最终“锂离子电池”这个名称被全世界广泛接受,这也体现了SONY在锂电领域的特殊贡献。 目前,几乎所有的商品锂离子电池都采用石墨类负极材料,在负极性能相似的情况下,锂离子电池的性能很大程度上取决于正极材料,所以现在锂离子电池也有按照正极来称呼的习惯。比如,磷酸铁锂电池(BYD所谓的“铁电池”不在笔者讨论范畴)、钴酸锂电池、锰酸锂电池、三元电池等,都是针对正极而言的。那么以后如果负极用硅材料会不会叫做硅电池?也许可能吧。但不管怎么样,谁起主要作用就用谁命名。” 从此文可以看出,在电池中,以主要作用的成分(磷酸铁锂锂电池)、机理(液流电池等)来命名是一般通用的规则,那么对于“石墨烯电池”呢?

基于石墨烯的锂离子电池负极材料设计研究进展

基于石墨烯的锂离子电池负极材料 研究进展 院系:材料科学系 专业:材料学 姓名:雷冰冰 学号:14210300023

基于石墨烯的锂离子电池负极材料研究进展 摘要:锂离子电池因其质量轻、能量密度大、安全的优点,广泛应用于便携式电子设备领域,逐步成为了应用最佳和最有发展前途的能源。为了进一步提高锂离子电池的能量密度、循环寿命,需要进一步开发新的负极材料。由于石墨烯具有优越的导电性、超高的比表面积和很好的机械强度等特点, 其在锂离子电池负极材料方面显示出潜在的应用前景[1]。本文综述了目前世界上对于基于石墨烯材料的锂离子电池负极材料的研究现状。并对现有研究存在的不足做出了评价和预测了未来的研究方向。 关键词:锂离子电池;负极材料;石墨烯 前言:相比其他可充二次电池,锂离子电池中具有高的比容量、相对低的自放电、长的循环寿命和小的环境污染等优点,被广泛应用于便携式电子设备中。近几年能源环境问题及世界各国发展电动车的需求,因此迫切需要开发更高能量密度(高比容量)、更高功率密度(高的倍率性能)和更长循环寿命(优越的循环性能)的锂离子电池。锂离子电池电化学性能的提高关键因素在于其正负极材料的提升。 目前,商业化的锂离子电池负极材料石墨具有理论比容量低(372 mAhg-1)和锂离子传输系数低(10-7~10-10cm2s-1)等缺点严重限制了锂离子电池性能的进一步提升。因此,开发设计高比容量、高倍率性能和优越循环性能的新型锂离子电池负极材料至关重要。新型纳米碳材料

-石墨烯具有优异的导电性、超高的比表面积和很好的机械强度等优点,被认为是最有潜力的锂离子电池负极材料[2]。是当前科学领域研究的热点。但是,石墨烯纳米片层之间由于范德华力作用容易发生堆积或团聚等问题,并且常用的化学合成法得到的石墨烯一般具有较多的残余含氧官能团;这些因素都会影响石墨烯作为负极材料的循环性能和倍率性能。因此,对石墨烯材料的结构改进、表面官能团改性以及运用掺杂、复合等手段来改进石墨烯作为锂离子电池负极材料的研究是当今的热点。本文就以上几个方面对最新的石墨烯基锂离子电池负极材料研究进展进行了综述,并对目前存在的问题和未来发展方向提出了自己的看法。 石墨烯基材料储锂性能: 1、原理解释:材料的性能是由其结构决定的。弄清楚性能背后的结构性原理对实验的可重复性意义重大,并对未来的继续研究具有重要的指导和预测作用。因此,机理解释方面的研究工作是非常重要的部分。Nasir[3]等人总结了前人有关石墨烯及其衍生材料在能量存储和转换方面的制备和应用,得出石墨烯复合材料的性能不仅依靠单独组分的性能,也与它们之间的相互作用有很大的关系;所以控制复合物中组分配比,密度,化学键的种类以及空间结构是很关键的。同时,该课题组也提出了一些建设性的看法,可以通过掺杂不同元素或者采用3D结构以防止石墨烯重新堆叠,露出石墨烯表面;可以通过改善晶体与石墨烯之间的物理化学作用提高石墨烯复合材料在使用中的稳

石墨烯锂离子电池

石墨烯锂硫电池 以《超快长循环寿命锂硫电池:基于石墨烯的三明治结构》为题,介绍了高容量、长循环寿命、低成本及环境友好的新型石墨烯锂硫(Li-S)电池开发,并取得重大突破。据介绍,新型石墨烯锂硫电池理论比能量为2567Wh/Kg而中科院金属所采用石墨烯集电体的轻质特点,使其构成的锂硫电池具有更高的能量密度。目前常用锂电池能量密度140Wh/Kg。也就是说,该电池的储电能力达到目前锂电池18倍以上,相当于将比亚迪E6电动汽车700KG电池,缩小约95%或35KG.根据早前的各方面消息,该电池的功率密度及充电时间均已解决,一次充电多在 6分钟以内,其循环次数及电池寿命高于目前锂电池的百倍。大众化车用动力电池即将投入使用阶段,据测算,使用该电池之电动汽车的使用成本,约相当于燃油汽车的20%。据2014年2月17日中科院金属所的最新消息,石墨烯锂硫电池研发再次取得重大突破。这种超级电池“组装方法与现有锂离子电池工艺兼容,具有进一步放大和产业化前景”。与目前用在小汽车上电池比较,其重量下降90%以上,一次充电不超过10分钟,巡航里程超过450公里,每公里成本下降4/5,电池寿命超过30年。该项研究以工业化生产的石墨烯为原料,通过连续工艺制备了石墨烯集流体和石墨烯复合隔膜,其组装方法还与现有的锂离子电池制造工艺可以兼容,因此具有进一步放大和产业化的前景,中科院金属所已经申请了三项专利。 锌锰电池以二氧化锰为正极,锌为负极,氯化铵水溶液为主电解液的原电池。俗称干电池。学术界中又称为勒克朗谢电池。用面粉、淀粉等使电解液成为凝胶,不流动,形成隔离层,或用棉、纸等加以分隔。锌锰电池的开始电压随使用的MnO2的种类、电解液的组成和pH值等的不同而异,一般在1.55~1.75V,公称电压为1.5V。最适宜的使用温度为15~30℃。锌锰电池是普通干电池的升级换代的高性能电池产品,有LR6(五号)和LR03(七号)两种产品电池。产品分普通型(含汞量60%)和微汞量(含汞量不大于25%),现正在开展无汞型电池试制。性能和用途: 电池性能符合国家行业标准,与国外电池性能相当。由于能重负载,大电流放电,电容量大,低温性能和防漏性能好,性能价格比低(价为干电池2-3倍,大电流工作电能是6-8倍)等优点而广泛用于民用和工业。特别适用于闪光照相

新能源材料 石墨烯电池

2017春季学期 新能源材料--课程论文 院(系)材料科学与工程 专业材料科学与工程 学生曾波 学号1141900225 班号1419002

石墨烯电池应用与展望 曾波 材料科学与工程1141900225 摘要石墨烯作为近年来炙手可热的新材料,凭借其独特微纳米尺度的二维平面结构和良好的导电导热特性在锂离子电池电极材料中也有着可观的的应用前景。本文介绍了石墨烯电池的概念提出和工作原理,调研了市场最新的石墨烯电池信息和商用情况,分析了特点和潜在问题以及根据现状的合理展望。 关键词石墨烯锂离子电池能量密度石墨烯电极材料 1 引言 在现已有广泛应用基础的新能源材料中,锂电池作为二次电池中的佼佼者具有开路电压高"能量密度大"使用寿命长"无记忆效应"无污染以及自放电率小等优点。如图一所示,锂离子电池工作原理,正负电极由两种不同的锂离子嵌入化合物组成,正极主要是磷酸铁锂,钴镍锰酸锂(三元材料)等负极主要是碳棒和石墨。充电时Li+从正极脱出经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到负极,保证负极的电荷平衡;放电时则相反。由于Li的原子序数很小,故Li+的质量很轻,单位重量的电极材料就可以储存较多的Li+,所以通常锂离子电池具有较高的能量密度。然而,受限于电极材料的结构与电解质的性能,锂离子电池的功率性能相对较弱,针对动力锂离子电池,这一点表现得尤为突出。故如何增加锂电池的功率密度是当务之急。 要攻破这一难关,需要制备具有高效储能特性的负极材料。碳材料的储锂机理复杂,因此尽管计算化学论证了石墨烯的高储锂容量,但目前制备的石墨烯的可逆容量接近甚至超过理论容量的储锂机理还需进一步分析证明。石墨烯电池是 指用石墨烯掺杂改性的复合材料替 代传统锂电池的电极材料,其他碳、 石墨材料比容量较小,每6个碳原子 与一个锂离子形成LiC6结构存储锂 离子,理论比容量为372mAh/g而石 墨烯是以单片层单原子厚度的碳原 子无序松散聚集形成,这种结构有利 于锂离子的插入,在片层双面都能储 存锂离子,理论容量明显提高。并且 锂离子在石墨烯表面和电极之间快 速大量穿梭运动的特性也将加快充 放电速度。石墨烯电池有望解决现在 锂电池不稳定、充电慢、容量低的难 题。 2 石墨烯电池介绍 2.1石墨烯 石墨烯是是由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,厚度仅为0.34纳米,单层厚度相当于头发丝直径的十五万分之一。是目前世界上已知的最轻薄、

锂离子电池石墨负极材料的优点和缺点

锂离子电池石墨负极材料的优点和缺点 一、石墨定义: 1、石墨是元素碳的一种同素异形体,每个碳原子的周边连结着另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。 2、由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。石墨是其中一种最软的矿物,它的用途包括制造铅笔芯和润滑剂。 二、石墨的特殊性质: 1、导电性:石墨的导电性比一般非金属矿高一百倍。石墨能够导电是因为石墨中每个碳原子与其他碳原子只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 2、导热性:导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。 3、耐高温性:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失很小,热膨胀系数也很小。石墨强度随温度提高而加强,在2000℃时,石墨强度提高一倍。 4、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能越好。由于其润滑性,在超细研磨里难度很高,使用叁星飞荣立式砂磨机可以研磨到纳米级别细度。 5、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、耐碱和耐有机溶剂的腐蚀。 6、可塑性:石墨的韧性好,可碾成很薄的薄片。 7、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 三、石墨的中国产地: 1、我国以黑龙江鸡西市恒山区密山市柳毛乡为最大的产地。以及黑龙江省的七台河市、鹤岗市和双鸭山市等。

2、山东省莱西市为我国石墨重要产地之一。 3、吉林省磐石市也是石墨产地之一。 4、内蒙古乌拉特中旗高勒图矿区发现全国最大晶质石墨单体矿。 5、陕西省煤田地质局一九四队在陕西洋县发现3条石墨矿带。 四、石墨世界著名产地: 1、纽约Ticonderoga。 2、马达加斯加。 3、斯里兰卡(Ceylon)。 五、石墨分类: 1、天然石墨:石墨的工艺特性主要决定于它的结晶形态。结晶形态不同的石墨矿物,具有不同的工业价值和用途。 2、人造石墨:广义上,一切通过有机炭化再经过石墨化高温处理得到的石墨材料均可称为人造石墨,如炭纤维、热解炭、泡沫石墨等。而狭义上的人造石墨通常指以杂质含量较低的炭质原料为骨料、煤沥青等为粘结剂,经过配料、混捏、成型、炭化和石墨化等工序制得的块状固体材料,如石墨电极、等静压石墨等。 人造石墨就成型方式通常可分为:振动成型,挤压成型,模压成型,等静压成型。 3、块状石墨:块状石墨又叫致密结晶状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米,比表面积范围集中在0.1-1m2/g,晶体排列杂乱无章,呈致密块状构造。这种:石墨的特点是品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。 4、鳞片石墨:石墨晶体呈鳞片状;这是在高强度的压力下变质而成的,有大鳞片和细鳞片之分。此类石墨矿石的特点是品位不高,一般在2~3%,或10~25%之间。是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越;因此它的工业价值最大。

石墨烯在锂电池中的应用研究..

LUOYANG NORMAL UNIVERSITY 2015届本科毕业论文 石墨烯在锂离子电池材料中的应用研究 院(系)名称化学化工学院 专业名称化学工程与工艺 学生姓名雷丙丽 学号110644058 指导教师刘丰讲师 完成时间2015年04月

石墨烯在锂离子电池材料中的应用研究 摘要:石墨烯是单原子层紧密堆积的一种特殊石墨材料,在电学、热学、力学等方面具有独特的构造和优良的功能,可以发挥其重要的作用。因为石墨烯具有较高的电导率、超大的比表面积、高的化学稳定性等优良的化学和物理特性,所以它在锂离子电池材料中的研究引起了人们的广泛关注。文章不仅综述了石墨烯的结构和制备工艺以及改性方法,而且介绍了石墨烯作为锂离子电池材料的最新研究进展,还分析了石墨烯各制备和改性方法对锂离子电池材料的影响,并对石墨烯在锂离子电池材料中应用的发展趋势进行了展望。 关键词:石墨烯;锂离子电池材料;电化学 The application of graphene in lithium-ion battery materials research Abstract:Graphene is a single atomic layer close packing of a kind of special graphite material, such as electrical, thermal and mechanical aspects has unique structure and excellent performance, can play its important role. Because of properties of high electrical conductivity, large surface area, and chemical stability, graphene holds great promising for potential applications in electrode materials for lithium-ion battery, it is in the lithium-ion battery materials research has attracted widespread attention. Article summarizes the modification of graphene and graphene is introduced as a new research progress of the lithium-ion battery materials, graphene is analyzed the influence of the preparation and applications of graphene in lithium-ion battery material development trend is prospected. Keywords:graphene; the modification of graphene; lithium—ion battery material 1 引言 近几年来,为了进一步实现可持续发展,锂离子电池受到人们的普遍关注,世界

石墨烯在锂离子电池中的应用

石墨烯在锂离子电池中的应用 摘要:石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯在锂离子电池中的应用研究进展。 引言锂离子电池具有开路电压高、能量密度大、使用寿命长、无记忆效应、无污染以及自放电率小等优点,成为近年来研究发展迅速的新一代二次电池之一。1983 年,首次建立起以金属锂为正极,碳/石墨材料为负极的锂离子电池体系。该电池由正极、负极和电解质组成。充电时,锂离子从正极材料中脱嵌,通过电解质,插入负极电极材料中,放电时脱/嵌锂方向相反。碳/石墨材料是目前已经商业化使用的负极材料,其价格便宜、来源丰富、能提供低而平稳的工作电 结构存储压,性能稳定。但其比容量较小,每6 个碳原子与一个锂离子形成LiC 6 锂离子,理论比容量为372mAh/g。因此需要探索新型的负极材料以满足锂离子电池高比能量、高比功率的需求。 2004 年,英国曼彻斯特大学安德烈-海姆教授和他的同事们首次通过微机械力从高取向热解石墨上剥离出单片的石墨烯碳层。石墨烯因其具有特殊结构和性能,成为国际科学研究的热点,其中石墨烯在锂离子电池电极材料中的应用也得到了广泛关注。这种单层碳原子厚度的二维碳材料具有大理论比表面积 (2600m2/g)和蜂窝状空穴结构,因而有较高的储锂能力。此外,材料本身的高电子迁移率(15000cm2/(V·s)),突出的导热性能(3000W/(m·K)),良好的化学稳定性以及优异的力学性能(拉伸模量1.01TPa),使其作为复合电极材料的基体更具有突出优势。 1 石墨烯的结构和性质 石墨烯是只有一个碳原子层厚度的石墨,具有理想的二维晶体结构,碳原子通过sp2杂化成键,与周围其他三个碳原子以C—C单键相连,同时每个碳原子剩有一个垂直于石墨烯平面的p电子,未成对的p电子在与平面垂直的方向形成π轨道,可以在石墨烯晶体结构中自由移动,从而使得石墨烯具有良好的导电性能。

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能

第7卷第6期 413 中国科技论文CHINA SCIENCEPAPER 2012年6月 氮掺杂石墨烯作为锂离子电池负极材料 的电化学性能 高云雷,赵东林,白利忠,张霁明,孔 莹 (北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029) 摘 要:以天然石墨为原料,通过氧化、快速热膨胀和超声分散制备石墨烯。将氧化石墨与三聚氰胺在氮气下950 ℃反应合成氮掺杂石墨烯。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)以及红外光谱(FTIR)、X射线能谱(XPS)等测试方法对氮掺杂石墨烯的形貌、结构进行分析。结果表明,该方法合成了薄层状氮掺杂石墨烯。 采用恒流充放电和循环伏安法等手段测试氮掺杂石墨烯、石墨烯和天然石墨作为锂离子电池负极材料的电化学性能,比较研究了三者用作锂离子电池负极材料的电化学性能,结果表明氮掺杂石墨烯负极材料具有优异的电化学能和独特的储锂机制。 关键词:氮掺杂石墨烯;石墨烯;锂离子电池;负极材料;电化学性能 中图分类号:O613.71;O646文献标志码:A 文章编号:2095-2783(2012)06-0413-5 Electrochemical performance of nitrogen-doped graphene as anode material for lithium ion batteries Gao Yunlei,Zhao Donglin,Bai Lizhong,Zhang Jiming,Kong Ying (Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China) Abstract: Graphene sheets (GSs) have been prepared from natural flake graphite by oxidation, rapid expansion and ultrasonic treatment. Graphene oxide (GO) was further annealed at the presence of melamine at 950 ℃ and transferred into nitrogen-doped grapheme (N-GSs). The samples were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical performances of nitrogen-doped graphene, graphene and graphite as anode materials for lithium ion batteries were investigated using galvanostatic charge-discharge and cyclic voltammetry methods. It was found that the prepared N-GSs exhibited a relatively higher cycling stability and larger specific capacity compared with the pristine nature graphite and GSs. Cyclic voltammograms results indicate that the higher cycling stability may be associated with more structural defects during cycling. Key words: nitrogen-doped graphene;graphene;lithium ion batteries;anode material;electrochemical properties 收稿日期:2012-02-28 基金项目:国家自然科学基金资助项目(50672004);国家高技术研究发展计划(863计划)资助项目(2008AA03Z513) 作者简介:高云雷(1986-),男,硕士研究生,主要研究方向:锂离子电池负极材料 通信联系人:赵东林,教授,主要研究方向:新型炭材料及其应用,dlzhao@https://www.doczj.com/doc/888374454.html,

石墨烯电池的优缺点

石墨烯电池的优缺点 石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。它的厚度大约为0.335nm,根据制备方式的不同而存在不同的起伏,通常在垂直方向的高度大约1nm左右,水平方向宽度大约10nm到25nm,是除金刚石以外所有碳晶体(零维富勒烯,一维碳纳米管,三维体向石墨)的基本结构单元。 石墨烯在能源领域的应用在这其中,石墨烯在能源领域的应用是最火热,也是最被看好的方向。从原理上讲,石墨烯作为一种优秀的二维导电材料,加入锂离子电池正极材料(磷酸铁锂等)中,即可以提高电极材料的导电性,又可以包裹正极纳米颗粒,是对现有炭黑+碳纳米管导电剂的升级换代。 加入石墨烯导电剂的锂电池,其倍率性能、一致性和寿命都有不同程度的提高(这是优点吧)。 此外,石墨烯还可以加入到新的负极材料(中间相炭微球等)中,提升电极材料的性能,也是一个未来发展的可能性。 这些应用虽然不是锂电池最核心的技术,对锂电池的容量和密度也没有较大的改善,但是可以提高电池组乃至新能源汽车的综合性能,是石墨烯应用领域技术成熟度比较高的方向。 石墨烯电池,利用锂离子在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出的一种新能源电池。 石墨烯电池的基本原理:石墨烯电池在饱和氯化铜溶液中,时间(小时、天数)和产生电压的关系。 实验制成电路其中包含LED,用电线连接到带状石墨烯。他们只是把石墨烯放在氯化铜(copper chloride)溶液中,进行观察。LED灯亮了。实际上,他们需要6个石墨烯电路,形成串联,这样就可产生所需的2V,使LED灯发亮,就可以得到这个图片。

石墨烯基纳米复合材料用作锂离子电池负极的研究进展_王婧毅

石墨烯基纳米复合材料用作锂离子电池负极的研究进展 王婧毅,张燕,叶云,梅毅,廉培超* (昆明理工大学化学工程学院,云南昆明 650500) 摘要锂离子电池是目前应用最为广泛的二次电池,但其能量密度仍无法满足人们的要求。锂离子电池的能量密度很大程度上取决于所用的电极材料,因此,探索性能优越的负极材料是锂离子电池研究的重要课题。本文综述了石墨烯基纳米复合材料作为锂离子电池负极的研究进展,分析了单一石墨烯、二元及三元石墨烯基纳米复合材料的结构对其储锂性能的影响,指出了未来的研究方向。 关键词锂离子电池,石墨烯,负极材料,复合材料,研究进展 The Research Progress of Graphene-based Nanocomposites as Anode Materials for Lithium Ion Batteries Abstract Although lithium ion battery is recognized as the most popular type in current market, it is still facing challenge: its energy density is not high enough to meet customers’ increasing demand. Thus, developing the anode material with more superior performance has been imperative. Here we write a review about graphene-based materials as anode materials for lithium ion batteries. This review discuses both the advantages and disadvantages of graphene, binary and ternary graphene-based nanocomposites, respectively. In addition, this review summarizes author’s views about the conception in future research. Key words lithium ion batteries, graphene, anode materials, composites, research progress 1 引言 锂离子电池诞生于1990年前后,1991年实现商品化,它具有能量密度大、输出功率大、充电效率高、可快速充放电等优点[1],是目前应用最广泛的二次电池。但随着智能手机、笔记本电脑的普及,电动汽车的问世,人们对电

石墨烯结构的分析

石墨烯 石墨烯之所以被广泛应用,是由其自身的内部结构决定的。 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。 石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成n键,新形成的n键呈半填满状态。研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为 1.42 X 10-10米,键与键之间的夹角为120。。除了c 键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大n键(与苯环类似), 因而具有优良的导电和光学性能。 在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%勺电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了优良导热特性。 超级电池采用单原子厚度的碳层构成,这项技术能够在最短时间内对手机和汽车快速充电,能够很容易制造并整合成为器件,未来有望制造更小的手机。 石墨烯储能和放电过程中不发生电池反应,只是将电子储存和释放,是物理变化。由此,应当称其为电容,而不是电池。目前,石墨烯应用于电池上的研究基本上有3个方向: 一是以石墨烯形成全新体系电池。就是说以石墨烯制造一个全新体系的电池,在性能上是颠覆性的,称作“超级电池”。使用这种材料制作的电池,能量密度超过600wh/kg,是目前动力锂电池的5倍,一次充电时间只需8分钟,可行驶1000公里;电池重量只有锂离子电池的一半,体积也会大幅缩小,减轻使用该电池汽车的自身重量;电池的使用寿命更长,是传统氢化电池的4倍,锂电池的2倍;其成本将比目前锂电池降低77%这些物理参数都符合超级电池的要求。 二是以石墨烯强化现有电池性能。将石墨烯运用到现有电池上,改进提升锂电

相关主题
文本预览
相关文档 最新文档